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Abstract— Remote sensing images contain a wealth of spatial
information. Efficient scene classification is a necessary precedent
step for further application. Despite the great practical value,
the mainstream methods using deep convolutional neural net-
works (CNNs) are generally pretrained on other large datasets
(such as ImageNet) and thus fail to capture the specific visual
characteristics of remote sensing images. For another, it lacks
the generalization ability to new tasks when training a new
CNN from scratch with an existing remote sensing dataset.
This article addresses the dilemma and uses multiple small-
scale datasets to learn a generalized model for efficient scene
classification. Since the existing datasets are heterogeneous and
cannot be directly combined to train a network, a multitask
learning network (MTLN) is developed. The MTLN treats each
small-scale dataset as an individual task and uses complementary
information contained in multiple tasks to improve generaliza-
tion. Concretely, the MTLN consists of a shared branch for
all tasks and multiple task-specific branches with each for one
task. The shared branch extracts shared features for all tasks
to achieve information sharing among tasks. The task-specific
branch distills the shared features into task-specific features
toward the optimal estimation of each specific task. By jointly
learning shared features and task-specific features, the MTLN
maintains both generalization and discrimination abilities. Two
types of MTL scenarios are explored to validate the effectiveness
of the proposed method: one is to complete multiple scene
classification tasks and the other is to jointly perform scene
classification and semantic segmentation.

Index Terms— Attention, multitask learning (MTL), scene
classification, small-scale dataset.

I. INTRODUCTION

THE development of remote sensing technology makes it
easier to obtain high spatial resolution remote sensing

images [1], [2]. These images contain rich spatial information,
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which is very helpful for geological surveys [3], urban plan-
ning [4], and other fields [5], [6]. As a necessary precedent
step, remote sensing scene classification assigns a specific
semantic label to each image [7].

Currently, the deep convolutional neural networks (CNNs)
are the mainstream methods for remote sensing scene classi-
fication [8], [9]. Early works train a CNN from scratch with
the remote sensing scene data of interest [10]. Unfortunately,
training CNN needs a large amount of labeled data, while man-
ually annotating remote sensing scenes is time-consuming and
laborious [11]. A simple solution is to pre-train CNN on large-
scale datasets (such as ImageNet [12]). Then, the pretrained
CNN can be directly used as a feature extractor by removing
the classification layer [2]. Furthermore, the pretrained CNN
can be fine-tuned on target remote sensing datasets [13]–[15].
However, directly using the pretrained CNN fails to capture
the specific characteristics of the remote sensing image: the
imaging perspective and object distribution [16]. Fine-tuning
may easily stick in local minimum with a small-scale remote
sensing dataset because of the millions of parameters con-
tained in CNNs.

This article is motivated by the study of Torralba and
Efros [17], which concerns the generalization ability across
different datasets and claims that even the same task has
different distributions of features in different datasets. To this
end, we consider how to learn a generalized CNN by exploit-
ing multiple small-scale remote sensing datasets. With the
learned generic knowledge, the model can quickly adapt to
new unseen tasks without numerous labeled samples. There
are many applications especially for the case of implementing
a new task with limited training data. For example, the model
can be explored to implement classification among different
domains, such as the agricultural classification [3], forestry
classification [18], and urban classification [4]. In addition,
with the increasing satellite data every day, instantly classify-
ing the new data by exploiting historical data is also a valuable
application [19].

The existing remote sensing datasets such as Merced [20],
AID [1], and NWPU [21] allow to train a model for an
executed task, while lack the generalization ability to other
tasks. Combining these multiple related small-scale datasets
exhaustively may be enough to train a generalized network
as the pretrained network. However, it is difficult to train a
network with these multiple datasets directly, since each small-
scale dataset is annotated for a different task. These datasets
are heterogeneous in terms of different data distributions,
distinct label spaces, various image sizes, etc. [22].
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To circumvent the dilemma, an efficient multitask learning
network (MTLN) is designed in this article. The MTLN
treats each small-scale dataset as a task and designs multiple
task-specific branches to learn multiple tasks simultaneously.
Each task corresponds to one task-specific branch, but all
tasks explore a shared branch for complementary information
sharing. By jointly optimizing the shared branch and task-
specific branches, the MTLN maintains both generalization
and discrimination abilities. In this article, two types of multi-
task learning (MTL) scenarios are explored: multiple-scene
classification (MSC) and pixel-scene classification (PSC).
MSC considers multiple remote sensing scene classification
by exploiting multiple small-scale datasets. PSC jointly per-
forms pixel-level semantic segmentation and image-level scene
classification.

