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Abstract— The cross-data set knowledge is vital for hyperspec-
tral image classification, which can reduce the dependence on
the sample quantity by transferring knowledge from other data
sets and improve the training efficiency by sharing knowledge
between different data sets. However, due to the capturing
environment change and imaging equipment difference, domain
shift troubles the exploitation of the cross-data set knowledge.
To address the aforementioned issue, this article proposes an
unsupervised cross-data set hyperspectral image classification
method based on adversarial domain adaptation. The proposed
method, which employs multiple classifiers to build a discrimina-
tor and uses variational autoencoders to constitute a generator,
works in an adversarial manner to drive the target samples under
the support of the source domain. In particular, the classification
error and the classification disagreement are considered in the
objective function, which helps to align different domains while
keeping the boundaries of different classes. Experimental results
of the multidomain data set demonstrate that the proposed
method can transfer and share cross-data set knowledge and
achieve state-of-the-art performance without using the labeled
information of the target data set.

Index Terms— Classification, cross-data set, domain adapta-
tion, hyperspectral image.

I. INTRODUCTION

HYPERSPECTRAL images, which are usually mounted
on remote sensing platforms, combine the advantages of

the spectrograph and optical cameras and provide hyperspec-
tral images with both spectral information and spatial informa-
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tion of the objective scene [1], [2]. The high-resolution spectral
information and the large-scale spatial information afford to
achieve fine-grained and wide-covered Earth observation tasks.
Hyperspectral image classification, which assigns each pixel
of the hyperspectral image a semantic label by analyzing
the corresponding spectral–spatial information, is the core
technique of many Earth observation tasks [3]. However, due
to the data redundancy and spectrum mixing, hyperspectral
image classification is a hot yet challenging problem in remote
sensing area [4]–[6].

During the past decade, motivated by its excellent learn-
ing ability, machine learning methods are extensively used
for hyperspectral image classification [7]–[11]. In order to
achieve acceptable performance, most machine learning-based
methods work in a supervised manner [12]–[14], which takes
some pixels with category information, i.e., labeled samples,
of the hyperspectral image to build a training set, then trains a
classification model on the training set, and, finally, classifies
all the related unlabeled samples by the trained model. The
most competitive supervised hyperspectral image classification
methods are developed based on deep learning theory, which
learns to extract representative and discriminative features
by deep and hierarchical networks [15]–[18]. Although these
machine learning-based methods make valuable explorations
on hyperspectral image classification and significantly improve
the performance of Earth observation tasks, they can reach sat-
isfactory accuracy under severe conditions, i.e., when they are
trained with sufficient training samples of the target data set,
i.e., the data set of interest. However, since field investigation
depends on related devices and land-cover experts, collecting
sufficient labeled training samples is not practical in most
remote sensing tasks. We believe that the knowledge of other
data sets can reduce the dependence on sample quantity and
assist the classification task on the target data set. Moreover,
the cross-data set knowledge can also promote the training
efficiency by the shared knowledge. Therefore, the exploitation
of cross-data set knowledge can make the classification more
practical and efficient.

The cross-data set knowledge is vital for hyperspectral
image classification, but extracting and utilizing the cross-data
set knowledge are not an easy task in the remote sensing area.
Due to the environment change and equipment difference,
domain shift is a very common issue, which troubles knowl-
edge transferring and sharing in hyperspectral image clas-
sification. Therefore, some works utilize domain adaptation
methods to promote the performance on the target data set

0196-2892 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 16:34:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7697-2285
https://orcid.org/0000-0003-1172-1551
https://orcid.org/0000-0001-8509-5624
https://orcid.org/0000-0003-4858-823X
https://orcid.org/0000-0002-1038-412X


4180 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 5, MAY 2021

and uses the cross-data set knowledge as auxiliary information
to effectively improve the related task on the target data set
[19]–[22]. Some others also try to introduce source data sets
to improve the classification performance using small training
sets [23]–[25]. The aforementioned domain adaptation-based
methods improve the classification accuracy on the target data
set and designate the direction for the future development of
the hyperspectral image classification. However, some of the
aforementioned methods still require plenty of labeled samples
on the target data set. Moreover, some domain adaptation-
based methods only try to minimize domain discrepancy with-
out considering the class distributions on the target domain,
which drives the class boundaries crash into each other and,
thus, reduces the effectiveness of the classifier from the source
domain. In order to exploit and utilize the cross-data set
knowledge, we propose a new hyperspectral image classifi-
cation method that could drive the target domain to adapt to
the source domain without any labeled samples in the target
domain while keeping the boundaries of different classes.

