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Abstract— Supervised classification algorithms require a suf-
ficiently large set of representative training samples to generate
accurate land-cover maps. Collecting reference data is difficult,
expensive, and unfeasible at the large scale. To solve this problem,
this article introduces a novel approach that aims to extract
reliable labeled data from existing thematic products. Although
these products represent a potentially useful information source,
their use is not straightforward. They are not completely reliable
since they may present classification errors. They are typically
aggregated at polygon level, where polygons do not necessarily
correspond to homogeneous areas. Finally, usually, there is a
semantic gap between map legends and remote sensing (RS) data.
In this context, we propose an approach that aims to: 1) perform
a domain understanding to detect the discrepancies between
the thematic map domain and the RS data domain; 2) use
RS data contemporary to the map to decompose the thematic
product from the semantic and spatial viewpoints; and 3) extract
a database of informative and reliable training samples. The
database of weak labeled units is used for training an ensemble
of classifiers on recent data whose results are then combined in
a majority voting rule. Two sets of experimental results obtained
on MS images by extracting training samples from a crop type
map and the 2018 Corine Land Cover (CLC) map, respectively,
confirm the effectiveness of the proposed approach.

Index Terms— Land-cover map update, remote sensing (RS),
unsupervised methods, weak learning classification.

I. INTRODUCTION

THE major bottleneck of supervised remote sensing (RS)
data classification is the availability of an adequately

large set of representative training samples (i.e., reference
data). At the operational level, this is a crucial issue since it is
impossible to obtain a large amount of either ground reference
data or annotated data by photointerpretation. Besides the
number of training samples, it is also necessary to have
a set of informative labeled units being able to represent
the behavior of the classes in different portions of a scene.
This is particularly evident when classifying multispectral
(MS) or hyperspectral optical images because of the spatial
variability of the spectral signatures of the land-cover classes
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[1]. Different ground conditions strongly affect the spectral
response of the same land-cover class, which should be prop-
erly characterized to guarantee accurate classification results
(i.e., training samples collected all over the scene). Moreover,
if the number of labeled units is relatively small compared
with the number of features, the system architecture may fail
in estimating accurately the classifier parameters and lead to
a classifier with poor generalization capabilities [2]–[4].

To tackle these problems, in the last years, many semi-
supervised approaches have been proposed [2]–[7]. These
methods aim to enlarge the set of labeled data by using
the unlabeled data to better model the distributions of the
classes, thus increasing the classification accuracy. Typically,
iterative procedures gradually include unlabeled units in the
training set to progressively adjust the classification function
[3], [5], or graph-based methods are used to connect labeled
and unlabeled units according to their similarity [8]–[13].
When the graph is established, unlabeled units can be naturally
associated with their land-cover classes under the assumption
of consistency (i.e., nearby points should belong to the same
class) [14]. Although these strategies can be effective in
enlarging small training data sets, often, results of semisuper-
vised methods are affected by the initial model assumptions,
i.e., inaccurate matching of pattern structure may lead to a
degradation of classifier performances. Thus, the possible use
of semisupervised techniques requires the choice of strategy
robust to initial conditions.

To ensure a reliable transfer of labeled units, several works
exploit the multitemporal correlation of time series (TS) of
RS images. When ground truth is available for at least one
image of the TS, it is possible to transfer the labeled units
to more recent images in a reliable way [15]–[17]. Yang
and Crawford [17] present a domain-adaptation framework
for multitemporal hyperspectral data. By assuming that local
geometries between multitemporal data are similar, two
manifold alignment strategies are defined for classifying the
hyperspectral images in a common manifold space. Demir
et al. [15] first detect unchanged areas between the image to
be classified and the one where training samples are available.
Then, the labels of the unchanged reference areas are used to
classify the more recent image. Although these approaches are
effective at the local level, at the country or continental scale,
most of these methods do not guarantee robust solutions to
generate training sets representative of the whole study area.
Due to the high spatial variability of the spectral signatures
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of classes, different portions of the scene present different
spectral behavior for the same land-cover classes because
of physical factors (e.g., soil moisture and vegetation) and
atmospheric conditions [18]. Thus, by extracting samples
from small local areas, there is no sufficient information for
modeling this variability. Moreover, samples taken from the
same region usually have a high correlation, thus violating
the required assumption of independence [18].