The MTLN contains three main steps: shared feature extrac-
tion, task-specific feature distillation, and multitask classifica-
tion. First, the shared branch exploits convolution blocks to
generate shared features for all tasks, which allows comple-
mentary information shared among tasks. Second, each task-
specific branch is assigned for one task for task-specific feature
distillation. The task-specific branch distills shared features
into task-specific features through several cascaded attention
modules. Each attention module generates an attention mask to
strength features important to the executed task while ignoring
the unimportant ones. Multiple attention modules are used to
attend features adaptively as layers go deeper. Finally, after a
sequence of attention modules, the output of the last attention
module is passed to a task-specific classifier. Experiments
are conducted on two MTL scenarios. To validate the PSC
scenario, two PSC datasets are constructed by improving
an existing dataset, with each image containing pixel-level
semantic segmentation labels and an image-level scene label.

In summary, the main contributions of this article are listed
in the following.

1) This article exploits multiple small-scale remote sensing
datasets to learn a generalized CNN, which alleviates the
difficulty of training CNNs with limited labeled samples.

2) An MTLN is proposed to incorporate complementary
information among tasks and ensure an optimal result
for each individual task.

3) To validate the proposed method, two types of MTL sce-
narios are explored: MSC and PSC. Two PSC datasets
are built to identify the scene with semantic segmen-
tation. The datasets are available at https://github.com/
spectralpublic/GID-MTL.

The rest of this article is organized as follows. Section II
reviews the related work. Section III discusses the pro-
posed method in detail. Section IV provides the experiments.
Section V concludes this article.

II. RELATED WORK

A. Remote Sensing Scene Classification

Remote sensing scene classification assigns a specific scene
label to an image and is a necessary precedent step for fur-
ther application. Currently, remote sensing scene classification
has achieved high accuracy, thanks to the deep CNNs. The
strategies of exploiting CNNs can generally be grouped into

three types: 1) training new CNNs from scratch; 2) using
pretrained CNNs as feature extractors; and 3) fine-tuning
pretrained CNNs.

The first strategy fully trains a new CNN from scratch
with remote sensing images. Since a large-scale CNN contains
millions of parameters, millions of training data are needed
to fully train the network [12], [23]. However, in the remote
sensing field, usually only hundreds or thousands of labeled
images are available [21]. Training CNNs from scratch is not
widely used in remote sensing.

The second strategy which uses pretrained CNNs as fea-
ture extractors has gained increasing popularity. It bene-
fits from the characteristic that the initial layers of CNNs
tend to capture generic structures, like edge or color, which
are shared for all visual tasks. The widely used pretrained
CNNs contain AlexNet [24], VGGNet [25], and ResNet [23].
Penatti et al. [26] take outputs of the last convolutional layer
of a pretrained CNN as global features. Zheng et al. [2]
further perform a multiscale strategy over the CNN activations.
However, the pretrained CNN may fail to obtain the specific
feature of remote sensing images due to the semantic gap
between natural images and remote sensing images [16].

The third strategy uses the pretrained CNN for classification
by fine-tuning the target remote sensing dataset [13], [15].
Usually, the parameters of the earlier layers are fixed, and
the final layers are retrained to obtain specific features of
the target data. Nogueira et al. [16] explore remote sensing
scene classification performances on multiple CNNs and point
that fine-tuning achieves the best performance compared with
full training and using pretrained CNNs as feature extractors.
Based on that, some recent studies are developed to further
improve the performance. For example, Othman et al. [27]
exploit domain adaptation techniques to reduce the distrib-
ution shift between pretrained and target datasets. Although
effective, the fine-tuning strategy still relies on the pretrained
model and cannot adapt to specific or complex scenarios [26].