In particular, this article proposes an adversarial domain
adaptation method to exploit and utilize the cross-data set
knowledge. Other than most existing methods, the proposed
method gives a solution of cross-data set knowledge trans-
ferring when no labeled information of the target data set
is available. Moreover, the proposed method is based on
variational autoencoders and adversarial learning, which can
align the source domain and the target domain while keeping
the boundaries of different classes. The major contributions
can be summarized as follows.

1) In order to learn the cross-data set knowledge,
we develop a generator based on variational autoen-
coders, which learns spectral and spatial features of both
domains. The generator can learn the distribution of the
input and generate a more generalized representation
from the learned distribution, which is more robust for
the cross-data set classification problem.

2) In order to transfer the cross-data set knowledge,
we design two objective functions for adversarial learn-
ing, which considers both global alignment and local
alignment based on the classification error and the classi-
fication disagreement. The two alignment strategies help
to align different domains while keeping the boundaries
of different classes.

3) In order to achieve cross-data set classification, we train
the whole network based on adversarial learning, which
first initializes both the generator and the discriminator
on the source domain and then adjusts the discriminator
on both domains and fine-tunes the generator on the
target domain in an adversarial manner by multiple
times. The adversarial learning training process drives
the target samples under the support of the source
domain.

The rest of this article is organized as follows. A brief
introduction of the related work is presented in Section II. The
detailed implementation of the proposed method is given in
Section III. The experiments with corresponding analysis are
demonstrated in Section IV. The conclusions are summarized
in Section V.

II. RELATED WORK

In this section, we present a brief summary of the related
methods in hyperspectral image classification, including deep
network-based feature learning methods and domain adapta-
tion based on classification methods.

A. Deep Learning

Inspired by its excellent ability to feature representation,
deep learning has been widely used in hyperspectral image
classification and improves the performance significantly. Dif-
ferent types of deep networks have been improved according
to the specialty of the hyperspectral image, such as stacked
autoencoders, convolution neural networks are used for spec-
tral and spatial feature learning and information optimizing
[15], [18], the generative adversarial network is utilized to
generate fake samples and improve the generalization of the
trained model [16], [26], and the recurrent neural network is
employed for sequential analysis and classification of hyper-
spectral image [27], [28]. Some representative works show
the effectiveness of deep learning in hyperspectral image
classification. Chen et al. [18] combined metric learning with
convolution neural network to alternately learn discriminative
spectral–spatial features. Zhu et al. [16] took the advantage of
the generative adversarial network to improve the generaliza-
tion capability of the learned features, and Zhang et al. [28]
proposed a novel local spatial sequential method to extract
local and semantic information for hyperspectral image clas-
sification. Although deep learning has gained enough attention
in hyperspectral image classification, it has an inevitable
disadvantage, and the excellent learning ability is ensured
by the tons of network parameters, which require lots of
labeled samples to learn. However, due to the vast coverage of
remote sensing images, field investigation is a time cost work,
which makes collecting labeled training samples an extremely
difficult task.

In order to improve the performance of deep learning-
based methods using small training sets, the mainstream
methods try to reorganize the training samples or borrow
more information from other data sets. Li et al. [29] uti-
lized pixel pairs as training samples to ensure a sufficient
amount of training data and, hence, learn a large number
of parameters, and Jiao et al. [30] used the parameters of
ImageNet to initialize multiple parameters and reduce the
difficulty of network training. Mei et al. [31] learned sensor-
specific spatial–spectral features by sharing the parameters
between the data from the same sensors. All these methods
improve the classification accuracy under a harsh situation
of small labeled training sets. In the case of a neural net-
work with a large number of parameters, the efficiency is
greatly improved. Inspired by the excellent learning ability
of deep networks, this article proposes a feature learning
method based on variational autoencoders for domain adapta-
tion scenarios. Other than most existing methods, the proposed
method learns the distribution of the input and generates more
generalized representation without any labeled sample of the
target data set.
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Fig. 1. Overview of the proposed adversarial domain adaptation method. There are two modules, i.e., a generator G and a discriminator D. G is a feature
extractor based on variational autoencoders that learn the spectral–spatial features. D is built by multiple classifiers, which classifies the spectral–spatial
features. Following the objective functions, three basic steps are utilized or repeated to train the whole deep network, Step A learns knowledge on the source
domain, Step B Adjusts the discriminator on the target domain, and Step C Fine-tunes the generator on the target domain.

