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Abstract— Few-shot classification aims at recognizing novel
categories from low data regimes based on prior knowledge.
However, the existing methods for few-shot scene classification
have limitations on using few annotated data and do not fully
consider the intra-class samples with classification targets in dif-
ferent sizes, which lead to poor feature representation. To address
these problems, this study introduces an end-to-end framework
called self-supervised contrastive learning-based metric learning
network (SCL-MLNet) for few-shot remote sensing (RS) scene
classification. On one hand, we weave self-supervised contrastive
learning into few-shot classification algorithms through multi-
task learning, enabling feature extractors to learn representative
image features from few annotated samples. Moreover, we devise
a new loss function to train the proposed model end-to-end and
speed up the convergence of the model. On the other hand, con-
sidering the differences between intra-class samples, we introduce
a novel attention module embedded in the feature extractor to
fuse multi-scale spatial features from the classification targets in
different sizes. In our experiments, SCL-MLNet is evaluated on
three public benchmark datasets. The results demonstrate that
SCL-MLNet achieves state-of-the-art performance for few-shot
remote sensing scene classification.

Index Terms— Feature representation, few-shot learning,
remote sensing (RS) scene classification, self-supervised con-
trastive learning (SCL).

I. INTRODUCTION

REMOTE sensing scene classification has aroused consid-
erable interest among researchers due to its wide and

valuable applications, such as disaster monitoring, geolog-
ical prospecting, and road planning [1]–[4]. Deep learning
is widely used for remote sensing (RS) scene classification
[5]–[7], which extracts feature representation with con-
volutional neural networks (CNNs) [1]. Earlier CNNs
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mainly include AlexNet [8], VGGNet [9], GoogleNet [10],
ResNet [11], and improved networks [12], all of which have
achieved tremendous success in remote sensing scene classi-
fication. However, the success of these methods relies on a
large amount of manually annotated data for training. When
facing with limited annotated samples, CNNs tend to overfit
during training, resulting in unsatisfactory generalization per-
formance [13]. Moreover, as the number of higher resolution
scene images increases, it is time-consuming and expensive to
annotate massive images in real situation, especially in some
specific fields, such as remote sensing scene images, medical
images, and ancient images due to the lack of professional
background knowledge [14], [15]. Furthermore, humans can
learn new visual concepts from only a few samples and gen-
eralize with no difficulty to unseen data [14], [15], but a deep
learning model trained with limited samples severely lacks
this ability [2], [15], [16]. Few-shot learning endows artificial
intelligence systems with a similar capacity to quickly learn
from prior knowledge, even though there are few annotated
data [13], [16], [17]. Most of the extant few-shot learning
methods are based on meta-learning [18], the goal of which is
to develop a classification model that is capable of efficiently
classifying a series of classes with few available examples
of each class (e.g., only one or five samples per class) [16],
[14], [19]. It divides an entire few-shot classification task into
several small tasks by subsampling classes and data.

In the early stage of few-shot learning, Bengio et al. [20],
Fei-Fei et al. [17], and Fei-Fei et al. [21] conducted some
important work on classification for only a few images.
Gradually, few-shot learning methods based on meta-learning
emerged [22]–[28] and many of them are used in remote
sensing scene classification [2], [29]. As shown in Fig. 1,
the images of the two lines have intra-class samples with
classification targets in different sizes because of the different
distances and angles between scenes and remote sensing satel-
lites. It may result in the entire target object or only portion of
it is covered in the same size of a receptive field, preventing us
from obtaining a complete representation. Nevertheless, most
existing studies [2], [30] use a unified convolution kernel to
extract image features, which can result in poor quality feature
representation due to different coverage areas.

In addition, the existing methods [2], [29], [30] for few-
shot scene classification have limitations in terms of using few
annotated data, which results in poor representations. Self-
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Fig. 1. Remote sensing scene images from the NWPU-RESISC45 dataset.
The top line of images has large classification targets and the bottom line has
small classification targets.

supervised contrastive learning (SCL) provides a promising
solution for making the most of a few annotated data [31].
As a subset of unsupervised learning methods, SCL is used
to learn image feature representations by leveraging the struc-
tural information generated from the data as the supervisory
signal [32], which greatly alleviates the problem of high
annotation cost [33]–[35]. Besides, unannotated samples can
be used in SCL to extend training data so that the feature
extracting ability of the framework will be enhanced without
additional requirements.