B. MTL

MTL improves generalization performance by simultane-
ously conducting multiple related tasks and exploring shared
knowledge among them [28]–[30]. The performance of one
task can be improved using related tasks as inductive bias
[31], [32]. For example, Liu et al. [5] verify that scene clas-
sification and aerial image retrieval tasks can be regularized
mutually and promote each other when learned simultaneously.
Qiu et al. [33] combine classification and regression tasks
jointly and exploit the prediction of the regression task as
a prior for the classification task. Guo et al. [34] achieve
effective building extraction with the regularization of the
scene classification task. Taskonomy explores 26 tasks to reuse
the supervision among related tasks and further reduce the
need for labeled data [35]. Zhang et al. [7] explore the latent
visual interactions among multiple related image categories to
promote feature learning on aerial image classification tasks.

Most existing MTL methods can be roughly divided
into two groups: hard-parameter sharing and soft-parameter
sharing. Hard-parameter sharing exploits the same initial
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Fig. 1. Framework of the proposed method. The shared branch extracts shared features for all tasks. Task-specific branch distills needed information with
attention modules to finish the executed task. Each task-specific branch contains multiple attention modules, and each module latches onto one block of the
shared branch.

layers and different specialized classifier branches for different
tasks [36]–[38]. However, due to different tasks concerning
different information (such as the high-level semantic infor-
mation for scene classification and low-level spatial infor-
mation for segmentation), using the exact same features for
all tasks may cause task interference [39]. Soft-parameter
sharing allows each task to have task-adaptive model and the
information can be shared among different tasks. For example,
Zhang et al. [40] design two different networks for different
tasks (a multilayer perception for land-cover classification and
an object-based CNN for land-use classification) and refine
one task with a prediction from another task through iteration
to allow information sharing. Maninis et al. [42] use a unified
network to perform multiple tasks, but exploit the attention
module [41] to enable the network to adaptively learn different
features according to the task currently being performed.
Sun et al. [43] select specific layers for an executed task in
a multitask network, in which a task-specific select-or-skip
policy is explored. In this article, a shared branch and multiple
task-specific branches are used to achieve information sharing
among tasks and avoid interference between tasks.

III. METHOD

This article aims to learn generalized features that can
be well-adapted to different scene classification tasks. Given
K tasks with training data {Xk, Yk}K

k=1, where Xk and Yk

represent the Nk training images and corresponding labels,
respectively, of the kth task, the MTLN takes full use of the
complementary information from K tasks and distills effective
features for multitask classifications. Concretely, the MTLN
is conducted in three steps: first, a shared branch receives
images from all tasks and provides shared features for all tasks.
Second, each task-specific branch distills the shared feature
into task-specific features for the executed task. Finally, the

task-specific feature is passed to the task-specific classifier for
the final classification. A clear flowchart is shown in Fig. 1.

A. Shared Feature Extraction

All tasks exploit a shared branch to extract shared features,
which allows complementary visual features to be shared
among tasks. The shared branch is a deep CNN that is stacked
by J convolution blocks. Many classical network structures
can be used, such as VGG or ResNet. The shared branch
provides a field of intermediate layer features instead of a
single classification result at the end of the network. We refer
to the learned shared features as {f j

k}J
j=1

{f j
k }J

j=1 = F(xk) (1)

where F(·) denotes the feature extraction with the shared
branch. xk ∈ Xk denotes an image from the kth dataset Xk . f j

k
denotes the extracted j th block feature from the image xk.

B. Task-Specific Feature Distillation

After shared features are learned, each task-specific branch
distills the shared features for a specific task. The task-
specific branch contains a set of attention modules, and each
attention module latches onto one block of the shared branch.
The attention module generates an attention mask that softly
weights the shared feature to learn a task-specific feature,
as shown in Fig. 2. Multiple attention modules are used
to capture different attention information from the shared
branch. Information is collected sequentially and used to
determine what to attend in the next task-specific feature
learning steps.

Given the shared branch output f j
k from the j th block,

the task-specific feature in this block is obtained by applying
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Fig. 2. Attention module learns the task-specific feature by weighting the
shared feature with a generated attention mask.

an attention mask to the shared feature

f̃ j
k = f j

k � m j
k (2)

where f̃ j
k is the learned task-specific feature in block j for

task k. m j
k is the corresponding attention mask. � identifies

elementwise multiplication. The attention module acts as a
selector to determine the shared feature of the current block
being used or not.