The need for large sets of training samples is even
more evident at the operational level when the goal is to
generate/update land-cover maps at the country, continen-
tal, or global level. In the last decades, a lot of effort has been
devoted to develop thematic/cartographic products due to their
valuable contribution to a wide range of applications (e.g.,
climate change models, monitoring of natural resources, and
spatial distribution of ecosystems and landscapes). At global
level, various thematic products are available [19]–[22]. How-
ever, they present many discrepancies when harmonized and
compared [23], [24]. This is mainly due to the fact that
these land-cover maps were generated by using different data
sources, classification schemes, and methodologies. At the
European level, the Corine Land Cover (CLC) map [25] is
one of the most accurate cartography [26], with its detailed
classification scheme composed of 44 classes (mixed land-
cover and land-use classes). Nevertheless, the minimum map-
ping unit of 25 Ha does not allow the direct extraction of
training samples from the map. At such a coarse scale, many
pixels aggregated within the same polygon are not correctly
associated with their labels. Including them in the training set
leads to poor classification accuracies [27].

To generate reliable thematic products, some methods pro-
pose to fuse different maps [26], [28], [29]. Lesiv et al. [28]
generated a hybrid forest map by fusing several well-known
cartographic products (e.g., GLC2000 and GlobCover 2005)
with crowd-sourced data on forest cover collected through the
Geo-Wiki project [30]. A crowd-sourced thematic product is
also used in [31], where the authors extract training samples
from OpenStreetMap to classify a TS of MS images. A noise-
tolerant classifier is used to handle the mislabeled units present
in the extracted training set due to the inaccurate matching
between the polygon boundaries and the real land-cover class.
Pérez-Hoyos et al. [26] generated a hybrid land-cover map at
the European level by combining the GLC2000, the MODIS
GLC, the GlobCover, and the CLC Map. All the maps are
reprojected and coregistered into the GLC2000 grid (1-km
spatial resolution), and the legends of the existing products are
linked using semantic rules based on affinity scores. Although
mixing different products can be effective, the result strongly
depends on the diversity and the initial accuracy of the fused
thematic maps. While diversity ensures that the data set makes
uncorrelated errors, the initial accuracy is necessary to avoid
poor classifications when combining the maps.

Similar results are obtained in [32] and [33], where different
cartographic products are merged to extract large databases
of training samples in an unsupervised way. To deal with
the considerable amount of mislabeled units present in the
resulting training set, the authors exploit a tolerant to noise
classifier [34]. Although the selected classifier can tolerate

more than 15% of mislabeled units in the training step, due
to the difficult heterogeneous landscape, the obtained land-
cover map contains numerous classification errors. In [32],
better classification results are obtained since the authors
merge databases provided at the national level (more accurate
and updated) and ground data collected during fieldwork
campaigns. In particular, the French National Land Cover
database produced by the French mapping agency at 1-m
spatial resolution is used together with the French Land
Parcel Information System database (which maps annually the
French crop fields). However, from an operational viewpoint,
it is not feasible to assume such updated and high-resolution
cartographic products available at the large scale.

Few works introduced approaches to reduce the class noise
(i.e., pixels with wrong class assignments) present in the
extracted training set [27], [35]. Since thematic products are
usually provided at polygon level, within the same polygon
not all the pixels belong to the polygon label. To increase the
probability of selecting pixels correctly associated with their
labels, typically pixels on the polygon boundary are discarded
via a simple erosion performed along the edges of the polygon
[27], [35]. Moreover, a spectral analysis of the labeled units
extracted from the map associated with the same class can
be performed to remove the outliers from the distribution
(i.e., pixels associated with wrong labels) [36]. Although
these outliers removal strategies increase the probability of
selecting reliable units from the map, their main drawback is
the risk of removing diverse but informative training samples
[34], thus strongly affecting the generalization capability of
the classifier. Lin et al. [37] proposed a transfer learning
approach to frequently update land-cover maps of rapidly
urbanizing regions. First, a rule-based approach based on
prior knowledge is used to extract labeled units from the
2010 GlobeLand30 map available at the global level. Then,
a relational knowledge transfer technique is applied to transfer
the labels to a recent RS image and update the map.