B. Domain Adaptation

Transfer learning methods are used to solve the problem of
nonstationary data sets over time or space. Domain adaptation,
which is an important member of the transfer learning family,
attempts to adapt the model trained on the source domain to
the target domain. Due to the capturing environment change
and equipment difference, domain shift is common in remote
sensing areas; hence. domain adaptation is necessary for cross-
data set knowledge transferring and sharing in hyperspectral
image classification [32].

During the past decade, many domain adaptation methods
have been proposed for hyperspectral image classification.
Some works attempt to transfer knowledge from different
domains to improve the classification performance with limited
labeled samples from the target domain [19]–[21], [33].
Qin et al. [34] presented a tensor alignment-based domain
adaptation method for hyperspectral image classification, and
Qin et al. [35] also introduced a novel heterogeneous domain
adaptation method for hyperspectral image classification
with a limited amount of labeled samples in both domains.
Zhou et al. [36] proposed extreme learning machine-
based heterogeneous domain adaptation algorithms for the
classification of remote sensing images. The aforementioned
methods rely on the labeled trained samples in the target
domain, which reduces the practicability of hyperspectral
image classification in remote sensing applications. Some
other works utilize unsupervised domain adaptation methods
to transfer knowledge to the target domain. Wei et al. [37]
proposed an unsupervised domain adaptation method from
both feature and classifier levels. Peng et al. [38] proposed
a discriminative joint matching method to match source and
target features in the space produced by kernel principal
components. Gao et al. [39] developed an interesting work
to align different domains in the tensor space and achieve
excellent performance. However, in order to compromise to
the strong constrain of global alignment of different domains,
i.e., minimizing the domain discrepancy, some boundaries of
different classes in the target domain may crash into each
other, which incurs the performance degradation. In this

article, the proposed method transforms target samples under
the support of the source while keeping the boundaries of
different classes; hence, the knowledge can be transferred
and shared between data sets of different domains.

III. METHODOLOGY

In this article, we propose a domain adaptation method
based on adversarial learning to exploit the cross-data set
knowledge for hyperspectral image classification, which is
shown in Fig. 1. The proposed method achieves adversarial
learning by two modules: a generator based on variational
autoencoders and a discriminator built by multiple classifiers.
The two modules work in an adversarial manner to achieve
domain aliment, hereby to realize the classification on the
target domain in an unsupervised manner. First, the problem
setting is given in Section III-A for the problem statement
and symbol definition, and then, two major modules of the
proposed method are depicted in Sections III-B and III-C,
respectively. Finally, the whole framework of the proposed
adversarial domain adaptation method is summarized in
Section III-D.

A. Problem Setting

For a clear presentation, we first introduce the problem state-
ment and explain the symbols used in the proposed method.
We consider about two hyperspectral images Hs from the
source domain and H t from the target domain. We assume that
the source domain and the target domain share the same land-
cover types. Suppose that the source data set, i.e., the sample
set from the source domain, is denoted as X s = {x(i)

s }M
i=1,

and the corresponding label set is denoted as Y s = {y(i)
s }M

i=1,
where M is the number of samples in the source data set. The
target data set, i.e., the sample set from the target domain,
is represented by X t = {x( j)

t }N
j=1, and the corresponding label

set is represented by Y t = {y( j)
t }N

j=1, where N is the number
of samples in the target data set. The label set of the target set
is not available during the training process. Since the land-
cover types are consistent, y(i)

s , y( j)
t ∈ {1, 2, . . . , K }, where
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K is the number of classes. Particularly, in order to learn
both the spatial and spectral features, we utilize data cube
including the spectral information of both the pixel under
processing and the pixels from the neighboring area as the
samples in both X s and X t . For implementation, each cube
is cropped surrounding the pixel under processing from the
original hyperspectral image, and the corresponding label is
the label of the center pixel of the small cube.

Due to the capturing environment change and imaging
sensor difference, even with the same land-cover types,
the data distributions of X s and X t are different. Therefore,
the domain shift is the major obstacle that causes the trained
classification model failure on the target data set. The
objective of this article is to align the target domain and
the source domain to minimize the discrepancy between
the two domains and make the classification model keep
effective in the target domain. The proposed method only
utilizes the label information from the source domain, i.e.,
Y s = {y(i)

s }M
i=1, and transfers the cross-data set knowledge

from the source data set Xs to the target data set X t without
using any label of the target data set. Therefore, X t acts as a
testing set, whose label information is not used for training,
i.e., Y t is not available during the training process. As a
result, the proposed method can realize classification on the
target domain using only the cross-data set knowledge.