Based on the above background, we propose an end-to-
end multi-task framework for few-shot scene classification
through SCL, called SCL-based metric learning network
(SCL-MLNet). First, a feature extractor is trained using SCL
as an auxiliary task in the few-shot classification pipeline
to get detailed image features even though there are few
annotated samples. The core idea of SCL is to train networks
to maximum agreement of different views of the same images
while minimizing the agreement of views from different
images [32], [34]. In addition, we devise a new loss function
to train our framework end-to-end and speed up convergence,
which can balance SCL loss and few-shot classification loss.
Second, we introduce a novel attention module embedded
in the feature extractor, which can fuse multi-scale spatial
features from classification targets in different sizes. Our
attention module consists of a channel attention module and
a spatial attention module. The widely used squeeze-and-
excitation convolution (SE-Conv) [36] is used as our channel
attention module. Remote sensing scene images are captured
from different distances and angles, resulting in objects of
the same category having varying sizes and making deciding
convolution kernel size in advance difficult. To fuse multi-
scale features from large classification targets and small clas-
sification targets, the spatial attention module uses convolution
kernels of different sizes.

In summary, our main contributions are as follows.

1) We propose an end-to-end multi-task framework named
SCL-MLNet for few-shot remote sensing scene classifi-
cation through SCL module. Different from the exist-
ing few-shot methods, SCL-MLNet can use both the
information in the data and the labels as the supervisory
signal.

2) Based on SCL-MLNet, we devise a novel loss function
that can balance SCL loss and few-shot classification
loss by endowing them appropriate weight coefficients.

3) Considering the case that the intra-class classification
targets are in different sizes, we introduce a novel
attention module to fuse multi-scale features from clas-
sification targets in different sizes to enrich visual rep-
resentations, which is plug-and-play and extensible.

4) We achieve state-of-the-art performance compared with
representative few-shot learning methods on three
widely used remote sensing scene classification datasets.

The remainder of this article is organized as follows.
In Section II, some crucial work on few-shot learning and
remote sensing scene classification is introduced. Section III
mainly elaborates on the overall architecture of SCL-MLNet
and our embedding module. Section IV displays the experi-
mental results on three publicly available datasets and analyzes
the results. Finally, conclusion and summaries are presented
in Section V.

II. RELATED WORKS

In this section, we mainly introduce some works related
to remote sensing scene classification, few-shot learning, and
meta-learning.

A. Remote sensing Scene Classification

Remote sensing scene classification has aroused consider-
able interest recently, most of which are based on deep learn-
ing [37]. For example, Xie et al. [38] introduced a scale-free
CNN (SF-CNN) to prevent information discard and poor
classification performance caused by a resizing process when
fine-tuning pretrained CNNs. Lu et al. [39] proposed an end-
to-end CNN module (FACNN) to leverage the semantically
annotated information rather than using only unsupervised
feature encoding methods to aggregate intermediate features.
Xu et al. [40] presented a two-stream feature aggregation
deep neural network combining discriminative features and
general features to learn detailed features. Sun et al. [1]
proposed an end-to-end gated bidirectional network to aggre-
gate hierarchical features and eliminate interference infor-
mation. Xu et al. [41] investigated an adversarial training
strategy to increase the resistibility of deep models and prevent
adversarial examples from being misclassified. All the work
mentioned above proposed a novel deep learning model to
deal with different problems in remote sensing scene clas-
sification. However, deep neural networks need to be trained
on large volumes of annotated data; otherwise, they will suffer
from poor generalization performance. To tackle this problem,
we adopt few-shot learning methods that can train deep models
with a few annotated data and easily adapt to novel classes
by dividing an entire classification task into several subtasks.
In addition, we also weave self-supervised contrastive learning
into the model to enrich feature representation.

B. Few-Shot Learning and Meta-Learning

Few-shot learning focuses on optimization methods that
can efficiently learn feature representation from low data
regimes [33]. There are many few-shot learning methods,
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Fig. 2. Illustration of the proposed SCL-MLNet framework. SCL-MLNet is trained in a meta-learning manner. In each episode, N classes are randomly
selected from the training/test set, and then we select K images per class as the support set and Q images per class as the query set. This method learns
the embedding of the labeled examples (the support set), which can be used to predict classes for the unlabeled points (the query set) by distance in the
embedding space.

such as metric-learning-based approaches by learning a dis-
tance metric between a query (i.e., support images, query
images), including matching networks (MatchingNet) [22],
prototypical networks (ProtoNet) [23], and relation networks
(RelationNet) [24]. MatchingNet aims at achieving rapid
learning using recent advances in attention and memory.
ProtoNet learns a prototype representation for each class
and classifies an embedded query sample by finding the
nearest class prototype. Different from the prior metric-
based few-shot approaches, most of these rely on a manu-
ally defined similarity metric for classification. RelationNet
is able to classify images through computing the relation
scores produced by a neural network. In addition, there are
also some gradient-descent-based approaches, such as model-
agnostic meta-learning (MAML) [26], Meta long short-term
memory (LSTM) [27], and Meta-stochastic gradient descent
(SGD) [28], which can adapt a model to a new few-shot
classification task rapidly [33]. The key idea of MAML is
to learn a set of initial parameters such that when meeting
a new task, the model has maximal performance after the
parameters have been updated through one or more gradient
steps computed with a small amount of data from that new
task. Meta LSTM trains an LSTM-based meta-learner to learn
an update rule for training a neural network, which can
capture both short-term knowledge within a task and long-term
knowledge common among all the tasks. Meta-SGD is an
SGD-like meta-learner, which is easy to train and can adapt
any differentiable learner in just one step.