Besides their large uncertainty, leverage on existing thematic
products seems to be a promising way to generate large
databases of labeled units. Thematic/cartographic products
represent an extremely interesting source of information to
generate reference data at th large scale. However, their use is
not straightforward. As emerged from the literature overview,
these products are not completely reliable since they may
present misclassified units. They are typically aggregated at
the polygon level, where the polygon label represents the
predominant class, i.e., most of the units belonging to the
polygon are correctly associated with the polygon label but
not all of them. Moreover, the polygon boundaries do not
perfectly match the grid of pixels of the RS data, thus leading
to spurious pixels associated with a single label. Besides
the spatial component, it is also necessary to accurately
manage the semantic gap between the map legend and the
RS data. Most of these products have been generated by
multiple sources (e.g., photointerpretation, ancillary data, and
crowdsourcing assessment), thus leading to a map legend that
does not necessarily correspond to classes discriminable using
RS data. In addition, frequently map legends present semantic
classes that aggregate natural classes discriminable through
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the information provided by the RS data, i.e., the land-cover
classes. In this context, it is necessary to accurately model the
discrepancy between the map domain and the RS domain to
extract reliable information from existing thematic products.

This article presents a novel approach for the extraction
of labeled units from existing thematic maps. The approach is
based on four main components: 1) source-domain understand-
ing; 2) source-domain decomposition; 3) design the training
database; and 4) land-cover map production. The properties
of the thematic product are analyzed to point out its main
discrepancy with respect to the RS data. In particular, we ana-
lyze the relationship between the spatial properties of the RS
data and the map (i.e., map projection, spatial resolution,
and minimum mapping unit), as well as the semantic gap
between the map legend and the set of classes discriminable
with the RS data. Then, the approach performs a spatial
and a semantic decomposition of the map to facilitate the
detection of pure spectral pixels correctly associated with
their labels. The training database is designed by selecting
informative and reliable labeled units. Finally, the obtained
database of weak labeled units is used to produce a high-
resolution land-cover product provided at the pixel level. Due
to the complex ill-posed problem faced, the method is based
on the following assumptions: 1) RS data contemporary to
the map are available; 2) the vector map has been converted
into raster and accurately coregistered to the RS data; and (3)
the map legend has been converted into an exhaustive set of
classes discriminable with the considered RS data.

The rest of this article is organized into nine sec-
tions. Section II gives an overview of the proposed
approach. Section III describes the source-domain under-
standing component providing a taxonomy of the seman-
tic and spatial properties of the existing thematic products.
Section IV focuses on the source-domain decomposition com-
ponent, while Section V explains the design of the training
database. In Section VI, the production of the land-cover map
is presented. Section VII reports the employed data set in
terms of thematic products and RS data images employed,
while Section VIII discusses the experimental results obtained.
Finally, Section IX draws the conclusion of this article and
presents possible future developments.

II. PROPOSED APPROACH TO THE EXTRACTION OF

RELIABLE TRAINING SAMPLES FROM EXISTING

THEMATIC PRODUCTS

Fig. 1 shows the workflow of the proposed approach for the
design of systems that extract reliable labeled units from exist-
ing cartographic products. Once the discrepancies between the
RS data and the thematic product are understood, the elements
of the system architecture can be implemented with data
analysis techniques that handle the inconsistencies between the
selected thematic map and the RS data. The proposed approach
is based on the following four components.

1) Understand the Source-Domain Properties: The the-
matic map is analyzed from the spatial and semantic
viewpoint to detect its discrepancy with respect to the
considered RS data. This requires an a priori under-
standing of the set of land-cover classes that can be

recognized using the spectral information provided by
the MS data.

2) Decompose the Source Domain: The systems are
designed to generate a map decomposed from the
semantic and spatial viewpoints, which guarantees the
extraction of training samples having the highest prob-
ability of being correctly associated with their labels.

3) Design the Training Database: This is the phase in
which the pixels having the highest probability of being
reliable and informative are extracted from the decom-
posed map. The database is designed in order to model
the prior probabilities of the land-cover classes present
in the scene.

4) Land-Cover Map Production: The database of reliable
labeled units is used to generate a pixel-level classifi-
cation map. A supervised learning approach is applied
to high spatial resolution RS data contemporary to the
map to obtain a newly updated map characterized by
better geometric details than the initial one. If RS data
more recent than the map are used, a standard domain-
adaptation technique should be employed to produce the
high spatial resolution updated map.

The proposed approach is conceived for MS optical images
since these data are typically used to generate and update
land-cover maps with many classes. However, it is flexible,
and its general concept can be applied to any RS data (e.g.,
polarimetric synthetic aperture radar data [38], [39]) under the
assumption that the considered data allow the discrimination
of the set of classes present in the map legend. It is worth
noting that once the setup and the design of the architecture
are over, the system automatically extracts the training samples
from the thematic product in an unsupervised way without any
labor-intensive manual analysis. To the best of our knowledge,
current research on the extraction of training sets from existing
maps focuses on the removal of mislabeled units at the end of
the extraction procedure. There is no work in the literature
addressing the spatial and semantic decompositions of the
thematic map to increase the probability of detecting reliable
and informative samples during the selection process.

