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Abstract— Modern change detection (CD) has achieved
remarkable success by the powerful discriminative ability of
deep convolutions. However, high-resolution remote sensing CD
remains challenging due to the complexity of objects in the scene.
Objects with the same semantic concept may show distinct spec-
tral characteristics at different times and spatial locations. Most
recent CD pipelines using pure convolutions are still struggling to
relate long-range concepts in space-time. Nonlocal self-attention
approaches show promising performance via modeling dense
relationships among pixels, yet are computationally inefficient.
Here, we propose a bitemporal image transformer (BIT) to effi-
ciently and effectively model contexts within the spatial-temporal
domain. Our intuition is that the high-level concepts of the change
of interest can be represented by a few visual words, that is,
semantic tokens. To achieve this, we express the bitemporal image
into a few tokens and use a transformer encoder to model contexts
in the compact token-based space-time. The learned context-rich
tokens are then fed back to the pixel-space for refining the
original features via a transformer decoder. We incorporate BIT
in a deep feature differencing-based CD framework. Extensive
experiments on three CD datasets demonstrate the effectiveness
and efficiency of the proposed method. Notably, our BIT-based
model significantly outperforms the purely convolutional baseline
using only three times lower computational costs and model
parameters. Based on a naive backbone (ResNet18) without
sophisticated structures (e.g., feature pyramid network (FPN) and
UNet), our model surpasses several state-of-the-art CD methods,
including better than four recent attention-based methods in
terms of efficiency and accuracy. Our code is available at
https://github.com/justchenhao/BIT_CD.

Index Terms— Attention mechanism, change detection (CD),
convolutional neural networks (CNNs), high-resolution (HR)
optical remote sensing (RS) image, transformers.

I. INTRODUCTION

CHANGE detection (CD) is one of the major topics in
remote sensing (RS). The goal of CD is to assign binary

labels (i.e., change or no change) to every pixel in a region
by comparing coregistered images of the same region taken
at different times [1]. The definition of change varies across
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applications, such as urban expansion [2], deforestation [3],
and damage assessment [4]. Information extraction based on
RS images still mainly relies on manual visual interpreta-
tion. Automatic CD technology can reduce abundant labor
costs and time consumption, and thus has raised increasing
attention [2], [5]–[13].

The availability of high-resolution (HR) satellite data and
aerial data is opening up new avenues for monitoring land
cover and land use at a fine scale. CD based on HR opti-
cal RS images remains a challenging task for two aspects:
1) complexity of the objects present in the scene and 2) dif-
ferent imaging conditions. Both contribute to the fact that
the objects with the same semantic concept show distinct
spectral characteristics at different times and different spatial
locations (space-time). For example, as shown in Fig. 1(a),
the building objects in a scene have varying shapes and
appearance (in yellow boxes), and the same building object at
different times may have distinct colors (in red boxes) due to
illumination variations and appearance alteration. To identify
the change of interest in the complex scene, a strong CD model
needs to 1) recognize high-level semantic information of the
change of interest in a scene and 2) distinguish the real change
from the complex irrelevant changes.

Nowadays, due to its powerful discriminative ability, deep
convolutional neural networks (CNNs) have been successfully
applied in RS image analysis and have shown good perfor-
mance in CD task [5]. Most recent supervised CD methods [2],
[6]–[13] rely on a CNN-based structure to extract from each
temporal image high-level semantic features that reveal the
change of interest.

Since context modeling within the spatial and temporal
scope is critical in identifying the change of interest in HR
RS images, the latest efforts have been focusing on increasing
the reception field (RF) of the model, through stacking more
convolution layers [2], [6]–[8], using dilated convolution [7],
and applying attention mechanisms [2], [6], [9]–[13]. Different
from the purely convolution-based approach that is inherently
limited to the size of the RF, the attention-based approach
(channel attention [9]–[12], spatial attention [9]–[11], and
self-attention [2], [6], [13]) is effective in modeling global
information. However, most existing methods are still strug-
gling to relate long-range concepts in space-time, because they
either apply attention separately to each temporal image for
enhancing its features [9], or simply use attention to reweight
the fused bitemporal features/images in the channel or spatial
dimension [10]–[12], [14]. Some recent work [2], [6], [13]
has achieved promising performance using self-attention to
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Fig. 1. Illustration of the necessity of context modeling and the effect of our BIT module. (a) Example of a complex scene in bitemporal HR images.
Building objects show different spectral characteristics at different times (red boxes) and different spatial locations (yellow boxes). A strong building CD
model needs to recognize the building objects and distinguish real changes from irrelevant changes by leveraging context information. Based on the high-level
image features (b), our BIT module exploits global contexts in space-time to enhance the original features. The differencing image (c) between the enhanced
features and the original one shows the consistent improvement in features of building areas across space-time.

model the semantic relationships between any pairs of pixels in
space-time. However, they are computationally inefficient and
need high computational complexity that grows quadratically
with the number of pixels.

To tackle the above challenge, in this work, we introduce
the bitemporal image transformer (BIT) to model long-range
context within the bitemporal image in an efficient and effec-
tive manner. Our intuition is that the high-level concepts
of the change of interest could be represented by a few
visual words, that is, semantic tokens. Instead of modeling
dense relationships among pixels in pixel-space, our BIT
expresses the input images into a few high-level semantic
tokens and models the context in a compact token-based
space-time. Moreover, we enhance the feature representation
of the original pixel-space by leveraging relationships between
each pixel and semantic tokens. Fig. 1 gives an example
to show the effect of our BIT on image features. Given
the original image features related to the building concept
[see Fig. 1(b)], our BIT learns to further consistently highlight
the building areas [see Fig. 1(c)] by considering the global
contexts in space-time. Note that we show the differencing
image between the enhanced features and the original features
to better demonstrate the role of the proposed BIT.

We incorporate BIT in a deep feature differencing-based CD
framework. The overall procedure of our BIT-based model
is illustrated in Fig. 2. A CNN backbone (ResNet) is used
to extract high-level semantic features from the input image
pair. We use spatial attention to convert each temporal feature
map into a compact set of semantic tokens. Then we use a
transformer [15] encoder to model the context within the two
token sets. The resulting context-rich tokens are reprojected
to the pixel-space by a Siamese transformer decoder (TD) for
enhancing the original pixel-level features. Finally, we com-
pute the feature difference images (FDIs) from the two refined
feature maps and then feed them into a shallow CNN to
produce pixel-level change predictions.

The contribution of our work can be summarized as follows.

1) An efficient transformer-based method is proposed for
RS image CD. We introduce transformers into the CD
task to better model contexts within the bitemporal
image, which benefits in identifying the change of
interest and exclude irrelevant changes.

2) Instead of modeling dense relationships among any pairs
of elements in pixel-space, our BIT expresses the input
images into a few visual words, that is, tokens, and
models the context in the compact token-based space-
time.

3) Extensive experiments on three CD datasets validate
the effectiveness and efficiency of the proposed method.
We replace the last convolutional stage of ResNet18 with
BIT, and the resulting BIT-based model outperforms
the purely convolutional counterpart with a significant
margin using only three times lower computational costs
and model parameters. Based on a naive CNN backbone
without sophisticated structures (e.g., feature pyramid
network (FPN) and UNet), our method shows better
performance in terms of efficiency and accuracy than
several recent attention-based CD methods.