The specific advantages of few-shot learning also attract
many researchers to apply it to remote sensing scene classifica-
tion tasks. Li et al. [2] proposed a method called discriminative
learning of adaptive match network (DLA-MatchNet) with
a new attention model, which can automatically discover
discriminative regions to extract more discriminative features.

When using metric learning for classification, DLA-MatchNet
used a nonlinear network to measure the similarity between
query images and support sets. Li et al. [30] presented a
framework RS-MetaNet and a novel loss function named
balance loss. RS-MetaNet aimed at solving problems that the
existing methods were performed in a sample-level manner
and led to overfit easily to individual samples. Zhai et al. [29]
devised a lifelong few-shot learning model to make use
of limited annotated data and deal with the disparities of
the datasets from different research institutions. Nevertheless,
the above-mentioned approaches ignore the point that although
samples come from the same category, different samples have
classification targets in different sizes, which results in poor
feature representations. Thus, we need to improve the existing
few-shot classification framework by devising a novel attention
module to get better feature representations.

III. METHODOLOGY

A. Overview

To learn more detailed feature representations from a few
annotated data and fuse multi-scale features from classifica-
tion targets in different sizes, we devise a framework called
SCL-MLNet. As shown in Fig. 2, we train our model in a
meta-training manner by learning a metric space on several
tasks sampled from a task set. Then, a feature extractor with
our novel attention module is used to generate the feature
vectors, which are used as inputs to the few-shot classifica-
tion module and contrastive learning module. We adopt the
prototypical network as the few-shot classification method
and apply our contrastive learning module in the few-shot
classification pipeline. Through the integration of these two
tasks, we combine the contrastive learning loss with the
classification loss to enhance the feature representation ability
of the feature extractor.
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B. Problems Definition and Notations

In this work, we use the splits introduced by [27] to divide
each dataset Ð with a total of N∗ classes into a training set
Dtn, validation set Dval, and test set Dts. The above splits
have their own label space and disjoin with each other, that
is, L tn ∩ Lval = ∅, L tn ∩ L ts = ∅, Lval ∩ L ts = ∅, and |L total| =
|L tn ∪ Lval ∪ L ts|. In addition, three splits play different roles
in the few-shot classification task, i.e., Dtn aims at training
a model, Dval is used to adjust parameters and evaluate the
performance of the model preliminarily, and Dts can assess
the model’s generalization ability to unseen data.

To use the episode-based manner of meta-learning for
training and testing, a few-shot learning task must be divided
into several subtasks. Each subtask uses the data from the
support set to train a model and use the data in the query set
for testing. The support set Ds contains C different categories,
each of which has K samples, and this approach is called
C-way K-shot, namely, Ds = {(xi , yi)} and |Ds | = C × K .
Similarly, there are Q samples of each class in the query set,
which meets Dq = {(x j, y j )} and |Dq | = C × Q. Moreover,
no matter how many categories are in the test set, each meta-
test task is set as C-way classification, and the number of
categories we applied in our experiments will depend on the
realistic needs. In fact, we adopt five-way assumption in our
experiments, which is widely adopted by many methods [2],
[22]–[30]. When applying our method in practice, we can
modify the number of categories according to realistic task.

C. Feature Extractor With Attention Module

The overall feature extractor contains a backbone with three
convolutional blocks and two attention modules, which are
used to learn detailed and generic feature representations,
as shown in Fig. 3(a). We choose the shallow network as
the backbone rather than popular networks, such as VGGNet
and Resnet, because the performance of few-shot classification
decreases as the number of network layers increases in our
experiments, and this phenomenon will be further discussed
in Section IV.

As shown in Fig. 3(b), each convolutional block is com-
posed of two similar convolutional layers, and each layer
contains a 3 × 3 convolution, a batch normalization, a rec-
tified linear unit (ReLU) activation nonlinearity layer, and a
2 × 2 max-pooling layer. Note that different convolution layers
have different numbers of channels and batch normalization
sizes. Formally, let x∗

i represents a random image in Dtn and
F denotes the image feature representation learned by our
feature extractor, and then the embedding mapping of x∗

i can
be written as follows:

F = fϕ
(
x∗

i ; ϕ
)

(1)

where ϕ are the parameters of the feature extractor.
In addition, we also introduce a novel attention module

called channel attention and spatial attention module (CSAM)
to fuse multi-scale feature representations from classification
targets in different sizes. As the name suggests, our CSAM
consists of a channel attention and a spatial attention module.
As shown in Fig. 3(c), the channel attention and spatial

Fig. 3. Overall architecture of feature extractor. (a) Overall architecture.
(b) Convolutional block with two layers. (c) Attention module consisting of
CSAM.

attention modules are organized in sequence, that is, we first
use the channel attention module, and then use its output as
the input for the spatial attention module.