III. SOURCE-DOMAIN UNDERSTANDING

Many land-cover products are now available at regional,
national, continental, and global levels. At the local scale, very
high spatial resolution RS data are typically used to detect
detailed spatial patterns. When moving to large scales, coarse
spatial resolution RS images become a primary data source
to map the extent and the distribution of the major land-
cover classes. In this context, it is necessary to understand
the properties of the considered thematic product to extract
reliable knowledge from it. Fig. 2 reports a categorization
of the spatial and semantic properties of existing thematic
products.

A. Semantic Understanding

First, it is necessary to analyze and understand the nomen-
clature of the thematic map. The main goal of this step is
to identify the type of classes present in the legend. Indeed,
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Fig. 1. Workflow of the proposed approach for the automatic extraction of reliable training samples from existing thematic products for the classification of
recent RS data.

cartographic products usually present semantic classes that do
not correspond to land-cover classes that can be discriminated
by using the MS information. At the highest level, we can
distinguish among four main types of semantic in thematic
products: 1) land-use classes (�Use); 2) land-cover classes
(�Cov); 3) spatially aggregated classes (�Spa); and 4) seman-
tically aggregated classes (�Sem). Each category is detailed as
follows.

1) Land-Cover Classes (�Cov): These are the natural classes
that can be discriminated with the spectral information pro-
vided by the MS image. These classes represent the different
physical and biological cover of the Earth’s surface, which
are, thus, characterized by different spectral signatures (e.g.,
“Grass” and “Water”).

2) Land-Use Classes (�Use): These are the classes that
describe the socioeconomic purpose of the territory assigned
by photointerpretation but not discriminable using the spectral
information provided by the MS data. For instance, at the pixel
level, the “Industrial Units” class is not characterized by a pure
spectral signature but can include different natural classes [23].

3) Spatially Aggregated Classes (�Spa): The definition of
the thematic product is constrained by the minimum mapping
unit even though the corresponding natural classes are present
in the map legend. For instance, even though the land-
cover classes “Broad-leaves” and “Conifers” are represented,
the “Mixed forest” class has to be assigned to areas where both
“Broad-leaves” and “Conifers” are present in the scene with
an extension smaller than the minimum unit (e.g., minimum
mapping unit of 5 ha).

4) Semantically Aggregated Classes (�Sem): These are the
natural classes that have been semantically aggregated in the
map since their labels are not present in the map legend.
This typically occurs in thematic products provided at the
large scale. The larger the map scale, the higher the level of
abstraction. A clear example is an agricultural case. At the
large scale, it is not possible to include in the map legend
all the different cultivations present in the scene. While,
at the continental level, typically thematic products present

Fig. 2. Taxonomy of the semantic and spatial properties of existing thematic
products.

classes, such as “Winter crops” or “Summer crops,” at the
continental or global scale, they may be categorized simply as
“Crops.”

B. Spatial Understanding

In the second step of this component, we analyze the spatial
properties of the thematic products. From the spatial view-
points, the cartographic products can be categorized according
to the data structure used to encode the spatial information: 1)
vector thematic product and 2) raster thematic product. Vectors
have been widely employed for surveying and map-making
due to their capability of capturing topological information
difficult to achieve with the raster model. However, raster maps
are particularly useful to easily perform spatial analysis and
comparison [40].

1) Vector Thematic Products: These are the databases made
up of georeferenced polygons where each element is associ-
ated with a thematic attribute. Due to the predefined minimum
mapping unit, some polygons may include different land-cover
classes even though they are associated with a single label.
Typically, the majority rule approach is employed to assign the
label to the polygon, i.e., the dominant class is the polygon
label. Since the polygon boundaries do not perfectly match
the pixel grid of the optical data, when resampling the map
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on the pixel grid of an MS image, several pixels may fall
across vector boundaries.

2) Raster Thematic Products: These are the maps sampled
on a georeferenced grid according to a predefined ground
sampling distance (GSD). The need of projecting the land-
cover areas on a predefined grid penalizes the naturally fuzzy
boundaries between classes as well as the topological details
of complex geometric structures. Typically, raster products
generated at large scale (continental of global) are provided
at coarse spatial resolution. Note that if the MS data used are
characterized by a different map projection and spatial reso-
lution, the map has to be resampled to match the grid of the
MS data. These maps can be provided at the polygon or pixel
level.