The rest of this article is organized as follows. Section II
describes the related work of deep-learning-based CD methods
and the recent transformer-based models in RS. Section III
gives the details of our proposed method. Some experimental
results are reported in Section IV. The discussion is given in
Section V and conclusion is drawn in Section VI.

II. RELATED WORK

A. Deep-Learning-Based RS Image CD

The deep-learning-based supervised CD methods for optical
RS images can be generally divided into two main streams [8].

One is the two-stage solution [16]–[18], where a CNN/fully
convolutional network (FCN) is trained to separately classify
the bitemporal images, and then their classification results
are compared for change decision. This kind of approach is
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only practical when both the change label and the bitemporal
semantic labels are available.

Another is the single-stage solution, which directly pro-
duces the change result from the bitemporal images. The
patch-level approach [19]–[21] models the CD task as a
similarity detection process by grouping bitemporal images
into pairs of patches and using a CNN on each pair to obtain its
center prediction. The pixel-level approach [2], [3], [6], [7],
[9]–[13], [22]–[28] uses FCNs to directly generate a HR
change map from the two inputs, which is usually more
efficient and effective than the patch-level approach. Since the
CD task needs to handle two inputs, how to fuse the bitemporal
information is an important topic. The existing FCN-based
methods can be roughly divided into two groups according to
the stage of fusion of bitemporal information. The image-level
approach [3], [22]–[24], [29] concatenates the bitemporal
images as a single input to a semantic segmentation net-
work. The feature-level approach [2], [6], [7], [9]–[12], [22],
[25]–[28], [30] combines the bitemporal features extracted
from the neural networks and makes change decisions based
on fused features.

Much recent work aims to improve the feature discrimi-
native power of the neural networks, by designing multilevel
feature fusion structures [2], [9], [10], [12], [26], [30], combin-
ing generative adversarial network (GAN)-based optimization
objectives [23], [26], [28], [31], and increasing the RF of the
model for better context modeling in terms of the spatial and
temporal scope [2], [6]–[13].

Context modeling is critical to identify the change of
interest in HR RS images due to the complexity of the
objects in a scene and the variation in image conditions.
To increase the RF size, the existing methods include using
a deeper CNN model [2], [6]–[8], using dilated convolu-
tion [7], and applying attention mechanisms [2], [6], [9]–[13].
For example, Zhang et al. [7] apply a deep CNN backbone
(ResNet101 [32]) to extract image features and use dilated
convolution to enlarge the RF size of the model. Considering
that purely convolutional networks are inherently limited to the
size of the RF for each pixel, many latest efforts are focusing
on introducing attention mechanisms to further enlarge the RF
of the model, such as channel attention [9]–[12], spatial atten-
tion [9]–[11], and self-attention [2], [6], [13]. However, most
of them are still struggling to fully exploit the time-related
context, because they either treat the attention as a feature
enhancing module separately for each temporal image [9]
or simply use attention to reweight the fused bitemporal
features/images in the channel or spatial dimension [10]–[12].
Nonlocal self-attention [2], [6] shows promising performance
due to its ability to exploit global relationships among pixels in
space-time. However, they are computationally inefficient and
need high computational complexity that grows quadratically
with the number of pixels.

The main purpose of our article is to learn and exploit the
global semantic information within the bitemporal images in
an efficient and effective manner for enhancing CD perfor-
mance. Different from the existing attention-based CD meth-
ods that directly model dense relationships among any pairs
of elements in pixel-based space, we extract a few semantic

tokens from images and model the context in token-based
space-time. The resulting context-rich tokens are then used to
enhance the original features in pixel-space. Our intuition is
that the change of interest within the scene can be described by
a few visual words (tokens) and the high-level features of each
pixel can be represented by the combination of these semantic
tokens. As a result, our method exhibits high efficiency and
high performance.

B. Transformer-Based Model

The transformer, first introduced in 2017 [15], has been
widely used in the field of natural language processing (NLP)
to solve sequence-to-sequence tasks while handling long-range
dependencies with ease. A recent trend is the adoption of trans-
formers in the computer vision (CV) field. Due to the strong
representation ability of the transformer, the transformer-based
models show comparable or even better performance as the
convolutional counterparts in various visual tasks, including
image classification [33]–[35], segmentation [35]–[37], object
detection [36], [38], [39], image generation [40], [41], image
captioning [42], and super-resolution [43], [44].

The astounding performance of the transformer models on
NLP/CV tasks has intrigued the RS community to study their
applications in RS tasks, such as image time-series classifica-
tion [45], [46], hyperspectral image classification [47], scene
classification [48], and RS image captioning [49], [50]. For
example, Li et al. [46] proposed a CNN-transformer approach
to perform the crop classification of time-series images, where
the transformer was used to learn the pattern related to
land cover semantics from the sequence of multitemporal
features extracted via CNN. He et al. [47] applied a variant
of the transformer (bidirectional encoder representations from
transformer (BERT) [51]) to capture global dependencies
among pixels in hyperspectral image classification. Moreover,
Wang et al. [50] used the transformer to translate the disor-
dered words extracted by CNN from the given RS image into
a well-formed sentence.

In this article, we explore the potential of transformers in the
binary CD task. Our proposed BIT-based method is efficient
and effective in modeling global semantic relationships in
space-time to benefit the feature representation of the change
of interest.

III. EFFICIENT TRANSFORMER-BASED CD MODEL

The overall procedure of our BIT-based model is illustrated
in Fig. 2. We incorporate the BIT into a normal CD pipeline
because we want to leverage the strengths of both convolutions
and transformers. Our model starts with several convolution
blocks to obtain the feature map for each input image, and then
they are fed into BIT to generate enhanced bitemporal features.
Finally, the resulting feature maps are fed to a prediction head
to produce pixel-level predictions. Our key insight is that BIT
learns and relates the global context of high-level semantic
concepts and feeds back to benefit the original bitemporal
features.

Our BIT has three main components: 1) a Siamese semantic
tokenizer, which groups pixels into concepts to generate a
compact set of semantic tokens for each temporal input; 2) a
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Fig. 2. Illustration of our BIT-based model. Our semantic tokenizer pools the image features extracted by a CNN backbone to a compact vocabulary set
of tokens (L � H W). Then we feed the concatenated bitemporal tokens to the TE to relate concepts in token-based space-time. The resulting context-rich
tokens for each temporal image are projected back to the pixel-space to refine the original features via the TD. Finally, our prediction head produces the
pixel-level predictions by feeding the computed FDIs to a shallow CNN.

transformer encoder (TE), which models context of semantic
concepts in token-based space-time; and 3) a Siamese TD,
which projects the corresponding semantic tokens back to
pixel-space to obtain the refined feature map for each temporal.

The inference detail of our BIT-based model for CD is
shown in Algorithm 1.