In the attention module, CCC represents the feature map, where
the channel attention module focuses on, and S represents
the feature map, where the spatial attention module focuses
on. As described in Fig. 4(a), first, we can obtain the initial
feature map conv(x∗

i ) of x∗
i by learning with the first convo-

lution block. Then, the feature vector Z will be obtained by
performing the global average pooling and flattening operation
on the above feature map. Afterward, the feature vector of Z is
successively fed into two fully connected layer and a Sigmoid
activation function σ is used after the second fully connected
layer to control the weight of each channel ranging from
[0, 1]. Finally, we can obtain the feature map CCC by multi-
plying the channel weight matrix with the initial feature map
conv(x∗

i ). Therefore, the mapping process is organized by the
following equations:

Z = AvgPools
(
conv

(
x∗

i

))
(2)

CCC = conv
(
x∗

i

) · σ( f c2(ReLU( f c1(Z)))). (3)

In addition, spatial attention is used to enhance feature rep-
resentations based on the feature map obtained by the channel
attention module. As shown in Fig. 4(b), first, we conduct
an average operation on C along the channel axis to obtain
a spatial feature descriptor T ∈ R

1×H×W . To fuse feature
representations from classification targets in different sizes,
we use different convolution kernel combinations. We also
conduct experiments on which combination is the best choice
for our spatial attention module in Section IV. It is worth
noting that convolution kernel combination is not an unchange-
able setting, and it is used for chasing the best results on
datasets. We can obtain two feature maps of the same size
using the convolutional kernels. After that, we introduce a fully
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Fig. 4. Architecture of the channel attention module and spatial attention
module. The number of parameters is ∼5M and the number of FLOPs
is ∼1G.

connected layer into the spatial attention module to mix global
features and obtain two vectors B. Afterward, we restore the
vectors B to the original size H × W × 1, and multi-scale
feature fusion operation is performed on the above feature
maps. Finally, we use the Sigmoid activation function to get
the weights of each spatial position and multiply the weight
matrix with C. The feature map S is defined as

S = C · σ
((

f c
(
convi×i

fl (T)
))

vec2mtx

+
(

f c
(

conv j× j
fl (T)

))
vec2mtx

)
(4)

where convi×i
fl is a i ×i convolution operation on a vector, and

conv j× j
fl is a j × j convolution operation on a vector. In our

experiments, i and j are set to 5 and 7, respectively. The
reason will be discussed in Section IV. The option vec2mtx is
used to restore a vector to a matrix.

In the end, the feature extractor carries out global average
pooling on the output of Conv Block 3, and we obtain the
final representation of the input image.

D. Applying SCL to Few-Shot Learning

We propose a novel framework weaving SCL in the first
stage of few-shot learning to alleviate the dependence of
deep learning methods on large amounts of labeled data. SCL
is trained by reducing the distance between representations
of different augmented views of the same image (positive
pairs) and increasing the distance between representations of
augmented views from different images (negative pairs) [42].
During this stage, the embedding module could learn discrim-
inative features from samples. More concrete, for an input
sample xi , we can obtain two different positive views x+

i,1 and
x+

i,2 by performing different data augmentations on it, such
as random resize, random horizontal flipping, and random
gray scale. Other samples are used as the negative views
of xi , which are uniformly represented as x−

j . Next, we use
positive views and negative views as input to train the feature
extractor fϕ . Then, we can obtain the feature representations
R after a nonlinear transformation.

Furthermore, the metric learning model used in this study
is a prototypical network (ProtoNet). ProtoNet maps samples
from the support set and query set into embeddings, and the
average of embeddings in each class of the support set is
regarded as the prototype of each class. Through calculating
the similarity between each prototype and each query embed-
ding, the nearest class prototype is the correct category of the
query sample.

We train the feature extractor through a series of episodes
during its first stage. In each episode, C classes are ran-
domly selected from Nn classes, and N samples are ran-
domly selected from each class. Then the support set D∗ is
organized based on all the C × N samples, which meet
D∗ = (x∗, y∗) ⊂ Dtn. After that, we can obtain the feature
vectors of the samples in D∗ using the feature extractor.
We regard the average of the feature vectors from each class
as the prototype of the class

p j = 1

N

N∑
i=1

fϕ
(
x∗

i ; ϕ
)

(5)

where i denotes the i th sample, and p j represents the proto-
type of the j th class.