The attention mask m j
k is generated by an attention module,

which uses convolutional operation to transfer input features
into an attention mask. The first attention module takes as
input the feature from the first block of the shared branch. The
subsequent attention module takes as input the concatenation
of the feature from the shared branch and task-specific feature
obtained from the previous block. The attention mask is
formulated as

m j
k =

{
H j

k (z j
k ), j = 1

H j
k ([z j

k ; E j(f̃ j−1
k )]), j > 1

(3)

where z j
k is a feature from a different layer of the same

feature blocks as f j
k in the shared branch. H j

k is the attention
module in the j th block for the kth task, which is composed
of a stack of convolution layers. E j denotes an extractor
for passing task-specific features from the previous block to
the current j th block. The extractor is a convolutional layer
in which downsampling is used to keep the size consistent.
Different extractors {E j}J

j=2 are assigned to different blocks,
but the same extractor E j is shared for all tasks, which avoids
parameter increasing linearly with the number of tasks. Task-
specific features are learned by attention modules instead of
extractors.

The attention module can make the feature f j
k totally used

for the kth task by assigning higher values to m j
k , or only

choosing the needed task-specific feature by assigning lower
values. In this way, learning task-specific features from the
shared features while sharing information across different tasks
can be achieved simultaneously.

C. Multitask Classification and Optimization

After a sequence of attention modules, the output of the last
attention module f̃ J

k is passed to the task-specific classifier for

final prediction

ŷk = Gk(f̃ J
k ) (4)

where ŷk is the prediction of image xk , and Gk is the
specific classifier for the kth task. The task-specific classifier is
designed based on the specific task. The MTLN is optimized
by minimizing losses over multiple tasks. A simple linear sum
is used to combine the K task-specific losses Lk

min
F,E,{Hk,Gk }K

k=1

L =
K∑

k=1

Lk (5)

where E = {E j}J
j=2 and Hk = {H j

k }J
j=1 contain extractors and

attention modules for J blocks, respectively. The parameters of
the shared branch F , extractors E , attention modules Hk, and
task-specific classifiers Gk in K branches are jointly optimized
with the losses Lk from K tasks. Therefore, features in the
shared branch can be shared to the greatest extent, while
maximized task-specific performances are encouraged with the
task-specific branches.

This work explores two MTL scenarios of incorporating
related information. The first scenario implements MSC tasks.
The second scenario simultaneously implements scene classifi-
cation and semantic segmentation. For the scene classification
task, each image is assigned to a scene category. A single fully
connected layer following an average pooling layer is used as
a scene classifier. For the semantic segmentation task, each
pixel in an image is assigned to a category. A pixel classifier
is constructed, which is symmetric to the shared branch. The
shared branch and the pixel classifier form an encoder–decoder
pattern as SegNet [44]. For the scene classification task,
the cross-entropy loss is used

Lk = − 1

Nk

∑
yk log ŷk

(xk ,yk)∈(Xk,Yk )

(6)

where yk is the label of image xk . For semantic segmentation
which is essentially a pixel-level classification task, pixelwise
cross-entropy is used

Lk = − 1

Nk

∑ 1

N
(xk ,yk)∈(Xk ,Yk )

N∑
n=1

yn
k log ŷn

k (7)

where yn
k and ŷn

k denote the semantic segmentation label and
prediction of image x at pixel n, respectively. N is the total
number of pixels.

IV. EXPERIMENTS

This section presents the datasets, experimental results,
along with the analysis of the proposed method on the MTL
scenarios.

A. Experimental Setup

1) MTL Scenarios: We explore two MTL scenarios: MSC
and PSC. The MSC exploits MSC datasets and each dataset is
considered as a task. The PSC predicts two different formats
of label (image-level scene category and pixel-level seman-
tic segmentation map) simultaneously for each image. It is
believed that scene classification and semantic segmentation
can promote each other when implemented simultaneously.
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TABLE I

SUMMARY OF THE DATASETS. #IMAGES AND #CLASSES DENOTE THE NUMBER OF IMAGES AND CLASSES IN A DATASET

Fig. 3. Way of constructing PSC datasets PSC5 and PSC15. (a) Cropping sub-images from large-scale images of GID and annotating a scene label for each
sub-image. (b) Obtaining pixel-level annotations by cropping from the original annotation.