Algorithm 1 Inference of BIT-Based Model for CD

Input: I = {(I1, I2)} (a pair of registered images)
Output: M (a prediction change mask)

1 // step1: extract high-level features by a CNN backbone
2 for i in {1, 2} do
3 Xi = CNN_Backbone(Ii)
4 end
5 // step2: use BIT to refine bitemporal image features
6 // compute the token set for each temporal feature
7 for i in {1, 2} do
8 Ti = Semantic_Tokenizer(Xi)
9 end

10 T=Concat(T1, T2)
11 // use encoder to generate context-rich tokens
12 Tnew=Transformer_Encoder(T)
13 T1

new, T2
new=Split(Tnew)

14 // use decoder to refine the original features
15 for i in {1, 2} do
16 Xi

new = Transformer_Decoder(Xi, Ti
new)

17 end
18 // step3: obtain change mask by the prediction head
19 M = Prediction_Head(X1

new, X2
new)

A. Semantic Tokenizer

Our intuition is that the change of interest in input images
could be described by a few high-level concepts, namely,

Fig. 3. Illustration of our semantic tokenizer.

semantic tokens. The semantic concepts can be shared by the
bitemporal images. To this end, we use a Siamese tokenizer
to extract compact semantic tokens from the feature map of
each temporal. Similar to the tokenizer in NLP, which splits
the input sentence into several elements (i.e., word or phrase)
and represents each element with a token vector, our semantic
tokenizer splits the whole image into a few visual words, and
each corresponds to one token vector. As shown in Fig. 3,
to obtain the compact tokens, our tokenizer learns a set of
spatial attention maps to spatially pool the feature map to a
set of features, that is, the token set.

Let X1, X2 ∈ R
H W×C be the input bitemporal feature

maps, where H, W, andC are the height, width, and channel
dimension of the feature map, respectively. Let T1, T2 ∈ R

L×C

be the two sets of tokens, where L is the size of the vocabulary
set of tokens.

For each pixel Xi
p on the feature map Xi(i = 1, 2), we use

a point-wise convolution to obtain L semantic groups, and
each group denotes one semantic concept. Then we compute
spatial attention maps by a softmax function operated on the
H W dimension of each semantic group. Finally, we use the
attention maps to compute the weighted average sum of pixels
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Fig. 4. Illustration of our (a) TE and (b) TD.

in Xi to obtain a compact vocabulary set of size L, that is,
semantic tokens Ti . Formally

Ti = (
Ai

)T
Xi = (

σ
(
τ
(
Xi; W

)))T
Xi (1)

where τ(·) denotes the point-wise convolution with a learnable
kernel W ∈ R

C×L , and σ(·) is the softmax function to
normalize each semantic group to obtain the attention maps
Ai ∈ R

H W×L . Ti is computed by the multiplication of
Ai and Xi .

B. Transformer Encoder

After obtaining two semantic token sets T1, T2 for the input
bitemporal image, we then model the context between these
tokens with a TE [15]. Our motivation is that the global
semantic relationships in the token-based space-time can be
fully exploited by the transformer, thus producing context-rich
token representation for each temporal. As shown in Fig. 4(a),
we first concatenate the two sets of tokens into one token set
T ∈ R

2L×C and feed it into the TE to obtain a new token set
Tnew. Finally, we split the tokens into two sets Ti

new(i = 1, 2).
The TE consists of NE layers of multihead self-attention

(MSA) and multilayer perceptron (MLP) blocks [Fig. 4(a)].
Different from the original transformer that uses the postnorm
residual unit, we follow ViT [33] to adopt the prenorm
residual unit (PreNorm), that is, the layer normalization occurs
immediately before the MSA/MLP. PreNorm has been shown
to be more stable and competent than the counterpart [52].

In each layer l, the input to self-attention is a triple (query Q,
key K, value V) computed from the input T(l−1) ∈ R

2L×C as

Q = T(l−1)Wq

K = T(l−1)Wk

V = T(l−1)Wv (2)

where Wl−1
q , Wl−1

k , Wl−1
v ∈ R

C×d are the learnable parameters
of three linear projection layers and d is the channel dimension
of the triple. One attention head is formulated as

Att(Q, K, V) = σ

(
QKT

√
d

)
V (3)

where σ(·) denotes the softmax function operated on the
channel dimension.

The core idea of the TE is MSA. MSA performs multiple
independent attention heads in parallel, and the outputs are
concatenated and then projected to result in the final values.
The advantage of MSA is that it can jointly attend to infor-
mation from different representation subspaces at different
positions. Formally

MSA
(
T(l−1)

)
= Concat(head1, . . . , headh)WO

where head j = Att
(
T(l−1)Wq

j , T(l−1)Wk
j , T(l−1)Wv

j

)
(4)

where Wq
j , Wk

j , Wv
j ∈ R

C×d , WO ∈ R
hd×C are the linear

projection matrices, and h is the number of attention heads.
The MLP block consists of two linear transformation layers

with a Gaussian error linear unit (GELU) [53] activation in
between. The dimensionality of the input and output is C ,
and the inner layer has a dimensionality 2C . Formally

MLP
(
T(l−1)

) = GELU
(
T(l−1)W1

)
W2 (5)

where W1 ∈ R
C×2C , W2 ∈ R

2C×C are the linear projection
matrices.

Note that we add the learnable positional embedding (PE)
WPE ∈ R

2L×C to the token sequence T before feed-
ing it to the transformer layers. Our empirical evidence
(Section IV-D) indicates it is necessary to supplement PE
to tokens. PE encodes the information about the relative or
absolute position of elements in the token-based space-time.
Such position information may benefit context modeling. For
example, temporal positional information can guide transform-
ers to exploit temporal-related contexts.

C. Transformer Decoder

Till now, we have obtained two sets of context-rich tokens
Ti

new(i = 1, 2) for each temporal image. These context-rich
tokens contain compact high-level semantic information that
well-reveals the change of interest. Now, we need to project
the representation of concepts back to pixel-space to obtain
pixel-level features. To achieve this, we use a modified
Siamese TD [15] to refine image features of each temporal.
As shown in Fig. 4 (b), given a sequence of features Xi , the TD
exploits the relationship between each pixel and the token set
Ti

new to obtain refined features Xi
new. We treat pixels in Xi as

queries and tokens as keys. Our intuition is that each pixel can
be represented by the combination of the compact semantic
tokens.

Our TD consists of ND layers of multihead cross atten-
tion (MA) and MLP blocks. Different from the original
implementation in [15], we remove the MSA block to avoid
abundant computation of dense relationships among pixels
in Xi . We adopt PerNorm and the same configuration of MLP
as the TE. In MSA, the query, key, and value are derived
from the same input sequence, while in MA, the query is
from the image features Xi , and the key and value are from
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the tokens Ti
new. Formally, in each layer l, MA is defined as

MA
(
Xi,(l−1), Ti

new

) = Concat(head1, . . . , headh)WO,

where head j = Att
(
Xi,(l−1)Wq

j , Ti
newWk

j , Ti
newWv

j

)
(6)

where Wq
j , Wk

j , Wv
j ∈ R

C×d , WO ∈ R
hd×C are the linear

projection matrices, and h is the number of attention heads.
Note that we do not add PE to the input queries, because

our empirical evidence (Section IV-D) shows no considerable
gains when adding PE.

D. Network Details

1) CNN Backbone: We use a modified ResNet18 [32]
to extract bitemporal image feature maps. The original
ResNet18 has five stages, each with downsampling by 2.
We replace the stride of the last two stages to 1 and add
a point-wise convolution (output channel C = 32) behind
ResNet to reduce the feature dimension, followed by a bilinear
interpolation layer, thus obtaining the output feature maps
with a downsampling factor of 4 to reduce the loss of spatial
details. We name this backbone ResNet18_S5. To validate the
effectiveness of the proposed method, we also use two lighter
backbones, namely, ResNet18_S4/ResNet18_S3, which only
use the first four/three stages of the ResNet18.