To classify a new sample xq from the query set, we first
obtain the feature vector fϕ(xq; ϕ) and calculate the Euclidean
distance between the feature vector of xq and the prototype of
each class. The category of the new sample will be the same
as its closest prototype. The score for each class j can be
calculated as

Sj = sim j
(

fϕ
(
xq; ϕ

)
, pi
)

∑C
k=1 simk

(
fϕ
(
xq; ϕ

)
, pi
) , where i ∈ y∗ (6)

where sim(·, ·) represents the similarity between feature vec-
tors, which can be calculated using the Euclidean distance or
cosine similarity.

E. Loss Function

Based on SCL-MLNet, we introduce a new loss function by
balancing the SCL loss and few-shot classification loss, which
can train our framework end-to-end. Formally, given a dataset
DS , the self-supervised loss is denoted as Ls(ϕ; DS), and ϕ
represents the parameters of the feature extractor. The few-shot
classification loss in the first stage is L f (ϕ; DS). Thus, the
total loss is as follows:

J (ϕ) = minϕ

(
n∑

i=1

λLi
f (ϕ; DS) + μLi

s(ϕ; DS)

)
(7)

where n is the number of episodes, and λ and μ are both
positive values to measure the importance of few-shot loss
and self-supervised loss, respectively. We will verify how
different values of λ and μ impact the classification results in
Section IV. Moreover, D+

S,1 and D+
S,2 represent two enhanced

views of the positive vector sets. D+
S and D−

S represent the
positive vector set and the negative vector set, respectively.
Then, the SCL loss is expressed as

Li
s(ϕ; DS) = − log

{
exp
[
Sum−1sim

(
D+

S,1, D+
S,2

)]
exp
[
Sum−1sim

(
D+

S , D−
S

)]
}

(8)
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TABLE I

SPLITS ON THREE DATASETS

where Sum−1 denotes the summation operation along the last
dimension. Few-shot classification uses cross-entropy loss as
its loss function, and we use Adam [43] optimizer to optimize
our proposed framework SCL-MLNet.

IV. EXPERIMENTS AND ANALYSIS

In this section, we mainly introduce the experiments and
analyze the results. First, three public datasets and parameters
setting are displayed. Afterward, we compare our few-shot
learning framework SCL-MLNet with other classical few-shot
learning methods and choose proper weighting coefficients for
the SCL loss and few-shot classification loss. We also explore
the influence of different attention modules used in the feature
extractor and display an attention visual heat map. Finally,
we conduct ablation experiments to show the performance of
our proposed framework.

We use PyTorch [44] development framework to implement
SCL-MLNet, which is deployed on two NVIDIA GeForce
RTX 3090 GPU, and the version of CUDA is 11.0.

A. Dataset Description

To verify the effectiveness of our framework, we con-
duct experiments on three commonly used publicly avail-
able remote sensing scene classification datasets, namely,
North-western Polytechnical University (NWPU)-RESISC45
(NWPU) [45] dataset, University of California Merced (UCM)
dataset [46], and aerial image data (AID) dataset [47]. These
three datasets are divided into the training set, verification set,
and test set as in [27]. The split results are shown in Table I.

The NWPU-RESISC45 dataset is a benchmark dataset for
remote sensing scene classification constructed by Northwest-
ern Polytechnical University, which contains 31 500 images
with a size of 256 × 256 pixels. All images are organized
in 45 scene classes, and each class has 700 images with RGB
color space. The entire dataset is divided into 25, 10, and 10
classes for training, validation, and testing, respectively.

The UC Merced dataset contains 21 categories of scenes,
each of which has 100 images with the size of 256 × 256.

There are 2100 pictures in total. Furthermore, the UCM dataset
is divided into ten training sets, five validation sets, and six
test sets in our experiments.

The AID dataset was jointly proposed by Huazhong Univer-
sity of Science and Technology and Wuhan University in 2017,
which contains 10 000 images of 30 scene classes, and each
class has approximately 220–420 images. The pixel size of
each image is 600 × 600 pixels. In the dataset, 16 classes
are randomly chosen as the training set, seven classes as the
validation set, and the remaining seven classes as the test set.

B. Hyperparameter Settings

All remote sensing scene images are resized to 128 × 128.
To classify them, we randomly generate 200 episodes for the
training process, 500 episodes for the validation process, and
2000 episodes for the testing process. In each episode, there
are five categories of images for both support set and query
set, each of which contains one or five samples, i.e., in the
case of five-way one-shot, one sample is selected randomly
for each class; in the case of five-way five-shot, each class
contains five samples. In addition, there are 15 samples for
each class in the query set. We use more samples (15 samples
here) as the query set since there is no limitation on the number
of testing samples in practice. Calculating losses multiple
times using more samples in query set can make our model
more robust and stable. Moreover, most of our comparison
methods adopted this setting [23]–[28]. For the sake of fairness
and convenience, we choose 15 samples per class as query
set.