As shown in Fig. 1, the proposed method consists of two
modules: a generator G and a discriminator D. G is based
on improved variational autoencoders that learn the spectral–
spatial features with the minimized classification disagree-
ment. D is built by multiple classifiers, which classifies the
spectral–spatial features with minimized classification error
and maximized classification disagreement. The two modules
work in an adversarial manner and try to drive the target
samples under the source support by fine-tuning the feature
embedding parameters and adjusting the classification para-
meters in turn. More detailed information on the generator
and the discriminator will be explained in the following
parts.

B. Generator: VAE-Based Feature Learning

In this section, we design a generator G based on variational
autoencoders (VAE) to learn the spectral–spatial features and
to drive the target domain under the support of the source
domain in the feature space.

Intuitively, if we can learn the distribution of the training
set and then sample from the learned distribution randomly
to reconstruct a training set, we can represent the input
samples more generally. VAE is designed based on this theory,
learns the distribution of the input data set, and resamples
from the learned distribution to build a more generalized
training set. With VAE, we can extract more effective features
for hyperspectral image classification. However, learning the
distribution of the overall input data is difficult theoretically,
and the resampling may cause mismatching between the input
sample and the corresponding latent variable. Therefore, VAE
tries to assume the conditional probability distribution of a
latent variable that is specific to each input sample, which can

be realized by minimizing the variational lower bound on the
marginal likelihood function.

Mathematically, given a sample x, VAE tries to find the
conditional distribution of a latent variable r for the encoder,
i.e., p(r|x), and utilize another distribution q(r|x) to approxi-
mate p(r|x). In practice, we assume that q(r|x) is a multivari-
ate standard Gaussian distribution N(μ, σ ). VAE utilizes an
encoder to learn μ and σ of the Gaussian distribution and then
resamples from N(μ, σ ) to capture the latent variable r by
a reparameterization strategy [40]. Finally, a decoder is used
to reconstruct x from the latent variable, and the conditional
distribution can be expressed as p(x|r). Moreover, in order to
ensure that q(r|x) is similar to p(r), which can be assumed as
a standard normal distribution, the KL-divergence is utilized
to minimize the difference between the two distributions. The
objective function LR of VAE is defined with probability
function, which is

LR = Eq(r|x)[logp(x|r)] − βD(q(r|x)||p(r)) (1)

where E is the arithmetic mean function and D is the
KL-Divergence function. The first term is related to the
reconstruction error, the second term is the KL-Divergence,
and β is the importance weight. When the loss descends to
an acceptable threshold or changes within a very small range,
the hidden variable r(i) is utilized as the feature of the input
sample x(i) and inputs into the following classification unit.

For hyperspectral image, we think that the spatial infor-
mation is as much important as the spectral information,
especially for the ones with high spatial resolution. In order
to learn both the spectral information and spatial information,
we equip VAE with one more convolutional layer at the
beginning of the VAE network for spatial information learning
and utilize the original VAE structures for spectral information
learning. Mathematically, for each sample, i.e., data cube, we
perform spatial filter with a 2-D Gaussian kernel and then input
the spatial features into the following VAE structure to further
learn the spectral features. We suppose that the embedding
function over the whole feature learning modular is g, and
then, r (i) = g(x(i)), which is the input feature of the next
module.

C. Discriminator: Multiple-Classifier-Based Discriminator

More than enforcing global alignment between the source
domain and the target domain, the proposed method tries
to perform local alignment strategy, which drives each class
in the target data set under the support of a corresponding
class in the source data set, hereby keeps the performance
of the classifiers trained on the source domain. The proposed
method builds a discriminator based on multiple classifiers,
minimizes the classification error to adjust the classifiers fit
the source samples closely, and minimizes the classification
disagreement to drive the target samples under the good
support of the source domain. Before start, we should give the
definition of classification disagreement of multiple classifiers,
i.e., which can distinguish the target samples that are not
well classified by the classifier trained on the source domain.
We train multiple classifiers on the source domain and utilize
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Fig. 2. Training procedure of the adversarial domain adaptation. Different colors mean different domains, and different shapes indicate different classes.
Step A initializes the whole network by minimizing (4), Step B tries to push the classifier boundaries surrounding the source features tightly by minimizing
(5), and Step C drives the target features under the support of the source domain by minimizing (6).

the disagreement of multiple classifiers to find out the target
samples with poor support.