2) Bitemporal Image Transformer: According to parameter
experiments in Section IV-E, we set token length L = 4.
We set the layer numbers of the TE to 1 and that of the TD
to 8. The number of heads h in MSA and MA is set to 8 and
the channel dimension d for each head is set to 8.

3) Prediction Head: Benefiting from the high-level seman-
tic features extracted by CNN backbone and BIT, a very
shallow FCN is used for change discrimination. Given two
upsampled feature maps X1∗, X2∗ ∈ R

H0×W0×C from the output
of BIT (H0andW0 are the height and width of the original
image, respectively), the prediction head is to generate the
predicted change probability maps P ∈ R

H0×W0×2, which is
given by

P = σ(g(D)) = σ
(
g
(∣∣X1∗ − X2∗∣∣)) (7)

where FDI D ∈ R
H0×W0×C is the element-wise absolute of

the subtraction of the two feature maps, g : R
H0×W0×C →

R
H0×W0×2 is the change classifier, and σ(·) denotes a softmax

function pixel-wisely operated on the channel dimension of
the output of the classifier. The configuration of our change
classifier is two 3 × 3 convolutional layers with BatchNorm.
The output channel of each convolution is “32, 2.”

In the inference phase, the prediction mask M ∈ R
H0×W0 is

computed by a pixel-wise Argmax operation on the channel
dimension of P .

4) Loss Function: In the training stage, we minimize the
cross-entropy loss to optimize the network parameters. For-
mally, the loss function is defined as

L = 1

H0 × W0

H,W∑
h=1,w=1

l(Phw, Yhw) (8)

where l(Phw, y) = −log(Phwy) is the cross-entropy loss, and
Yhw is the label for the pixel at location (h, w).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We conduct experiments on three CD datasets.
LEarning, VIsion and Remote sensing (LEVIR)-CD [2] is

a public large-scale building CD dataset. It contains 637 pairs
of HR (0.5 m) RS images of size 1024 × 1024. We fol-
low its default dataset split (training/validation/test). For the
limitation of GPU memory capacity, we cut images into
small patches of size 256 × 256 with no overlap. There-
fore, we obtain 7120/1024/2048 pairs of patches for train-
ing/validation/test, respectively.

WuHan University (WHU)-CD [54] is a public building
CD dataset. It contains one pair of HR (0.075 m) aerial
images of size 32 507 × 15 354. As no data split solution is
provided in [54], we crop the images into small patches of size
256×256 with no overlap and randomly split it into three parts:
6096/762/762 for training/validation/test, respectively.

Deeply supervised image fusion network (DSIFN)-CD [10]
is a public binary CD dataset. It includes six large pairs of
HR (2 m) satellite images from six major cities in China,
respectively. The dataset contains the change of multiple kinds
of land cover objects, such as roads, buildings, croplands, and
water bodies. We follow the default cropped samples of size
512×512 provided by the authors. We have 3600/340/48 sam-
ples for training/validation/test, respectively.

To validate the effectiveness of our BIT-based model, we set
the following models for comparison:

1) Base: our baseline model that consists of the CNN
backbone (ResNet18_S5) and the prediction head.

2) BIT: our BIT-based model with a light backbone
(ResNet18_S4).

To further evaluate the efficiency of the proposed method,
we additionally set the following models:

1) Base_S4: a light CNN backbone (ResNet18_S4) + the
prediction head.

2) Base_S3: a much light CNN backbone (ResNet18_S3)
+ the prediction head.

3) BIT_S3: our BIT-based model with a much light back-
bone (ResNet18_S3).

1) Implementation Details: Our models are implemented on
PyTorch and trained using a single NVIDIA Tesla V100 GPU.
We apply normal data augmentation to the input image
patches, including flip, rescale, crop, and Gaussian blur.
We use stochastic gradient descent (SGD) with momentum
to optimize the model. We set the momentum to 0.99 and
the weight decay to 0.0005. The learning rate is initially set
to 0.01 and linearly decays to 0 until trained 200 epochs.
Validation is performed after each training epoch, and the
best model on the validation set is used for evaluation on the
test set.

2) Evaluation Metrics: We use the F1-score with regard to
the change category as the main evaluation indices. F1-score
is calculated by the precision and recall of the test as follows:

F1 = 2

recall−1 + precision−1 . (9)

Additionally, precision, recall, intersection over union (IoU)
of the change category, and overall accuracy (OA) are also
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TABLE I

COMPARISON RESULTS ON THE THREE CD TEST SETS. THE HIGHEST SCORE IS MARKED
IN BOLD. ALL THE SCORES ARE DESCRIBED IN PERCENTAGE (%)

reported. The above metrics are defined as follows:
precision = TP/(TP + FP)

recall = TP/(TP + FN)

IoU = TP/(TP + FN + FP)

OA = (TP + TN)/(TP + TN + FN + FP) (10)

where TP, FP, and FN represent the number of true positive,
false positive, and false negative, respectively.

B. Comparison to State-of-the-Art
We make a comparison to several state-of-the-art methods,

including three purely convolutional-based methods fully
convolutional early fusion (FC-EF) [22], fully convolu-
tional Siamese-difference (FC-Siam-Di) [22], and fully
convolutional-Siam-concatenation (FC-Siam-Conc) [22]) and
four attention-based methods (dual task constrained deep
Siamese convolutional network (DTCDSCN) [9], spatial-temp
oral attention neural network (STANet) [2], deeply supervised
image fusion network (IFNet) [10], and SNUNet [14]).

1) FC-EF [22]: Image-level fusion method, where the
bitemporal images are concatenated as a single input
to a FCN.

2) FC-Siam-Di [22]: Feature-level fusion method, which
uses a Siamese FCN to extract multilevel features and
use feature difference to fuse the bitemporal information.

3) FC-Siam-Conc [22]: Feature-level fusion method, which
uses a Siamese FCN to extract multilevel features and
use feature concatenation to fuse the bitemporal infor-
mation.

4) DTCDSCN [9]: Multiscale feature concatenation
method, which adds channel attention and spatial
attention to a deep Siamese FCN, thus obtaining more
discriminative features. Note that they also trained
two additional semantic segmentation decoders under
the supervision of the label maps of each temporal.
We omit the semantic segmentation decoders for a fair
comparison.

5) STANet [2]: Metric-based Siamese FCN-based method,
which integrates the spatial-temporal attention mecha-
nism to obtain more discriminative features.

6) IFNet [10]: Multiscale feature concatenation method,
which applies channel attention and spatial attention to
the concatenated bitemporal features at each level of the

decoder. Deep supervision (i.e., computing supervised
loss at each level of the decoder) is used to better train
the intermediate layers.

7) SNUNet [14]: Multiscale feature concatenation method,
which combines the Siamese network and Neste-
dUNet [55] to extract HR high-level features. Channel
attention is applied to the features at each level of the
decoder. Deep supervision is also used to enhance the
discrimination ability of intermediate features.

We implement the above CD networks using their public
codes with default hyperparameters.