Our feature extractor contains six convolution layers, all of
which use 3 × 3 convolution kernels. The number of the output
channel of each convolution layer is o1 = 64, o2 = 128, o3 =
256, o4 = 512, o5 = 512, and o6 = 256; the number of nodes
in the full connection layer of the channel attention module
is the number of channels divided by 16. Through the test
and trial procedure, we selected 5 × 5 and 7 × 7 convolution
kernels for the spatial attention module (the experiment results
are shown in Table II). In addition, we adopt 1 and 0.1 as the
weighting coefficients of the few-shot classification loss and
SCL loss, respectively.
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TABLE II

COMPARISON OF DIFFERENT CONVOLUTION KERNEL COMBINATIONS

TABLE III

COMPARISON OF DIFFERENT NUMBERS OF SHOTS

ON THE NWPU, UCM, AND AID DATASETS

In this article, we use Adam optimizer to optimize the
feature extractor, the initial learning rate of which is 0.001 and
the learning rate is updated every ten epochs. In addition,
the multiplication factor γ is set to 0.2 for updating the
learning rate.

C. Comparison With Other Few-Shot Classification Methods

For experimental comparison, we adopt several clas-
sical few-shot classification methods for remote sensing
scenes, including metric-learning based methods such as
MatchingNet [22], ProtoNet [23], and RelationNet [24].
MatchingNet and ProtoNet use predefined and fixed met-
rics, whereas RelationNet adopts a learnable non-linear com-
parator. In addition, gradient-descent-based methods such as
MAML [26], Meta LSTM [27], and Mate-SGD [28] aim
to train a model that is easy to fine-tune on the few-shot
problem during the test phase. The above approaches all use
four convolutional blocks as mentioned in original papers
as embedding module. Each block consists of a 64-filter
3 × 3 convolution, a batch normalization layer, a ReLU
nonlinearity, and a 2 × 2 max-pooling layer. We also conduct
experiments on approaches that are original designed for
remote sensing scene classification, including lifelong learning
for scene recognition (LLSR) [29], DLA-MatchNet [2], and
remote sensing-MetaNet [30]. DLA-MatchNet adopted five
convolutional blocks, and we set the output channels accord-
ing to [2]. Remote sensing-MetaNet used four convolutional
blocks to learn feature representations. The input images of
the above approaches are resized to 128 × 128 which are the
same as our approach.

The measure metric used to evaluate the performance of
our framework is defined as follows: in the test phase,
each episode performs a C-way K-shot task, and the overall
accuracy is computed by calculating the average accuracy
of 2000 episodes. The classification performance of the model
is measured by comparing the accuracy.

TABLE IV

FEW-SHOT CLASSIFICATION ACCURACY

COMPARISON ON THE NWPU DATASET

In most of our experiments, we take one and five shots
as examples like most state-of-the-arts do [2], [22]–[29],
since as the number of shots increase from one to five,
the improvement of accuracies is more obvious than from five
to ten. We show the comparison results of different numbers
of shots on NWPU, UCM, and AID datasets in Table III.
It can be observed from Table III that as the number of shots
increases from five to ten, the performances are improved a
lot. Especially for UCM dataset, its accuracy increases by
more than 6%. From one to five, the accuracies improved
dramatically for all datasets.

In real-world scenario, we can choose suitable number of
shots according to the realistic need.

Tables IV–VI display the experimental results of the above
nine few-shot learning methods and SCL-MLNet on the three
datasets; all methods are trained based on meta-learning.
Among them, LLSR adopts the experimental results in the
original paper. Table IV shows the classification results
for the NWPU dataset, and the results in the five-way
five-shot scenario show that SCL-MLNet achieves the best
accuracy of 80.86%, surpassing the second-best approach
DLA-MatchNet by 0.89%.

Table V presents the accuracy results for the UCM dataset;
according to the table, in the five-way one-shot scenario, the
classification accuracy of DLA-MatchNet is higher than any
other methods with a value of 52.76%, which is 1.39% higher
than SCL-MLNet. However, our framework is superior to
DLA-MatchNet by 3.52% in the case of five shots and the
second-best method is ProtoNet in this scenario. As shown in
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TABLE V

FEW-SHOT CLASSIFICATION ACCURACY
COMPARISON ON THE UCM DATASET

TABLE VI

FEW-SHOT CLASSIFICATION ACCURACY

COMPARISON ON THE AID DATASET

Table VI, for the AID dataset, given one sample of each class,
the best performance is achieved by SCL-MLNet, surpassing
the top 2 approach by 2.25%. In the five-shot scenario,
our framework is 2.86% higher than the second-best method
RelationNet. In addition, since no experiment on the AID
dataset was conducted using LLSR in [29], our study did not
include it.