In both cases, there are a one-to-many and many-to-one
relations between the label assigned to the minimum mapping
unit (i.e., polygon or pixel) and the ones correctly associated
with the pixels of the MS data since: 1) the minimum mapping
unit may include different classes and 2) resampling the
thematic product on the MS image pixel grid leads to spurious
pixels associated with partially correct labels.

IV. SOURCE-DOMAIN DECOMPOSITION

Fig. 3 summarizes the source-domain properties that should
be accurately modeled to extract reliable knowledge from the
considered thematic product. The goal of this component is
to convert the initial thematic product into a map that is:
1) spatially decomposed and 2) semantically decomposed into
an exhaustive set of land-cover classes. According to the
taxonomy presented in Section III-A, � may be partitioned
into the following categories: {�Cov,�Use,�Sem,�Spa}. While
�Cov can be directly inherited, the �Use should be converted
into land-cover labels according to the Land-Cover Classifi-
cation System (LCCS), which is the standard common land-
cover language for translating and comparing existing legends
[41]. For instance, the “Industrial Units” class, which is a
land-use definition that can be assigned by photointerpretation,
should be converted into “Artificial Surfaces” since, at the
pixel level, no pure spectral signature can be unambiguously
associated with the “Industrial Units” definition [23], [24].
The spatially aggregated classes �Spa can be neglected since
the land-cover classes included in �Spa are already present
in the legend. Thus, the pixels belonging to these classes
will be replaced by the corresponding land-cover classes if
correctly classified. In contrast, �Sem should be decomposed.
Thus, first, the thematic map is converted in order to have
only classes �1 = {�Cov,�Sem}. Then, spatial and semantic
decompositions are performed.

Let Xt1 be the MS image acquired at time t1 and Mt1
�1

the
contemporary thematic product coregistered and resampled at
the same spatial resolution of Xt1 . The MS image is made
up of N × M pixels and characterized by B spectral channels,
i.e., Xt1 ∈ R

N×M×B . The considered map Mt1
�1

is characterized
by a set of K classes �1 = {ωk}K

k=1 and a set of J polygons
P = {P j}J

j=1. The number of polygons is expected to be
different from the number of classes since many polygons can
be associated with the same label (i.e., J � K ). Therefore,

the i th pixel xi ∈ Xt1 is a B-dimensional spectral vector
xi ∈ R

B , with i ∈ [1, . . . , N × M], associated with a unique
label ωk ∈ �1 and a unique polygon P j ∈ P .

A. Spatial Decomposition

According to the spatial analysis presented in Section III-B,
the approach has to deal with: 1) the possible presence of
more than one natural class in each polygon (i.e., minimum
mapping unit decomposition) and 2) spectrally spurious pixels
associated with unique labels (i.e., pixel decomposition). Note
that the map is assumed to be characterized by a coarser spatial
resolution with respect to the MS data used. In this context,
it is necessary to spatially decompose the map into a pixel
map having the same spatial resolution of the considered MS
data.

Let P j = (x j
1; x j

2; . . . , x j
n j

) ∈ R
n j ×B be the j th polygon

composed of n j pixels and characterized by the B spectral
channels of Xt1 . Let us assume that the polygon label is ωk .
The proposed system aims to exploit the MS information to
detect the pixels belonging to P j that are correctly associated
to ωk . To this end, the polygons are partitioned into Vj clusters
according to their spectral similarity. The number of clusters
Vj is automatically detected by using the Calinski Harabasz
(CH) index [42], which is widely employed for determining
the optimal number of clusters in a data set. This index
is computed as the ratio between the overall within-cluster
variance and the overall between-cluster variance, as follows:

Vj = argmax
Vj ∈[2,L]

{ [
traceB j/

(
Vj − 1

)][
traceW j/

(
n j − Vj

)]
}

(1)

where B j and W j are the between and within cluster scatter
matrices computed for P j , respectively, and Vj is the optimal
clustering value among the L tested. Due to the spectral
similarity of the labeled units belonging to the same class,
the algorithm automatically detects homogeneous clusters
belonging to different land-cover classes. Here, for simplicity,
we use the standard K -means clustering algorithm, but any
other clustering technique can be employed. At each iteration,
the method adjusts the centroid position with respect to the
cluster centers by minimizing the intracluster variance in the
feature space, that is

n j∑
q=1

Vj∑
v=1

||x j
q − mv ||2 (2)

where mv is the centroid of cluster v. For the land-cover
classes �Cov, it is reasonable to assume that the cluster having
the highest number of labeled units represents the dominant
polygon class. For the semantically aggregated classes �Sem,
which may include several land-cover classes, the method
removes the cluster having the smallest number of labeled
units, which has the highest probability to be wrongly associ-
ated with its polygon label.