Table I reports the overall comparison results on the
LEVIR-CD, WHU-CD, and DSIFN-CD test sets. The quanti-
tative results show our BIT-based model consistently outper-
forms the other methods across these datasets with a significant
margin. For example, the F1-score of our BIT exceeds the
recent STANet by 2/1.6/4.7 points on the three datasets,
respectively. Note that our CNN backbone is only the pure
ResNet and we do not apply sophisticated structures such as
FPN in [2] or UNet in [9], [10], [14], and [22], which are
powerful for pixel-wise prediction tasks by fusing low-level
features with high spatial accuracy and high-level semantic
features. We can conclude that even using a simple backbone,
our BIT-based model can achieve superior performance. It may
be attributed to the ability of our BIT to model the context
within the global highly abstract spatial-temporal scope and
use the context for enhancing the feature representation in
pixel-space.

The visualization comparison of the methods on the three
datasets is displayed in Fig. 5. For a better view, different
colors are used to denote TP (white), TN (black), FP (red),
and FN (green). We can observe that the BIT-based model
achieves better results than others. First, our BIT-based model
can better avoid the false positive [e.g., Fig 5(a), (e), (g),
and (i)] due to the similar appearance of the object to that
of the interest change. For example, as shown in Fig. 5(a),
most comparison methods incorrectly classify the swimming
pool area as the building change (view as red), while based
on the enhanced discriminant features via global context
modeling, the STANet and our BIT can reduce such false
detection. In Fig. 5(c), roads are mistaken as building changes
by conventional methods because roads have similar color
behaviors as buildings and these methods fail to exclude these
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Fig. 5. Visualization results of different methods on the LEVIR-CD, WHU-CD, and DSIFN-CD test sets. Different colors are used for a better view, i.e., white
for true positive, black for true negative, red for false positive, and green for false negative. (a)–(l) denote prediction results of all the compared methods for
different samples, respectively.

pseudo changes due to their limited RF. Second, our BIT can
also well-handle the irrelevant changes caused by seasonal dif-
ferences or appearance alteration of land cover elements [e.g.,
Fig. 5(b), (f), and (l)]. An example of the nonsemantic change
of building in Fig. 5(f) illustrates the effectiveness of our BIT
that learns the effective context within the spatial-temporal
domain to better express the real semantic change and exclude
the irrelevant change. Finally, our BIT can generate relatively
intact prediction results [e.g., Fig. 5(c), (h), and (j)] for large

areas of change. For instance, in Fig. 5(j), the large building
area in image 2 cannot be detected entirely (view as green)
by some comparison methods due to their limited RF, while
our BIT-based model renders more complete results.

C. Model Efficiency and Effectiveness
To fairly compare the model efficiency, we test all the

methods on a computing server equipped with an Intel Xeon
Silver 4214 CPU and an NVIDIA Tesla V100 GPU. Table II
reports the number of parameters (Params.), floating-point
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TABLE II

ABLATION STUDY ON MODEL EFFICIENCY. WE REPORT THE NUMBER OF PARAMETERS (PARAMS.), FLOPS, AS WELL AS THE F1 AND IOU SCORES ON
THE THREE CD TEST SETS. THE INPUT IMAGE TO THE MODEL HAS A RESIZE OF 256 × 256 × 3 TO CALCULATE THE FLOPS

operations per second (FLOPs), and F1/IoU scores of different
methods on the LEVIR-CD, WHU-CD, and DSIFN-CD test
sets.

First, we verify the efficiency of our proposed BIT by
comparing the convolutional counterparts. Table II shows
that built on Base_S3/Base_S4, the model added the BIT
(BIT_S3/BIT_S4) which is more effective and efficient
than that (Base_S4/Base_S5) with more convolutional lay-
ers. For example, BIT_S4 outperforms the Base_S5 by
1.7/2.4/10.8 points of the F1-score on the three test sets
while with three times smaller numbers of model parame-
ters and three times lower computational costs. Moreover,
we can observe that compared with Base_S4, adding more
convolutional layers only introduce trivial improvements
(i.e., 0.16/0.75/0.18 points of the F1-score on the three
test sets) while the improvements by BIT are much more
(i.e., 4–60 times) than that of the CNN.

Second, we make a comparison with four attention-based
methods (DTCDSCN, STANet, IFNet, and SNUNet).
As shown in Table II, our BIT_S4 outperforms the four
counterparts in the F1/IoU scores with a significant margin
with much small computational complexity and model
parameters. Interestingly, even with a much lighter backbone
(about ten times smaller), our BIT-based model (BIT_S3) is
still superior to the four compared methods on most datasets.
The comparison results further prove the effectiveness and
efficiency of our BIT-based model.

1) Training Visualization: Fig. 6 illustrates the mean
F1-score on the training/validation sets for each training
epoch. We can observe that although the Base and BIT
models have similar performance on training accuracy, BIT
outperforms Base with regard to the validation accuracy in
terms of stability and effectiveness. It indicates that the training
of BIT is more stable and efficient, and our BIT-based model
has more generalization ability. It may due to its ability to learn
compact context-rich concepts, which effectively represent the
change of interest.

D. Ablation Studies

1) Context Modeling: We perform ablation on the TE to
validate its effectiveness in context modeling, where MSA

Fig. 6. Accuracy of models for each training epoch. The mean F1-score
is reported. (a) Training accuracy on the LEVIR-CD dataset. (b) Validation
accuracy on the LEVIR-CD dataset.

is the core component in TE for modeling context. From
Table III, we can observe consistent and significant drops
in F1-score on the LEVIR-CD, WHU-CD, and DSIFN-CD
datasets when removing TE from BIT. It indicates the vital
importance of self-attention in TE to model relationships
within token-based space-time. Moreover, we replace our BIT
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TABLE III

ABLATION STUDY OF OUR BIT ON THREE CD DATASETS. ABLATIONS
ARE PERFORMED ON TOKENIZER (T), TE, AND TD. WE ALSO ADD

THE NONLOCAL TO THE BASELINE FOR COMPARISON.
F1-SCORE IS REPORTED. NOTE THAT THE DEPTH

OF TE AND TD IS SET TO 1

with a nonlocal [56] self-attention layer, which is able to
model relationships within the pixel-based space-time. The
comparison results in Table III show our BIT outperforms
nonlocal on the three test sets with a significant margin. It may
be because our BIT learns the context in a token-based space,
which is more compact and has higher information density
than that of nonlocal, thus facilitating the effective extraction
of relationships.

2) Ablation on Tokenizer: We perform ablation on the
tokenizer by removing it from the BIT. The resulting model
can be considered to use dense tokens, which are sequences
of features extracted by the CNN backbone. As shown
in Table III, the BIT-based model (w.o. tokenizer) receives
significant drops in the F1-score. It indicates that the tokenizer
module is critical in our transformer-based framework. We can
see that the model (w.o. tokenizer) is only slightly better
than Base_S4. It may be because the dense features contain
too much redundancy information that makes the training of
the transformer-based model a tough task. On the contrary,
our proposed tokenizer spatially pools the dense features to
aggregate the semantic information, thus obtaining compact
tokens of concepts.

3) Ablation on TD: To verify the effectiveness of our TD,
we replace it with a simple module to fuse the tokens Ti

new
from TE and the original features Xi from the CNN backbone.
In the simple module, we expand the spatial dimension of
each token in Ti

new (containing L tokens) to a shape of R
H W .