Suppose a classifier trained on the source data set, which
takes the features of the source data set as input and learns to
minimize the classification error on the source domain. With
some classifiers, such as Softmax, we can get the classification
probability of the sample belongs to each class from both
classifiers, and the class with the highest probability should
be the label of the input sample. Suppose that the embedding
function of the classification is d , and then, the classification
output is z(i)

s = d(r(i)
s ). The classification loss function is

defined as

LC(Xs) = − 1

M

M∑
i=1

K∑
k=1

1
[
y(i)

s = k
]

log
(
z(i)

s (k)
)

(2)

where K is the number of classes, M indicates the number of
source domain samples, ys represents the true labels of sample
xs , z(i)

s (k) denotes the k th element of z(i)
s , and 1[y(i)

s = k] is the
indicator function, which returns to 1 if the equation is true
and 0 otherwise. It indicates the general classification error.
All parameters can be learned by minimizing the classification
loss function.

To distinguish the target samples without good source
support, we first train two classifiers i.e., C1 and C2, on the
source domain by minimizing the classification loss function.
Suppose that the embedding functions of C1 and C2 are d1 and
d2, respectively. We then take the target features r( j)

t as input
and output the classification probability d1(r(i)

t ) and d2(r (i)
t ).

We control the inconsistency of classification in the target
domain using the output difference of the two classifiers. The
objective function of classification disagreement is defined as
follows:

LD(X t) = 1

N

N∑
j=1

∣∣∣d1

(
r( j)

t

)
− d2

(
r ( j)

t

)∣∣∣ (3)

where N is the number of samples in the target data set.
From the loss function (refer to [41]), we can see that

a larger disagreement loss guarantees the target samples are
classified with low confidence, which indicates that they are
far from the support of the source domain, i.e., close to the
boundaries of the classifiers. By minimizing the classification
disagreement, the target features can be classified with high
confidence by the classifier trained on the source domain,
which moves the target features under the support of the source
domain.

D. Adversarial Domain Adaptation

The detailed framework of adversarial domain adaptation is
shown in Fig. 2 and described in Algorithm 1. There are three
major operations to perform the proposed adversarial domain
adaptation method: first, learning knowledge on the source
domain, which trains the generator and the discriminator only
on the source data set to get the best performance on the source
domain; then, adjusting the discriminator on both data set,
which adjusts the classifiers closely fit the source data set while
fixing the features; and finally, fine-tuning the generator on
the target data set, which moves the target features under the
support of the source features while fixing all classifiers of the
discriminator. The last two steps work in an adversarial way
to promote each other and align the two domains while keep-
ing the effectiveness of the classifiers trained on the source
data set.

Algorithm 1 Training Procedure
Require: The labeled source sample set {Xs, Y s}, and the

unlabeled target sample set X t .
1: Training the generator G and the discriminator D with C1

and C2 on X s using Eq. (4).
2: repeat
3: Fixing G, adjusting the parameters of D on both Xs and

X t using Eq. (5).
4: Fixing D, fine-tuning the parameters of G on X t using

Eq. (6).
5: until convergence

Ensure: Optimal parameters of G and D

1) Step A. Learning Knowledge on the Source Domain:
This step trains the whole network on the source data set,
i.e., initializes both the generator G and the discriminator D
on the source data set. G is a feature extractor, which takes
each sample xs from the source data set as input and learns
the spectral–spatial features rs , and D is consisted of two
classifiers C1 and C2, which classifies the learned features.
All parameters are learned by minimizing the reconstruction
error and the classification error in the source domain. The
objective function is defined as follows:

min
G,D

L R(Xs) + LC1(X s) + LC2(X s) (4)

where the subscripts under min means that we adjust all
parameters in both G and D to achieve the training of the
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Fig. 3. All hyperspectral scenes used in this article, including the pseudocolor images and the corresponding ground truths with color indexes. (a) Botswana
scene. (b) Pavia Scenes. (c) Salinas scene.

whole framework. This step makes the classifiers roughly fit
the features of the source data set.

2) Step B. Adjusting the Discriminator on Both Domains:
This step and the following Step C work in an adversarial
manner to align the source domain and the target domain.
While keeping the parameters of G fixed, this step adjusts the
parameters of D to minimize the classification error on the
source data set and maximize the classification disagreement
on the target data set. The objective function is defined as
follows:

min
D

LC1 (Xs) + LC2 (Xs) − αLD(X t) (5)

where α is the importance weight, and the subscript under min
means that it adjusts only the parameters in D, i.e., changes
the parameters of the feature extractor. This step is executed
in both domains. On the source domain, it drives the two
classifiers of the discriminator closely fit to the source features,
i.e., moves the classifier boundaries close to the source class.
On the target domain, it adjusts the discriminator to maximize
the classification disagreement of the target features and,
therefore, resists the following step to move the target domain
under the support of the source domain.