B. Semantic Decomposition

The spatial decomposition step allows us to discard most of
the pixels having the highest probability of being associated
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Fig. 3. Qualitative representation of the source-domain properties in a vector polygon map: 1) each polygon may present a spatial aggregation of parcels
(homogeneous spectral areas) due to the minimum mapping unit of the map; 2) each parcel may present a semantic aggregation of land-cover classes; and 3)
each polygon/parcel has to be mapped onto the georeferenced pixel grid of the MS images, thus leading to spurious pixels associated with partially correct
labels.

with wrong labels. Then, the main goal of the semantic
decomposition step is to ensure that all the land-cover classes
aggregated under the same semantic label are identified. Let
us focus on the generic semantic class ωk ∈ �Sem. In the
considered implementation, we assume to know the number of
land-cover classes of ωk . First, we fit a multivariate Gaussian
Distribution to the labeled units belonging to the semantic
class by considering its number of modes (i.e., number of land-
cover classes). Then, for each pixel xi (still associated with the
ωk label after the spatial decomposition step), we calculate the
vector of the Mahalanobis distances from each Gaussian mode
as follows:

DM(xi) =
√(

xi − μk

)T
�−1

k

(
xi − μk

)
(3)

where μk and �k are the mean vector and the covariance
matrix of the multivariate Gaussian distribution representing
ωk . The unit xi is associated with the nearest natural class
(i.e., the Gaussian mode) from the spectral viewpoint (i.e.,
the class having minimum Mahalanobis distance). At the end
of this step, we have the decomposed thematic product Mt1

�2

characterized by a set of G land-cover classes �2 = {ck}G
k=1,

where the pixels having the highest probability to be wrongly
associated with their labels are neglected.

V. DESIGN OF TRAINING DATABASE

Due to the large availability of labeled units extracted from
the map, we are in the condition of selecting the ones that will
be used to generate a training database. To extract reliable and
informative training samples from existing thematic products,
it is necessary to: 1) accurately represent the land-cover classes
present in the scene from the spectral viewpoint and 2) define
a strategy for identifying pure spectral pixels associated with
a valid label. Thus, even though the spatial decomposition
strongly increases the probability of selecting labeled units
correctly associated with their labels, we need to take into
account that: 1) the cluster analysis may fail in detecting
the pixels correctly associated with their label and 2) some
polygons may be wrongly associated with their labels.

Under the reasonable assumption that the classes are
Gaussian-distributed, we extract from each natural class

present in the decomposed map Mt1
�2

, the labeled units closer
to the core of the distribution. Hence, it is reasonable to assume
that these units have the highest probability of being correctly
associated with their labels. Moreover, due to the semantic
decomposition performed in the previous phase, we are in
the condition of generating informative databases since we
guarantee the selection of units belonging to all the land-cover
classes present in �Sem.

The number of labeled units per class is defined according
to a stratified random sampling strategy by taking advantage of
the information provided by the thematic product in terms of
prior probabilities of the land-cover classes. Thus, the number
of pixels per class present in the original map is used as a
reference to define the number of units per class [43].

VI. LAND-COVER MAP PRODUCTION

The last component of the proposed approach generates the
high-resolution land-cover map at the pixel level. If MS data
contemporary to the map are employed, the approach generates
a thematic product characterized by a better geometric detail
with respect to the initial one (i.e., supervised learning case).
If recent MS data are considered, a standard domain-adaptation
technique is employed to produce an updated map (i.e.,
domain-adaptation case). In the following, details are given.