The L expanded tokens and Xi are summed to produce the
updated features that are then fed to the prediction head.
Table III indicates consistent performance declines of the BIT
model without TD on the three test sets. It may be because
cross-attention (the core part of TD) provides an elegant way
to enhance the original features with the context-rich tokens
by modeling their relationships. Furthermore, the BIT (w.o.
both TE and TD) is much inferior to the normal BIT model.

4) Effect of Position Embedding: The transformer archi-
tecture is permutation-invariant, while the CD task requires
both spatial and temporal position information. To this end,
we add the learned position embedding (PE) to the feature
sequence fed to the transformer. We perform ablations on PE
in TE and TD. We set the BIT model containing no PE as
the baseline. As shown in Table IV, our BIT model achieves
consistent improvements in the F1-score on the three test

TABLE IV

ABLATION STUDY OF POSITION EMBEDDING (PE) ON THREE CD
DATASETS. WE PERFORM ABLATIONS ON PE IN TE
AND TD. F1-SCORE IS REPORTED. NOTE THAT THE

DEPTH OF TE AND TD IS SET TO 1

TABLE V

EFFECT OF THE TOKEN LENGTH. F1/IOU SCORES OF THE BIT ARE

EVALUATED ON THE LEVIR-CD, WHU-CD, AND DSIFN-CD TEST
SETS. NOTE THAT THE DEPTH OF TE AND TD IS SET TO 1

sets when adding PE to the tokens fed into TE. It indicates
that the position information within the bitemporal token sets
is critical for context modeling in TE. Compared with the
baseline, there are no significant improvements in the F1-score
to the BIT model when adding PE to queries fed into TD. The
positional information may be unnecessary to the queries into
TD because the keys (i.e., tokens) into TD are highly abstract
and contain no spatial structure. Therefore, we only add PE
in TE, but not in TD in our BIT model.

E. Parameter Analysis

1) Token Length: Our tokenizer spatially pools the dense
features of the image into a compact token set. Our intuition
is that the change of interest within the bitemporal images can
be described by a few visual concepts, that is, semantic tokens.
The length of the token set L is an important hyperparameter.
We test different L ∈ {2, 4, 8, 16, 32} to analyze its effect on
the performance of our model on the LEVIR-CD, WHU-CD,
and DSIFN-CD datasets, respectively. Table V shows a signifi-
cant improvement in the F1-score of the model when reducing
the token length from 32 to 4. It indicates that a compact token
set is sufficient to denote semantic concepts of interest changes
and redundant tokens may hinder the model performance.
We can also observe a slight drop in the F1-score when further
decreasing L from 4 to 2. It is because the model may lose
some useful information related to change concepts when L
is too short. Therefore, we set L to 4.

2) Depth of Transformer: The number of transformer layers
is one important hyperparameter. We test different config-
urations of the BIT model that contains varying numbers
of transformer layers in TE and TD. Table VI shows no
significant improvements in the F1/IoU scores of BIT on
the three datasets when increasing the depth of the TE.
It indicates that relationships between the bitemporal tokens
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TABLE VI

EFFECT OF THE DEPTH OF THE TRANSFORMER. WE PERFORM ANALYSIS
ON THE ENCODER DEPTH (E.D.) AND DECODER DEPTH (D.D.) OF THE

BIT AND REPORT THE F1/IOU SCORES FOR EACH CONFIGURATION

ON THE LEVIR-CD, WHU-CD, AND DSIFN-CD TEST SETS

can be well-learned by a single-layer TE. Table VI also shows
that the model performance is roughly positively correlated
with the decoder depth. It may because image features are
refined after each layer of the TD by considering context-rich
tokens. The best result is obtained when the decoder depth is 8.
Although there may be performance gains by further increas-
ing the decoder depth, for the tradeoff between efficiency and
precision, we set the encoder depth to 1 and the decoder depth
to 8.

F. Token Visualization

We hypothesize that our tokenizer can extract high-level
semantic concepts that reveal the change of interest. For better
understanding the semantic tokens, we visualize the attention
maps Ai ∈ R

H W×L that the tokenizer extracted from the
bitemporal feature maps. Each token Ti

l in the token set Ti

corresponds to one attention map Ai
l ∈ R

H W . Fig. 7 shows
the visualization results of tokens for some bitemporal images
from the LEVIR-CD, WHU-CD, and DSIFN-CD datasets.
We display the attention maps of two selected tokens from
Ti for each input image. Red denotes higher attention values
and blue denotes lower values.

From Fig. 7, we can see that the extracted token can attend
to the region that belongs to the semantic concept of the
change of interest. Different tokens may relate to objects of
different semantic meanings. For example, as the LEVIR-CD
and WHU-CD datasets only describe the building changes,
the learned tokens in these datasets mainly attend to the pixels
that belong to buildings. While because the DSIFN-CD dataset
contains various kinds of changes, these tokens can highlight
different semantic areas, such as buildings, croplands, and
water bodies. Interestingly, as shown in Fig. 7(c) and (f), our
tokenizer can also highlight the pixels surrounding the building
(e.g., shadow), even though no explicit supervision of such
areas is provided when training our model. It is not surprising
because the context surrounding the building is a critical
cue for object recognition. It indicates that our model can
implicitly learn some additional concepts to promote change
recognition.

G. Network Visualization

To better understand our model, we provide an example
to visualize the activation maps at different stages of the BIT

Fig. 7. Token visualization on the LEVIR-CD, WHU-CD, and DSIFN-CD
test sets. Red denotes higher attention values and blue denotes lower values.
(a)–(i) denote token visualization for different samples, respectively.

model. Given the bitemporal image [Fig. 8(a)], a Siamese FCN
generates the high-level feature maps Xi [Fig. 8(b)]. Then the
tokenizer spatially pools the feature maps into several token
vectors using the learned attention maps Ai [Fig. 8(c)]. The
context-rich tokens generated by the TE are then projected
back to the pixel-space via the TD, resulting in the refined
feature maps Xi

new [Fig. 8(d)]. We show four corresponding
representative feature maps from the original features Xi and
from the refined features Xi

new. From Fig. 8(b) and (d), we can
observe that our model can extract high-level features related
to the change of interest for each temporal image, such as
concepts of buildings and their edges. To better illustrate the
effect of the BIT module, the differencing images between
the refined and the original features are shown in Fig. 8(e).
It indicates that our BIT can further highlight the regions
of semantic concepts related to the change category. Finally,
the prediction head calculates feature differencing images
[Fig. 8(f)] between Xi

new and Xi and generates the change
probability map P [Fig. 8(g)].
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Fig. 8. Example of network visualization. (a) Input images, (b) selected high-level feature maps Xi , (c) selected attention maps Ai by tokenizer, (d) refined
feature maps Xi

new, (e) differencing between Xi
new and Xi , (f) bitemporal feature differencing image, and (g) change probability map P. The sample is from

the LEVIR-CD dataset. We use the same normalization (min-max) to visualize each activation map. (a) Bitemporal images. (b) Original features Xi . (c) Token
attention maps Ai . (d) Refined features Xi

new. (e) Differencing |Xi
new − Xi |. (f) Bitemporal differencing |X1

new − X2
new|. (g) Change probability map P.