2) Datasets: Six datasets divided into three groups are
exploited to evaluate the proposed method. First, three remote
sensing scene classification datasets-Merced,1 AID,2 and
NWPU3-are used to evaluate MSC. Second, GID4 which
is a pixel-level labeled land-cover classification dataset is
expanded to evaluate PSC. Third, to validate the generaliza-
tion ability of the proposed method, the pretrained MTLNs
are tested on new datasets. Two additional remote sensing
scene classification datasets-PatternNet5 and EuroSAT6-are
exploited. The detailed information about these datasets is
listed in Table I.

For the MSC, Merced, AID, and NWPU are selected. These
datasets are composed of RGB images, but vary in complexity
and difficulty. Different datasets have various resolutions and
are associated with different scene categories, and therefore are
viewed as different tasks. These diversities aim to illustrate the
generalization ability of the proposed model. These datasets
are organized to form an MSC dataset and a mini MSC
(min-MSC) dataset. These two different datasets are designed
to validate the performance of the proposed method under
different levels of complexity. The MSC dataset contains all
images from Merced, AID, and NWPU. The mini-MSC dataset

1http://vision.ucmerced.edu/datasets/landuse.html
2https://captain-whu.github.io/AID/
3http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
4https://captain-whu.github.io/GID/
5https://sites.google.com/view/zhouwx/dataset
6https://github.com/phelber/eurosat

contains only 12 common classes shared by Merced, AID,
and NWPU. Moreover, each class contains 100 images for
each task. The mini-MSC dataset has less interference among
tasks because of eliminating the impact of different classes
and a variable number of images per class. The selected
12 common classes are airfield, anchorage, beach, dense
residential, farm, flyover, forest, game space, parking space,
river, sparse residential, and storage cisterns.

For PSC, GID is used. It is further expanded to simultane-
ously implement pixel segmentation and scene classification
tasks by adding a scene label to each image. Concretely, GID
is used to construct two PSC datasets: PSC5 and PSC15.
The PSC5 dataset contains five coarse categories and is con-
structed from GID images annotated with five categories. The
PSC15 dataset contains 15 fine categories and is constructed
from GID images annotated with 15 categories. Each image
in the PSC datasets contains an image-level scene label and
pixel-level land-cover label. Concretely, the PSC dataset is
constructed by cropping the original images in GID into small
subimages and adding scene category to each subimage. The
subimage is set to a size of 224 × 224 pixels. Every subimage
is regularized to belong to a certain scene category by ensuring
that the number of pixel labels in this category is more than
half. A schematic of constructing the multitask dataset is
shown in Fig. 3. The detailed information about PSC5 and
PSC15 are shown in Figs. 4 and 5, respectively.

3) Implementation Details: For the MSC scenario, the mul-
tiple task images are taken as input into the shared branch, and
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Fig. 4. Example images in PSC5. Each row represents one scene category.
(Left column) Scene category, the number of images contained in this
category, and the corresponding pixel-level annotation color. Each category
displays three groups of images, including the input images and the corre-
sponding ground-truth segmentation maps.

Fig. 5. Example images associated with the 15 scene classes in PSC15.
Image, segmentation map, the scene name, the number of images, and the
color of the pixel-level label for the category are displayed.

then each data flow into the corresponding task-specific branch
for further classification. A softmax classifier is assigned to
each task to finish scene classification. For the MSC dataset,
we exploit the widely used ResNet-34 as the shared branch for
experiments. For the mini-MSC dataset, we exploit WRN-28-4
for its efficiency and lightweight, considering the small num-
ber of images in the mini-MSC dataset. WRN-28-4 refers to a
wide residual network with layers of 28 and a widening factor
of 4 on the convolutional channel number.

For PSC, a classification network is needed for scene
classification, and a segmentation network is needed for
pixel classification. We exploit state-of-the-art SegNet for pixel
classification, which exploits VGG-16 as the encoder network.

Fig. 6. Network structure of implementing PSC. “Att” represents the attention
module. The components surrounded by the yellow box are used for scene
classification. The components surrounded by the green box are used for pixel
classification. The shared branch is shared by two tasks.

Therefore, VGG-16 is used as the shared branch. A decoder
network symmetric to the VGG-16 is used as the pixel
classifier. A softmax classifier is used as the scene classifier.
A schematic is shown in Fig. 6.