3) Step C. Fine-Tuning the Generator on the Target
Domain: This step works in an adversarial manner with Step
B to move the target features under the support of the source
features. While keeping the parameters of D fixed, this step
fine-tunes the parameters of G to minimize the classification
disagreement. The objective function is given as follows:

min
G

LD(X t) (6)

where the subscript under min means that it fine-tunes only
the parameters in the G, i.e., changes the parameters of the two
classifiers. This step is only performed on the target domain,
which fine-tunes the generator to resist the previous step. In the
end, it makes the generator producing target features with a
small intraclass difference and close to the source features,
hence moving the target domain under the support of the
source domain.

During training, we first execute Step A to initialize both the
generator and the discriminator on the source domain for once

and then carry out Step B on both domains and Step C on the
target domain to further adjust the network in an adversarial
manner for multiple times. Especially, sometimes, Step C is
performed more than one time to minimize the classification
disagreement. Adaptive moment estimation (usually know as
Adam) [42] is used as optimization method to achieve the
minimization of the loss functions.

IV. EXPERIMENTS AND ANALYSIS

In order to evaluate the performance of the proposed adver-
sarial domain adaptation method (ADA-Net), we compare
the classification results of ADA-Net with five other related
methods along with corresponding discussion. We also give
a detailed analysis of all parameters related to the proposed
ADA-Net. All the experiments are implemented on a desk
computer with Intel Core i7 4.0-GHz CPU, GeForce GTX
1080Ti GPU, and 32-GB memory. Moreover, PyTorch with
Python 3.6 is used to implement the deep network and improve
programming efficiency.1

A. Experimental Setup and Data Set

Three scenes are used for experiments, i.e., Botswana scene,
Salinas scene, and the Pavia scene with two data sets: the
University of Pavia data set, and the Pavia Center data set.
All four data sets and the related experimental setup are shown
in Fig. 3 and Table I.

1) The data set of the Botswana scene used in this article
was collected by a Hyperion imager on the NASA
EO-1 satellite over the Okavango Delta, Botswana,
2001. After removing bands of water absorption and
low SNR, 145 bands left. Moreover, for better display,
we also cut out a small region without any labeled
samples from the top left 1111 × 256 pixels. The
spatial and spectral resolutions are 30 m and 10 nm,
respectively; 3248 samples from 14 classes of land-cover
are labeled. The pseudocolor image and the available
ground-truth map with corresponding color index are

1The PyTorch toolbox is available at https://pytorch.org/
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TABLE I

DETAILED INFORMATION OF ALL DATA SETS, INCLUDING SENSORS, WIDTH × HEIGHT × BAND NUMBER, SPATIAL AND SPECTRAL RESOLUTIONS,
CLASS NUMBER OF THE INTERESTED TASK (Nc ), THE SETUP OF THE SOURCE, AND THE TARGET DOMAIN (Hs , H t )

shown in Fig. 3(a). During experiments, we cut the origi-
nal image into two subsets: the left half with 1150 known
samples serves as the source data set, and the right half
with 1649 known samples serves as the target data set.
The common 12 land-cover types are used as the task
of interest.

2) The data sets of the Pavia scene used in this article were
collected by the Reflective Optics System Imaging Spec-
trometer over Pavia city, Northern Italy, 2002. Two data
sets are collected over the Pavia scene, the University
of Pavia and Pavia center, whose spatial and spectral
resolutions are 1.3 m and 4 nm, respectively. After
removing black regions, the spatial size are 1096 × 715
and 610 × 340, respectively. For experiments, 102 spec-
tral bands are selected for both data sets. There are nine
cover types in the reference data set. The pseudocolor
image and the ground-truth map are shown in Fig. 3(b).
During experiment, we utilize the University of Pavia
with 39 332 known samples as the source data set and
use another one with 39 355 known samples as the target
data set. The common seven land-cover types are used
as the task of interest.