V. DISCUSSION

We provide an efficient and effective method to perform CD
in HR RS images. The high reflectance variation for pixels of
the same category in whole space-time brings difficulties to
the model in recognizing objects of interest and distinguishing
real changes from irrelevant changes. Context modeling in
space-time is critical for enhancing feature discrimination
power. Our proposed BIT module can efficiently model the
context information in the token-based space-time and use the
context-rich tokens to enhance the original features. Compared
with the Base model, our BIT-base model can generate more
accurate predictions with fewer false alarms and higher recalls
(see Fig. 5 and Table I). Furthermore, the BIT can enhance the
efficiency and stability of the training of the model (see Fig. 6).
It is because our BIT expresses the images into a small number
of visual words (token vectors), such high-density information
may improve the training efficiency. Our BIT can also be
viewed as an efficient attention-base way to increase the RF
of the model, and thus benefit feature representation power for
change recognition.

VI. CONCLUSION

In this article, we propose an efficient transformer-based
model for CD in RS images. Our BIT learns a compact set of
tokens to represent high-level concepts that reveal the change
of interest existing in the bitemporal images. We leverage the
transformer to relate semantic concepts in the token-based
space-time. Extensive experiments have validated the effec-
tiveness of our method. We replace the last convolutional
stage of ResNet18 with BIT, obtaining significant accuracy
improvements (1.7/2.4/10.8 points of the F1-score on the
LEVIR-CD/WHU-CD/DSIFN-CD test sets) with three times
lower computational complexity and three times smaller model
parameters. Our empirical evidence indicates that BIT is more
efficient and effective than purely convolutional modules. Only
using a simple CNN backbone (ResNet18), our method outper-
forms several other CD methods that use more sophisticated
structures, such as FPN and UNet. We also show better
performance in terms of efficiency and accuracy than four
recent attention-based methods on the three CD datasets.

REFERENCES

[1] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
Jun. 1989.

[2] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, p. 1662, May 2020.

[3] P. de Bem, O. de Carvalho Junior, R. F. Guimarães, and R. T. Gomes,
“Change detection of deforestation in the Brazilian Amazon using
landsat data and convolutional neural networks,” Remote Sens., vol. 12,
no. 6, p. 901, Mar. 2020.

[4] J. Z. Xu, W. Lu, Z. Li, P. Khaitan, and V. Zaytseva, “Build-
ing damage detection in satellite imagery using convolutional neural
networks,” 2019, arXiv:1910.06444. [Online]. Available: https://arxiv.
org/abs/1910.06444

[5] W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection
based on artificial intelligence: State-of-the-art and challenges,” Remote
Sens., vol. 12, no. 10, p. 1688, May 2020.

[6] J. Chen et al., “DASNet: Dual attentive fully convolutional Siamese
networks for change detection in high-resolution satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2020.

[7] M. Zhang, G. Xu, K. Chen, M. Yan, and X. Sun, “Triplet-based
semantic relation learning for aerial remote sensing image change
detection,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 2, pp. 266–270,
Feb. 2019.

[8] M. Zhang and W. Shi, “A feature difference convolutional neural
network-based change detection method,” IEEE Trans. Geosci. Remote
Sens., vol. 58, no. 10, pp. 7232–7246, Oct. 2020.

[9] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change
detection for remote sensing images using a dual-task constrained deep
siamese convolutional network model,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 5, pp. 811–815, May 2021.

[10] C. Zhang et al., “A deeply supervised image fusion network for
change detection in high resolution bi-temporal remote sensing
images,” ISPRS J. Photogramm. Remote Sens., vol. 166, pp. 183–200,
Aug. 2020.

[11] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical remote sensing image
change detection based on attention mechanism and image difference,”
IEEE Trans. Geosci. Remote Sens., early access, Nov. 10, 2020, doi:
10.1109/TGRS.2020.3033009.

[12] H. Jiang, X. Hu, K. Li, J. Zhang, J. Gong, and M. Zhang, “PGA-
SiamNet: Pyramid feature-based attention-guided Siamese network for
remote sensing orthoimagery building change detection,” Remote Sens.,
vol. 12, no. 3, p. 484, Feb. 2020.

[13] F. I. Diakogiannis, F. Waldner, and P. Caccetta, “Looking for change?
Roll the dice and demand attention,” 2020, arXiv:2009.02062. [Online].
Available: https://arxiv.org/abs/2009.02062

[14] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely con-
nected Siamese network for change detection of VHR images,” IEEE
Geosci. Remote Sens. Lett., early access, Feb. 17, 2021, doi: 10.1109/
LGRS.2021.3056416.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 14:59:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TGRS.2020.3033009
http://dx.doi.org/10.1109/LGRS.2021.3056416
http://dx.doi.org/10.1109/LGRS.2021.3056416


CHEN et al.: RS IMAGE CD WITH TRANSFORMERS 5607514

[15] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst., I. Guyon
et al., Eds. Long Beach, CA, USA: Curran Associates, Dec. 2017,
pp. 5998–6008.

[16] K. Nemoto, T. Imaizumi, S. Hikosaka, R. Hamaguchi, M. Sato, and
A. Fujita, “Building change detection via a combination of CNNs
using only RGB aerial imageries,” Proc. SPIE, vol. 10431, Oct. 2017,
Art. no. 104310J.

[17] S. Ji, Y. Shen, M. Lu, and Y. Zhang, “Building instance change
detection from large-scale aerial images using convolutional neural
networks and simulated samples,” Remote Sens., vol. 11, no. 11, p. 1343,
Jun. 2019.

[18] R. Liu, M. Kuffer, and C. Persello, “The temporal dynamics of slums
employing a CNN-based change detection approach,” Remote Sens.,
vol. 11, no. 23, p. 2844, Nov. 2019.

[19] R. C. Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, “Urban change
detection for multispectral Earth observation using convolutional neural
networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2018, pp. 2115–2118.

[20] F. Rahman, B. Vasu, J. V. Cor, J. Kerekes, and A. Savakis, “Siamese
network with multi-level features for patch-based change detection in
satellite imagery,” in Proc. IEEE Global Conf. Signal Inf. Process.
(GlobalSIP), Nov. 2018, pp. 958–962.

[21] M. Wang, K. Tan, X. Jia, X. Wang, and Y. Chen, “A deep siamese
network with hybrid convolutional feature extraction module for change
detection based on multi-sensor remote sensing images,” Remote Sens.,
vol. 12, no. 2, p. 205, Jan. 2020.

[22] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 4063–4067.

[23] M. A. Lebedev, Y. V. Vizilter, O. V. Vygolov, V. A. Knyaz, and
A. Y. Rubis, “Change detection in remote sensing images using con-
ditional adversarial networks,” Int. Arch. Photogramm., Remote Sens.
Spatial Inf. Sci., vol. XLII-2, pp. 565–571, May 2018.

[24] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for
high resolution satellite images using improved UNet++,” Remote Sens.,
vol. 11, no. 11, p. 1382, Jun. 2019.

[25] T. Bao, C. Fu, T. Fang, and H. Huo, “PPCNET: A combined patch-
level and pixel-level end-to-end deep network for high-resolution remote
sensing image change detection,” IEEE Geosci. Remote Sens. Lett.,
vol. 17, no. 10, pp. 1797–1801, Oct. 2020.

[26] B. Hou, Q. Liu, H. Wang, and Y. Wang, “From W-Net to CDGAN:
Bitemporal change detection via deep learning techniques,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 3, pp. 1790–1802, Mar. 2020.