To build the attention module, two convolutional layers of
1 × 1 kernels together with nonlinear activation layers are
stacked. Each attention module is latched onto one convo-
lutional block of the shared branch. To build the extractor,
a convolutional layer with a filter size of 3 × 3 following
a pooling layer is used. Each extractor is inserted between
two attention modules for passing information from one
module to another. The detailed components of the proposed
method and the number of parameters are shown in Table II.
“Attention modules” represents the parameters of attention
modules needed for one task. “Extractors” represents the
parameters of all extractors which are shared among multiple
tasks.

In the MSC scenario, all input images from different tasks
are resized to 224 × 224 pixels, and the batch size is set
to 32. In the PSC scenario, the input image size is set to
224 × 224 pixels with a batch size of 2. In each dataset,
80% of the images are used as the training set and the
remaining images are used as the test set. The MTLN is
trained from scratch. Adam optimizer is used. The learning
rate is set to 10−4. All the experiments are performed on an
Intel Core i7-5930 K workstation with GeForce GTX Titan X
GPU, 3.50-GHz CPU, and 64-G RAM.

4) Evaluation Metrics: The experimental results are
assessed with classification accuracy and the number of net-
work parameters. For scene classification, the overall accu-
racy (OA) is used. For the pixel-level semantic segmentation,
the accuracy is evaluated on all pixels of the test image.
Two metrics-mean intersection over union (mIoU) and pixel
accuracy (PA)-are used.

Let pi j denote the number of pixels of class i predicted
to belong to class j . C + 1 represents the number of cate-
gories, which contains C defined categories and one unknown
category

mIoU = 1

C + 1

C∑
i=0

pii∑C
j=0 pi j + ∑C

j=0 p ji − pii

PA =
∑C

i=0 pii∑C
i=0

∑C
j=0 pi j

.
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TABLE II

NUMBER OF PARAMETERS FOR EACH COMPONENT OF MTLN. THE PARAMETER DIFFERENCES BETWEEN PSC5
AND PSC15 ARE IGNORED. THE PARAMETERS OF THE SCENE CLASSIFIER ARE ALSO IGNORED

TABLE III

EXPERIMENTAL RESULTS OF OA (%) AND NUMBER OF PARAMETERS ON THE MSC. (a) RESULTS ON MSC DATASET

WITH ResNet-34 AS BACKBONE. (b) RESULTS ON MINI-MSC DATASET WITH WRN-28-4 AS BACKBONE

The values of OA, mIoU, and PA are in the range of 0–1.
The larger values indicate better performance.

B. MSC

1) Compared Methods: For the MSC scenario, a compari-
son with single-task methods and multitask state-of-the-arts is
conducted.

First, to validate whether the proposed method outperforms
the fine-tuned method, a comparison with baseline and fine-
tune is conducted. The baseline uses three individual scene
classification networks to finish prediction tasks. Each network
is trained from scratch independently. The number of para-
meters is approximately three times the shared branch with
a minor difference because of the scene classifier. Fine-tune
shares the same architecture with the baseline, but the network
is pretrained on the ImageNet and further fine-tuned on the
target remote sensing dataset.

Second, the proposed method is compared with three
state-of-the-art MTL methods: cross-stitch network (Cross-
Stitch) [47], deep elastic network (DEN) [39], and uncertainty
weights network (Uncer. Weig) [48]. Cross-stitch network
uses multiple independent networks to implement multiple
tasks with each network assigned to one task. At the same
time, to share information between networks, a cross-stitch
unit is used to connect the features of the same layer in
different networks. The number of parameters is the same as

the baseline. DEN performs MTL by dynamically selecting a
model from multiple candidate models. A selection strategy
is developed to determine which model is used. Uncertainty
weights network assigns a shared branch for multiple tasks for
feature extraction and splits it into multiple classifier branches
at the classifier layer for the final prediction of each specific
task. Different weights are assigned to the multiple losses,
so that different tasks can be optimized in balance. The weight
is learned adaptively based on the homoscedastic uncertainty
of each task. The number of parameters is approximate to the
parameters of the shared branch.

2) Results: Two groups of experiments are designed to eval-
uate the proposed method. The first group exploits ResNet-34
as the backbone, and experiments are conducted on the
MSC dataset. The second group exploits WRN-28-4 as the
backbone, and experiments are conducted on the mini-MSC
dataset. The performances are evaluated with respect to OA
and the number of parameters, and the results are shown
in Table III.