3) Data set of the Salinas scene was captured by the
Airborne Visible/Infrared Imaging Spectrometer over
Salinas Valley, CA, USA, in 1998. This data set con-
tains 512 × 217 pixels with 3.7-m spatial resolution
and 224 spectral bands with 10-nm spectral resolution.
Before experiment, 20 bands are abandoned due to water
absorption. Except unknown samples, 16 classes are
labeled in the available ground truth. The pseudocolor
image and the ground-truth map are shown in Fig. 3(c).
Since there is no other data set with the same land-
cover types as Salinas scene, we cut the original image
into four subsets, select two of them with 19 490 known
samples as the source data set, and utilize the left with
34 639 known samples as the target data set.

B. Parameters Analysis

In order to give a comprehensive study of the proposed
ADA-Net, we analyze all key parameters, including the net-
work parameters and the training parameters. The former ones
are related to the network structure, such as layer number, unit
number, and kernel size. The latter ones affect the training
process, such as the impact of training size and the number
of cycles in Step C.

1) Network Parameters: We analyze all network parame-
ters, including the number of layers, the number of units in
each fully-connected layer, and the size of kernels in the

TABLE II

NETWORK PARAMETERS ANALYSIS [EVALUATED BY OA(%), AA(%),
AND κ(×100)] OF THE PROPOSED ADA-NET USING ALL TARGET

DATA SETS

only convolutional layer. All the abovementioned network
parameters determine the configuration of the network. Par-
ticularly, the number of kernels is fixed to 1, i.e., we use
the same kernel for all bands to extract spatial features.
Three data sets are utilized to evaluate the performance
under different network configurations; the analysis results
evaluated by OA(%), AA(%), and κ(×100) are summarized
in Table II.

During experiments, we keep other parameters fixed to
verify the influence of a certain network parameter. We use the
Botswana scene to validate the effect of unit number in Lines
1–3 in Table II. From the table, we can see that overmuch
units will bring redundant information and increase computing
costs, but insufficient units will be lost data information. The
best unit number setup is shown in line 2. Moreover, we use
the Pavia Center data set to test the influence of the number of
layers in Lines 4–6. We can conclude that lacking layers may
lead to incomplete information, while overmuch layers may
cause too many parameters to learn. The best layer setup
is shown in line 5. Finally, for the kernel size of the only
convolutional layer, the data collected by different sensors
show different kernel sizes. We think that the size of the
convolutional kernel is closely related to the spatial resolution
of hyperspectral images. Due to the difference in spatial
resolution, the Salinas scene with spatial resolution 3.7 m
has larger kernel size than the Botswana data set with spatial
resolution 30 m.

2) Training Parameters: The training parameters are
closely related to the training and optimization process,
including the impact of training size and the number of
cycles in Step C. All target data sets are used in the training
parameters analysis, and the curves of the relation between
these factors and the classification performance [represented
by OA(%)] are shown in Fig. 4.
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Fig. 4. Impact analysis of several parameters for all three target data sets of the proposed ADA-Net. (a) Training size of the source data set. (b) Training
size of the target data set. (c) Number of cycles in Step C .

Fig. 5. Impact analysis of α and β for the Botswana data set of the proposed ADA-Net. (a) Parameter α. (b) Parameter β.

We analyze the sizes of training sets using all three target
data sets, including the labeled training set of the source
domain and the unlabeled training set of the target domain.
The training set of the source domain changes from 10% to
90% of all labeled samples. As can be seen in Fig. 4(a), ADA-
Net produces better as the number of source domain samples
increases, and the performance tends to be stable when the
training size is big enough, which indicates that the more
the training samples from the source domain, the more the
accurate cross-data set knowledge are learned. In Fig. 4(b),
we present the relation between the number of unlabeled
samples and the classification performance. Similarly, we can
see that the more the training samples in the target domain,
the higher the classification accuracy will be produced.

We also analyze the effect of the number of cycles in
Step C and present the result in Fig. 4(c). Due to the nature
of the data set itself, the numbers of cycles giving the best
performance are slightly different. When the number of cycles
is set to 0, the classification performance is close to the domain
adaptation method using only global alignment. At the same
time, we can find that the best cycle number is close to 1, i.e.,
1 for both Botswana data set and Salinas data set, and 2 for
Pavia Center. We think the reason is that when the number of
cycles is too big, the output of the two classifiers will be too
small so that the whole target data set will be driven into the
same category.

We also take the Botswana data set as an example to analyze
α and β and present the result in Fig. 5. α reflects the ability
of local alignment in Step B. If it is difficult to achieve local
alignment, and α should be larger and conversely smaller.
In the method that we proposed, the setting parameters of
α are 0.01 for the Botswana scene. β reflects that the decoder
can be robust to the noise. It depends on the reality of the
different data sets. The setting parameters of β are 1 for the
Botswana scene.