A. Supervised Learning

The main advantage of the proposed approach is the pos-
sibility of including a huge amount of units in the data-
base of weak labeled pixels extracted from the map. Thus,
the database can be sampled without replacement in order
to generate a set of S statistically independent weak training
sets {T1, T2, . . . , TS}. These weak training sets are then used
to train an ensemble of classifiers combined with a majority
voting rule. In this article, we use the support vector machine
(SVM) classifier, but any classification technique can be used
with the proposed approach. This classifier has been widely
employed in the RS literature since it does not require an
estimation of the statistical distributions of classes to perform
the classification task [44]. Moreover, SVM is intrinsically
effective compared with traditional classifiers due to the
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structural risk minimization principle, which leads to accurate
classification results and good generalization capabilities [44].
Let { fs}S

s=1 be the decision functions of the ensemble of S
classifiers trained using the S training sets extracted from the
weak database of labeled units. The majority voting decision
of the ensemble of SVMs for xi is given by

xi ∈ ck if ck = argmax
ck∈�2

(#{ fs(xi) = ck}), s ∈ [1, S] (4)

where #{ fs(xi) = ck} is the number of SVMs whose decision
for the pixel xi is the class ck .

B. Domain Adaptation

If the considered thematic product is outdated, the database
of weak labeled units can be employed to classify a more
recent MS image. Let Xt2 be the MS image acquired at time t2
and used to perform the update. The multitemporal correlation
between the MS images is employed to transfer the knowledge
in a reliable but effective way. As we are considering a
multitemporal data set, we assume to deal with a covariate
shift problem, where the prior probabilities of the classes in t1
and t2 are different [i.e., Pt1(x) �= Pt2(x)], while the conditional
probabilities are almost the same [i.e., Pt1(ck |x) ≈ Pt2(ck |x)
with ck ∈ �2].

In the considered implementation, we exploit the semisuper-
vised LapSVM [10] to maintain consistency with the super-
vised learning step. LapSVM has been extensively applied
to RS domain-adaptation problems [9], [10] since it models
the data distribution by using both the labeled pixels and
the information provided by the high number of available
unlabeled pixels. LapSVM formulation takes advantage of
both the kernel function of the SVM and the graph Laplacian
for manifold regularization. The data are first projected into
a high-dimensional feature space by means of the SVM
kernel function, thus increasing the separability of the labeled
units. Then, the intrinsic geometry of the marginal distribution
of data is captured by a graph in which nodes are both
labeled and unlabeled units connected by weights [45]. The
weights are calculated by minimizing the regularized function
representing the graph in the kernel space, thus improving
the estimate of the marginal distribution of the considered
land-cover classes. We refer to [10] for more details on
LapSVM. Although LapSVM allows us to face the covariate
shift problem, more sophisticated domain-adaptation method
can be employed [46]. Similar to the supervised classification
step, Xt2 is classified by an ensemble of LapSVM classifiers
using the weak database of labeled units {T1, T2, . . . , TS}
derived from the decomposed map.

VII. DATA SET DESCRIPTION

A. Data Set 1: Czech Republic

To assess the effectiveness of the proposed system in
updating outdated thematic products, we considered a crop
type vector map of the Czech Republic generated in the
framework of the Sen2Agri project [47]. The data used to
generate this map are Sentinel 1A, Sentinel 2A, Landsat 7
(L7), Landsat 8 (L8) images, the Crop Parcel Data set [Czech

TABLE I

SEMANTIC PROPERTIES OF THE CROP TYPE MAP (CZECH REPUBLIC DATA
SET)

TABLE II

REFERENCE DATA COLLECTED BY FIELD SURVEY IN 2016 DIVIDED PER

CLASS. THE DATA HAVE BEEN USED TO VALIDATE THE RESULTS

OBTAINED WHEN CLASSIFYING THE 2016 TS OF L8 IMAGES WITH
THE TRAINING SET EXTRACTED FROM THE 2015 CROP TYPE

MAP (CZECH REPUBLIC DATA SET)

Land Parcel Identification System (LPIS)], in situ crop data,
IACS (crop declaration data), and IACS (OTCS results—
ground-truth data) [48]. The RS data were acquired from
November 2014 to September 2015 to characterize the main
annual cultivations. The map is characterized by seven classes,
where four of them present semantic aggregation (see Table I).
In greater detail, “winter cereals,” “spring cereals,” and “fodder
crops” present three land-cover classes, while “annual crops”
includes five land-cover classes. The map has been aggregated
at the polygon level according to the GIS-database Czech LPIS
[49]. Almost 20% of the polygons of the full Czech LPIS data
set present more cultivations in a single polygon. The crop
label has been assigned following the majority rule criterion.