In summary, of all six groups of experiments on the three
datasets, SCL-MLNet achieves the best performance than any
other few-shot classification methods, except the one-shot
scenario on the UCM and NWPU dataset. By analyzing the
experiment results, we can conclude that our approach is more
suitable for classification task with slightly more samples (e.g.,
five samples per class). Moreover, our framework has fast
convergence speed on UCM dataset, which can reach the
accuracy of 99.7% on the training data after approximately
ten epochs.

D. Effect of Embedding Network Architecture

To learn more detailed feature representations, we investi-
gate the performance of different networks as the backbone
of SCL-MLNet. The accuracy of each network is obtained by
averaging 20 rounds of experiments.

Eleven models are used in our comparison experiments,
which can be divided into four groups, i.e., the shal-
low network sets (four-conv-layer, six-conv-layer, and seven-
conv-layer), VGG-based network sets (VGG11, VGG16, and

Fig. 5. Performance comparison of different embedding network architectures
on the NWPU dataset.

Fig. 6. Performance comparison of different embedding network architectures
on the UCM dataset.

VGG19), Resnet-based network sets (Resnet18, Resnet50,
and Resnet152), and other networks (AlexNet, GoogleNet).
To explore how the classification accuracy of datasets changes
with the deepening of network depth, we conduct experiments
on the VGG-based network sets and ResNet-based network
sets. Most of the embedding models adopted by few-shot
classification methods are shallow networks; thus, experiments
on shallow network sets can not only investigate the effect of
network depth on classification accuracy but also explore the
number of layers with the highest classification accuracy in
shallow models.

Figs. 5–7 show the results of different embedding networks
used in our feature extractor on the three datasets of NWPU,
UCM, and AID. From the three histograms, we can easily
find that the six-conv-layer model has the highest accuracy on
both NWPU and AID. However, for UCM, the accuracy of
the four-conv-layer model is slightly higher than that of the
six-conv-layer model, which is approximately 2% higher in
the one-shot scenario and 5% higher in the five-shot scenario.
On all three datasets, the performance of the seven-conv-
layer model is poorer than that of the six-conv-layer in the
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Fig. 7. Performance comparison of different embedding network architectures
on the AID dataset.

Fig. 8. Comparison of different weighting coefficients settings for self-
supervised learning loss and few-shot classification loss on three datasets.

case of one and five shots. In addition, for the VGG-based
network sets and Resnet-based network sets, as the number
of network layers increases, the accuracy of these two types
of models decreases to varying degrees, which is inferior
to the six-conv-layer model by a large margin. Furthermore,
it should be noted that when we use a VGG-based network as
the embedding network, the results from multiple experiments
greatly fluctuate, e.g., for the AID dataset, the accuracy of
VGG16 fluctuates nearly 10% in the case of five-way one-
shot. When we adopt VGG19 as the embedding network on
the three datasets in the one-shot scenario, it gets stuck at a
local optimal solution easily.

We can infer that using deep convolutional networks such as
GoogleNet, VGGNet, and Resnet as the embedding network
for remote sensing scene datasets cannot improve few-shot
classification accuracy. Therefore, in our work, the six-conv-
layer model with the attention module is chosen as the feature
extractor of SCL-MLNet.

TABLE VII

CLASSIFICATION ACCURACY OF DIFFERENT ATTENTION
MODULES ON THE NWPU DATASET

TABLE VIII

CLASSIFICATION ACCURACY OF DIFFERENT ATTENTION

MODULES ON THE UCM DATASET

E. Selection of Weighting Coefficient

SCL-MLNet is trained under the joint supervision of SCL
loss and few-shot classification loss. To obtain the optimal loss
function, we conduct several experiments to choose appropri-
ate weighting coefficients for the two parts of loss.

As shown in Fig. 8, the x-axis of the line chart represents
the ratio of the SCL loss to the few-shot classification loss,
namely, μ/λ, which are organized into 12 cases. We adopt
two parameters λ and μ to balance these two parts of loss,
because the sum of λ and μ is not a fixed value. The first
nine cases ensure the sum of λ and μ is 1, and the rest of
cases keep λ unchanged and then adjust μ. The solid lines
are the five-shot classification accuracy of the three datasets,
and the dashed lines are the one-shot classification accuracy.
As shown in Fig. 8, λ rises from 0.1 to 0.4, and the broken
lines also increase, that is, the accuracy increases in addition
to the case of UCM@1-shot and AID@5-shot. When λ is
between 0.6 and 0.9, except for the case of AID@1-shot,
other broken lines remain stable, that is, the accuracy does
not change much. Furthermore, all broken lines reach the peak
value at μ = 0.1, λ = 1.

From the results, we can conclude that of these two losses,
the few-shot classification loss needs to account for a greater
proportion. Therefore, we choose 0.1 as the weighting coeffi-
cient of the SCL loss and 1 is used as the weighting coefficient
of the few-shot classification loss.

F. Comparison of Attention Module

To demonstrate the effectiveness of our attention module
for feature learning, we compare CSAM with some common
attention modules, e.g., SE-Conv [36], convolutional block
attention module (CBAM) [48], and selective kernel convo-
lution (SK-Conv) [49].