[27] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change
detection based on deep Siamese convolutional network for optical
aerial images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10,
pp. 1845–1849, Oct. 2017.

[28] B. Fang, L. Pan, and R. Kou, “Dual learning-based siamese framework
for change detection using bi-temporal VHR optical remote sensing
images,” Remote Sens., vol. 11, no. 11, p. 1292, May 2019.

[29] W. Zhao, X. Chen, X. Ge, and J. Chen, “Using adversarial network
for multiple change detection in bitemporal remote sensing imagery,”
IEEE Geosci. Remote Sens. Lett., early access, Nov. 16, 2021, doi:
10.1109/LGRS.2020.3035780.

[30] H. Chen, W. Li, and Z. Shi, “Adversarial instance augmentation for
building change detection in remote sensing images,” IEEE Trans.
Geosci. Remote Sens., early access, Mar. 25, 2021, doi: 10.1109/TGRS.
2021.3066802.

[31] W. Zhao, L. Mou, J. Chen, Y. Bo, and W. J. Emery, “Incorporating metric
learning and adversarial network for seasonal invariant change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2720–2731,
Apr. 2020.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[33] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” Jun. 2021, arXiv:2010.11929. [Online].
Available: https://arxiv.org/abs/2010.11929

[34] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” 2020, arXiv:2012.12877. [Online]. Available:
https://arxiv.org/abs/2012.12877

[35] B. Wu et al., “Visual transformers: Token-based image representation
and processing for computer vision,” 2020, arXiv:2006.03677. [Online].
Available: https://arxiv.org/abs/2006.03677

[36] D. Zhang, H. Zhang, J. Tang, M. Wang, X. Hua, and Q. Sun, “Fea-
ture pyramid transformer,” in Computer Vision—ECCV, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham, Switzerland: Springer,
2020, pp. 323–339.

[37] S. Zheng et al., “Rethinking semantic segmentation from a sequence-
to-sequence perspective with transformers,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 6881–6890.

[38] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Proc. Eur. Conf. Comput. Vis. in Lecture Notes in Computer Science,
vol. 12346, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds. Glasgow,
U.K.: Springer, Aug. 2020, pp. 213–229.

[39] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: Deformable transformers for end-to-end object detection,” in
Proc. Int. Conf. Learn. Represent., 2021, pp. 1–26. [Online]. Available:
https://openreview.net/forum?id=gZ9hCDWe6ke

[40] M. Chen et al., “Generative pretraining from pixels,” in Proc. 37th
Int. Conf. Mach. Learn., (ICML), vol. 119. Virtual Event, Jul. 2020,
pp. 1691–1703. [Online]. Available: https://dblp.org/db/conf/icml/index.
html

[41] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 12873–12883.

[42] W. Liu, S. Chen, L. Guo, X. Zhu, and J. Liu, “CPTR: Full transformer
network for image captioning,” 2021, arXiv:2101.10804. [Online].
Available: https://arxiv.org/abs/2101.10804

[43] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture trans-
former network for image super-resolution,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5791–5800.

[44] H. Chen et al., “Pre-trained image processing transformer,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12299–12310.

[45] Y. Yuan and L. Lin, “Self-supervised pretraining of transformers for
satellite image time series classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 474–487, 2021.

[46] Z. Li, G. Chen, and T. Zhang, “A CNN-transformer hybrid approach
for crop classification using multitemporal multisensor images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 847–858,
2020.

[47] J. He, L. Zhao, H. Yang, M. Zhang, and W. Li, “HSI-BERT: Hyperspec-
tral image classification using the bidirectional encoder representation
from transformers,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 165–178, Jan. 2020.

[48] Y. Bazi, L. Bashmal, M. M. A. Rahhal, R. A. Dayil, and N. A. Ajlan,
“Vision transformers for remote sensing image classification,” Remote
Sens., vol. 13, no. 3, p. 516, Feb. 2021.

[49] X. Shen, B. Liu, Y. Zhou, and J. Zhao, “Remote sensing image caption
generation via transformer and reinforcement learning,” Multimedia
Tools Appl., vol. 79, nos. 35–36, pp. 26661–26682, Sep. 2020.

[50] Q. Wang, W. Huang, X. Zhang, and X. Li, “Word-sentence framework
for remote sensing image captioning,” IEEE Trans. Geosci. Remote
Sens., early access, Dec. 25, 2020, doi: 10.1109/TGRS.2020.3044054.

[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1, Jun. 2019, pp. 4171–4186.

[52] T. Q. Nguyen and J. Salazar, “Transformers without tears: Improving
the normalization of self-attention,” 2019, arXiv:1910.05895. [Online].
Available: https://arxiv.org/abs/1910.05895

[53] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2020, arXiv:1606.08415. [Online]. Available: https://arxiv.org/abs/
1606.08415

[54] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data
set,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586,
Jan. 2019.

[55] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
A nested u-net architecture for medical image segmentation,” in Proc.
Int. Workshop Multimodal Learn. Clin. Decis. Support in Lecture Notes
in Computer Science, vol. 11045, Granada, Spain: Springer, Jun. 2018,
pp. 3–11, doi: 10.1007/978-3-030-00889-5_1.

[56] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2018, pp. 7794–7803.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 14:59:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/LGRS.2020.3035780
http://dx.doi.org/10.1109/TGRS.2020.3044054
http://dx.doi.org/10.1007/978-3-030-00889-5_1
http://dx.doi.org/10.1109/TGRS.2021.3066802
http://dx.doi.org/10.1109/TGRS.2021.3066802


5607514 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Hao Chen received the B.S. degree from the Image
Processing Center, School of Astronautics, Beihang
University, Beijing, China, in 2017, where he is
pursuing the Ph.D. degree.

His research interests include machine learning,
deep learning, and semantic segmentation.

Zipeng Qi received the B.S. degree from the Hebei
University of Technology, Tianjin, China, in 2018.
He is pursuing the Ph.D. degree with the Image
Processing Center, School of Astronautics, Beihang
University, Beijing, China.

His research interests include image processing,
deep learning, and pattern recognition.

Zhenwei Shi (Member, IEEE) received the Ph.D.
degree in mathematics from the Dalian University
of Technology, Dalian, China, in 2005.

He was a Post-Doctoral Researcher with the
Department of Automation, Tsinghua University,
Beijing, China, from 2005 to 2007. He was a Visiting
Scholar with the Department of Electrical Engineer-
ing and Computer Science, Northwestern University,
Evanston, IL, USA, from 2013 to 2014. He is a
Professor and the Dean of the Image Processing
Center, School of Astronautics, Beihang University,

Beijing. He has authored or coauthored more than 100 scientific articles in
refereed journals and proceedings, including the IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, the IEEE TRANSAC-
TIONS ON NEURAL NETWORKS, the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING, the IEEE GEOSCIENCE AND REMOTE SENSING

LETTERS, and the IEEE Conference on Computer Vision and Pattern Recog-
nition. His research interests include remote sensing image processing and
analysis, computer vision, pattern recognition, and machine learning.

Dr. Shi serves as an Associate Editor for the Infrared Physics and Technol-
ogy. His personal website is http://levir.buaa.edu.cn/.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 14:59:50 UTC from IEEE Xplore.  Restrictions apply. 