The proposed method achieves an average OA of 93.30%
with parameters of 26.11M in the first group of experiments
and an average OA of 86.68% with parameters of 7.62M in
the second group. Our method outperforms all the comparison
methods including fine-tune and state-of-the-art MTL meth-
ods, which validates the effectiveness of the proposed methods.
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TABLE IV

EXPERIMENTAL RESULTS ON THE PSC. THE NUMBER OF PARAMETERS,
mIOU (%), PA (%), AND OA (%) ARE EVALUATED. VGG-16 IS

EXPLOITED AS THE BACKBONE. (a) RESULTS ON PSC5
DATASET. (b) RESULTS ON PSC15 DATASET

Meanwhile, the number of parameters is also competitive
among all methods.

The following observations can also be learned from the
results. First, fine-tune outperforms most methods in MSC,
but achieves a similar performance with other methods in
the mini-MSC dataset. It may result from the different task
interferences of the two datasets. In the MSC dataset, the cat-
egories to be classified for each task are hugely different,
resulting in interference among tasks. The mini-MSC dataset
contains the same categories for each task, and the number
of images per category is 100, resulting in more related
tasks. Fine-tune performs each task individually, which avoids
task interference. Such characteristic is effective on tasks
with interference yet less important for related tasks. MTLN
is further superior to fine-tune, showing that the proposed
method can avoid interference and exploit multiple tasks to
further promote performance. Second, the cross-stitch network
performs poor on the MSC dataset but performs well on
the mini-MSC dataset. This is because in the MSC dataset,
different tasks have various difficulties. Cross-stitch network
is dominated by the easier task (Merced), resulting in an
imbalanced training [29]. The mini-MSC dataset has the same
categories for each task and the same number of images per
category, leading to a relatively balanced loss over each task.
This phenomenon also validates the importance of our MTL
framework.

C. PSC

We further evaluate the proposed method on the PSC
scenario. The experiments are conducted on the PSC5 and
PSC15 datasets, respectively. VGG-16 is exploited as the
backbone network. The performance is compared with the
state-of-the-art MTL methods: cross-stitch network [47] and
uncertainty weights network [48]. Table IV summarizes the
comparison results with respect to mIoU, PA, and OA.

The baseline uses a VGG-16 to perform scene classification
and a SegNet to perform pixel-level semantic segmentation.

Thus, the parameter of the baseline is 41.32M, which is the
sum of the parameters of two separate networks. The cross-
stitch network assigns an independent network for each task to
avoid interference between tasks. The network parameters are
the same as baseline, which is 41.32M. Uncertainty weights
network assigns a shared branch for two tasks for feature
extraction and then connects a pixel classifier and a scene clas-
sifier for the final prediction of each specific task. Therefore,
the parameter of uncertainty weights network is 24.93M.

The mIoU, PA, and OA of the proposed method on the
PSC5 dataset are 34.25%, 76.52%, and 95.00%, respectively.
A performance of 11.75%, 56.39%, and 81.87% on PSC15,
respectively, was obtained. It can be seen that our method
achieves a large performance increase compared with the
uncertainty weights network, while the number of network
parameters only increases moderately. What is more, the per-
formance outperforms the cross-stitch network on most tasks,
while a much smaller amount of parameters are needed.

A visualization of the segmentation results and the attention
masks on different tasks are also shown in Fig. 7. The
attention mask is learned from the last attention module of
each task, coming from the same feature channel. It can be
seen that the attention masks for the segmentation task and
scene classification task are different. It demonstrates that the
proposed attention module can attend to different information
according to the executed task.

D. Ablation Analysis

This section validates the effectiveness of each component
of the proposed method. Experiments are conducted on the
MSC dataset with ResNet-34 as the shared branch and the
mini-MSC dataset with WRN-28-4 as the shared branch.
The results are shown in Table V.

The MTLN consists of the shared branch and multiple task-
specific branches. This shared-specific architecture can handle
multiple tasks, and the task-specific branch uses multiple
attention modules to distill the shared features for a specific
task. Three variants are developed.

1) Baseline uses three individual classification networks
with each trained separately.