Tables VII–IX show the classification results of weaving
above attention modules into the backbone of SCL-MLNET on
three remote sensing scene datasets. According to the results,
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Fig. 9. Comparison of the original image and class-discriminative representation visualization heat map. (a) Church. (b) Bridge. (c) Airplane. (d) Ground
track field.

TABLE IX

CLASSIFICATION ACCURACY OF DIFFERENT ATTENTION
MODULES ON THE AID DATASET

in the one- and five-shot scenarios, the attention module with
the highest accuracy on both NWPU and UCM datasets is
CSAM, followed by CBAM, and SK-Conv has the worst
accuracy. In addition, on the AID dataset, CSAM achieves
the best performance, followed by SE-Conv.

Overall, regardless of the one-shot scenario or the five-shot
scenario, our attention module CSAM always achieves better
performance than any other attention modules. Moreover,
SK-Conv achieves the worst performance in all cases, except
on the AID dataset in the case of five-way five-shot.

Therefore, based on the above results, our CSAM attention
module along with the six-conv-layer backbone can learn
more detailed feature representations, which is appropriate for
remote sensing scene classification tasks.

Furthermore, to show the effectiveness of the feature extrac-
tor in SCL-MLNet more intuitively, we illustrate the feature

representation heat map according to Grad-class activation
mapping (CAM) [50] to visualize the class-discriminative rep-
resentation and make our embedding network more transparent
and explainable [34].

As shown in Fig. 9, SCL-MLNet can exactly capture the
class-discriminative features, and the red area of the figure is
the exact location of the object having the most important
feature. The darker the red color, the more the area contributes
to the final classification, and the darker the blue color,
the lesser the contribution to the final classification.

The heat map of Fig. 9(c) shows that for images whose areas
were largely occupied by airplanes, our embedding model
focused on the tail and wings of the airplanes. Similarly,
for images whose areas are scarcely occupied by airplanes,
the model can accurately concentrate on the entire airplanes.
In addition, according to the second pair of images of the
airplane and the third pair of images of the ground track
field in Fig. 9, it can be concluded that the Grad-CAM
visualization method can be used to solve the small target
detection problem.

G. Ablation Study

In this section, we conduct ablation studies to explore
the roles of the CSAM attention module and SCL task.
As shown in Tables X–XII, Backbone denotes a six-layer
convolutional network, abbreviated as B; B+SCL means that
we use a six-layer convolution network as the embedding
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TABLE X

ABLATION STUDY OF SCL-MLNET ON THE NWPU DATASET

TABLE XI

ABLATION STUDY OF SCL-MLNET ON THE UCM DATASET

TABLE XII

ABLATION STUDY OF SCL-MLNET ON THE AID DATASET

network, and we weave SCL into the first stage of few-shot
learning. B+CSAM+SCL represents SCL-MLNet proposed
in this article, which adds an extra attention module to the
Backbone based on B+SCL.

In all the cases, the accuracy of B+SCL is higher than
Backbone, especially in the case of five-way five-shot on
AID dataset, its accuracy is 6.1% higher than Backbone.
For NWPU and AID datasets, the classification accuracy of
the model increases with the addition of SCL and CSAM
(B+SCL+CSAM), whether in the case of one or five shots, and
the classification accuracy of B+SCL is higher than B+CSAM
in all the cases, especially in the case of five shots. For the
UCM dataset, B+CSAM is slightly higher than B+SCL in the
one-shot scenario and surpasses B+SCL by 2.71% in the five-
shot scenario. For all the three datasets, once we add SCL into
B+CSAM (that is B+CSAM+SCL), its accuracy is superior to
B+SCL and B+CSAM in all scenarios except in the case of
one shot for the UCM dataset.

In conclusion, it is effective to introduce SCL into few-shot
classification and add the attention mechanism into the feature
extractor.

V. CONCLUSION

This article proposes an end-to-end few-shot learning
framework for remote sensing scene classification called
SCL-MLNet. Our method weaves SCL task into few-shot
learning approaches, which can fully use the limited annotated
data in the real world. We introduce a new loss function
to balance the SCL loss and few-shot classification loss.
SCL-MLNet can also fuse multi-scale features extracted by

our novel attention module. We conduct comparison exper-
iments on three publicly remote sensing scene classification
datasets, and the experiment results show that our method can
obtain representative features and outperforms other state-of-
the-art few-shot classification methods.

Nonetheless, another challenge exists, which is the unavail-
ability of unannotated remote sensing scene data for com-
mon few-shot classification methods. Therefore, in our future
work, we will fully use unannotated data in the SCL tasks,
adopting both annotated and unannotated data as the input of
SCL-MLNet to further improve the model’s performance and
show the value of unannotated data.
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