C. Performance Analysis

We evaluate the performance of the proposed ADA-Net
using comparison experiments. First, since the proposed
method is a cross-data set classification method without any
labeled sample on the target data set, we compare it with an
unsupervised classification method based on a deep network
(Un-Net). Un-Net serves as a baseline, and it utilizes stacked
autoencoder to learn features and a clustering method to
classify [43]. Second, to test the effectiveness of domain adap-
tation, we trained a network, namely, D-Net on the source data
set, and directly transfer to the target data set. D-Net shares
the same feature learning and classification structure as the
proposed ADA-Net. Moreover, we compare the discriminative
transfer joint matching (DTJM) method [38], and the method
is based on the kernel principal component analysis method to
match the distribution of the source domain and target domain,
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TABLE III

CLASSIFICATION PERFORMANCE EVALUATED BY OA(%), AA(%), AND κ(×100) OF DIFFERENT METHODS FOR ALL TARGET DATA SETS

Fig. 6. Classification maps of the Botswana scene produced by different methods. (a) Ground truth. (b) Un-Net. (c) Sup-Net. (d) DTJM. (e) FT-Net. (f) D-Net.
(g) ADA-Net.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Classification maps of the Pavia Center scene produced by different methods. (a) Ground truth. (b) Un-Net. (c) Sup-Net. (d) DTJM. (e) FT-Net.
(f) D-Net. (g) ADA-Net.

which is a global alignment adaptive method, and serves as the
state-of-the-art method. Furthermore, we try to challenge some
supervised methods under a few-shot setting, a supervised
classification method trained on the target data set, Sup-Net
[44], and a supervised domain adaptation method based on
fine-tuning, FT-Net [45]. FT-Net fine-tunes the trained network
on the target domain.

For both the proposed ADA-Net and all the comparing
methods, we use all labeled samples of the source domain and

all unlabeled samples in the target domain for network training
or clustering. We set α and β according to the parameter
analysis curves, for the Botswana data set: 0.01 and 1, for
Pavia scene: 0.00001 and 0.01, and for Salinas data set:
0.00001 and 0.001. All the corresponding OA, AA, and κ are
recorded in Table III, and classification maps of all methods
are shown in Figs. 6–8. From the figures, we conclude that
our ADA-Net can produce the best classification performance
for target domain data under unsupervised conditions. For the
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Classification maps of the Salinas scene produced by different methods. (a) Ground truth. (b) Un-Net. (c) Sup-Net. (d) DTJM. (e) FT-Net. (f) D-Net.
(g) ADA-Net.

TABLE IV

TRAINING TIME OF DIFFERENT METHODS FOR THE BOTSWANA DATA SET

Botswana data set, FT-Net can produce the results closest to
the method that we proposed. After our analysis, we found
that the differences between the data set class are very small
and, therefore, relatively easy for classification tasks, and
a small number of training samples could achieve a good
classification performance. The result of FT-Net is better
than that of D-Net because there is one sample of the target
domain to fine-tune the network.

Furthermore, we give an estimation of the execution time.
For the Botswana data set, the time cost of all methods is
shown in Table IV. Since the proposed network consists of only
one convolutional layer and multiple fully connected layers,
it contains far fewer parameters than many convolutional
networks and, thus, can be easily trained with a relatively small
training set. However, since the proposed method considers the
adversarial network, the training time is a little longer than
the methods that are only trained on the target domain. From
the table, we can see that the training time of ADA-Net is
about 58 s. About testing time, except UN-Net, all methods
have almost the same testing time, about 0.04 s. UN-Net,
which clusters all testing samples to classify, has the longest
testing time, about 100 s. Therefore, the execution time of the
proposed ADA-Net is acceptable for practical applications.

V. CONCLUSION

In order to exploit the cross-data set knowledge, this article
proposes a domain adaptation method for hyperspectral image
classification. The proposed method is based on adversarial
learning, a VAE-based generator learns features to minimize
the classification error on the source data set and maximize
the classification disagreement on the target data set,
and a multiclassifier-based discriminator adjusts classifiers to

minimize the classification disagreement on the target data set.
As a result, the proposed method can minimize the discrepancy
of different domains while keeping the boundaries of different
classes. Experimental results verify the effectiveness of the
proposed ADA-Net on dealing with domain shift issue.

However, the proposed ADA-Net can only transfer between
different data sets with the same land-cover types. We will
study the proposed method more to deal with domain adapta-
tion with different tasks as our further work.
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