2) We attach attention modules to each individual classifi-
cation network. This variant performs each task indepen-
dently, and three networks are used in total. Therefore,
the number of parameters is three times the sum of
the shared branch, scene classifier, attention modules,
and extractors. We denote this variant as baseline +
attention.

3) We exploit a shared branch to conduct multiple tasks.
Multiple separate classifiers are exploited with each
for one task. This variant is denoted as shared-specific
architecture.

By comparing baseline to shared-specific architecture, it can
be seen that a simple combination of multiple tasks (shared-
specific architecture) is inferior when tasks have interference
[results in Table V(a)] but effective when tasks are similar
[results in Table V(b)]. But exploiting the attention modules
(i.e. MTLN with all the components working) achieves the
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Fig. 7. Semantic segmentation and attention mask results on the PSC5 dataset. Five scene categories are displayed with each category containing two images.
First row: input images. Second row: ground-truth semantic segmentation maps corresponding to the images. Third row: predicted segmentation maps from
MTLN. Fourth and fifth rows: attention masks for the semantic segmentation task and scene classification task, respectively.

TABLE V

ABLATION RESULTS OF OA (%) AND NUMBER OF PARAMETERS ON MSC. (a) ABLATION ON MSC DATASET. (b) ABLATION ON MINI-MSC DATASET

optimal results. In addition, the results of baseline + attention
validate that simple attention is ineffective when used solely,
unless combined with the MTL.

E. Generalization Experiments

The proposed method builds a generic model and can
quickly adapt to new unseen tasks with the learned general
knowledge. To evaluate the generalization ability, experiments
are conducted on two new datasets: PatternNet and EuroSAT.
Two patterns are considered: using the pretrained MTLN as
a feature extractor (abandon the classifiers in MTLN) and
fine-tuning MTLN. We implement these patterns and consider
several baselines.

1) Scratch: A ResNet-34 trained from scratch with the
training set of the unseen dataset is used.

2) Pretrained ResNet-34 on ImageNet: ResNet-34 pre-
trained on the ImageNet is used as a feature extractor.
A new FC layer specific to the data of interest is

assigned by removing the original classification layer.
The parameters of the feature extractor are fixed, and
the new classifier is trained with the training set.

3) Pretrained Shared Branch on MSC Dataset (Ours):
The shared branch of MTLN pretrained on the MSC
dataset is used as a feature extractor. The task-specific
branches are abandoned. A new FC classifier is attached
at the end of the shared branch to implement the scene
classification. Similarly, the parameters of the feature
extractor are fixed, and the new classifier is trained with
the training set.

4) Pretrained ResNet-34 on ImageNet + Fine-Tuning:
ResNet-34 is pretrained on ImageNet and then fine-
tuned on the training set of the unseen dataset, in which
the final classification layer is adjusted for each specific
task.

5) Pretrain MTLN + Fine-Tuning (Ours): The MTLN
pretrained on the MSC dataset is exploited and a new
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TABLE VI

GENERALIZATION COMPARISON WITH STATE-OF-THE-ARTS ON UNSEEN DATASETS. THE OA (%) IS EVALUATED

task-specific branch is added to cope with the new
dataset. The parameters of the shared branch are fixed.
The parameters of the new task-specific branch are ini-
tialized from a pretrained task-specific branch (Merced
branch in experiments) and then fine-tuned with the
training set of the unseen dataset.

The experimental results are shown in Table VI. In each
unseen dataset, the training set which contains 100 images per
category is used to learn the new classifier or fine-tune, and
the remaining images are used for the test. It is observed that
our method achieves comparable performance, which verifies
the generalization ability of the proposed method.

V. CONCLUSION

This article presents a generalized scene classification model
by adopting multiple small-scale remote sensing datasets.
An efficient MTLN is proposed to explore complementary
information among multiple tasks and distill needed features
for each specific task. The proposed method outperforms
networks which are pretrained on ImageNet and fine-tuned
on a target remote sensing dataset. Furthermore, the method
outperforms state-of-the-art methods with a small number of
parameters. In the future, we will consider multiscale strategies
to deal with images of different sizes and resolutions, so that
a generalizable model can be learned. In addition, we will
explore the performance of MTLN on other combinations of
datasets and tasks. To realize concrete applications, an out-
of-the-box model will be considered so that the learned
generalized model can be directly applied to different new
tasks.
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