For the experimental analysis, we considered a portion of
the whole thematic product (5129 km2). The coordinates of
the central point of the study area are 50.272588 latitude,
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Fig. 4. Czech Republic data set. (a) 2016 validation data set superimposed on the true color composite of the L8 image acquired on June 6, 2015. (b) Outdated
thematic product representing the 2015 crops. Coordinates are reported in the UTM WGS84 33N system.

14.354876 longitude (see Fig. 4). In situ data acquired on
2016 were used to quantitatively evaluate the obtained updated
LC map. The spatial distribution of the reference data is

represented in Fig. 4, while Table II shows the number of
labeled units divided per class. Please note that the considered
study area is complex due to the crop rotation practice, which
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TABLE III

L8 IMAGES USED IN THE EXPERIMENTS. THE TS ACQUIRED AT TIME t1
(CONTEMPORARY TO THE MAP) WAS USED TO PERFORM THE SPATIAL

AND THE SEMANTIC DECOMPOSITIONS AND TO GENERATE WEAK

TRAINING SET. THE TS ACQUIRED AT TIME t2 WAS CLASSIFIED

TO GENERATE THE UPDATED LAND-COVER MAP

leads to many land-cover changes on the ground. Accurate
extraction of reliable and informative labeled units from the
initial map is, thus, fundamental to generate an accurate land-
cover product.

The satellite optical data considered are L8 images due to
the availability of these data in 2015 (i.e., contemporary to
the considered thematic product). The L8 spectral channels
considered are the seven bands acquired at 30-m spatial
resolution. Thus, each pixel is characterized by 42 features.
To perform the source-domain modeling and the domain-
adaptation step, we considered a TS of six L8 images acquired
in 2015 and 2016, respectively (see Table III). The acquisition
dates of the considered TS allow us to model the phenological
cycle of the crops present in the study area in both years.
Clouds were detected considering the Fmask algorithm [50]
and removed according to [51].

B. Data Set 2: France

To assess the capability of the proposed approach to
increase the spatial resolution of existing thematic products,
we considered the 2018 CLC generated by the European
Environment Agency. The classification scheme is composed
of 44 classes (mixed land-cover and land-use classes) with
a 25-ha minimum mapping unit. This map is generated and
updated at the national level by means of visual interpretation
of satellite images. The data set is located in France and is
characterized by a spatial extent of 1840 km2. The coordinates
of the central point of the study area are 45.687477 latitude,
4.625595 longitude. The complex legend of the thematic
product is suitable to test the capability of the proposed
approach to extract a reliable and informative training set.
In particular, in the considered study area, there are seven
�Cov classes, seven �Use classes, four �Spa classes, and two
�Sem classes (see Table IV).

The satellite optical data considered are Sentinel 2 images
contemporary to the map. In particular, we considered a TS
of four cloud-free Sentinel 2 images (see Table V for the
acquisition dates). The Sentinel 2 spectral channels considered
are the four bands acquired at 10 m and the six bands
acquired at 20-m spatial resolution. This leads to a feature
vector of 40 spectral channels. The data were downloaded

atmospherically corrected directly from the ESA’s Sentinel 2
Scientific Data Hub [52].

To quantitatively evaluate the accuracy of the updated land-
cover maps, we employed a reference data set made up
of 1023 pixels manually labeled by photointerpretation and
distributed all over the region. First, the prior probabilities
of the classes were estimated by considering the information
provided by the CLC Map. Then, a stratified random sam-
pling strategy was applied to establish the validation samples’
locations. Finally, the label of each sample was defined by
photointerpretation by visually checking both Sentinel 2 data
and ESRI ArcGIS Online World high-resolution aerial optical
images. The spatial distribution of the reference data is repre-
sented in Fig. 5, where the scale of the samples is exaggerated
to improve their visibility. The number of labeled units divided
per class is reported in Table VI.

VIII. EXPERIMENTAL RESULTS

In this section, first, we present the experimental setup,
introducing the baseline methods used for comparison and
defining the parameter setting used in the work. Then,
the obtained decomposed maps are analyzed from the qual-
itative viewpoint, whereas the results obtained in terms
of updated land-cover products are quantitatively evaluated.
Finally, an analysis of the quality of the extracted training set
is carried out for the second data set (France).

A. Experimental Setup

To prove the effectiveness of the proposed approach,
we compared the results obtained with the tolerant noise
Random Forest classifier [53] and a standard outlier filtering
approach [35] used in the literature to extract labeled units
from existing thematic products. When performing the domain
adaptation, the proposed system was compared also with the
standard LapSVM [10], while, for the supervised learning
analysis, we considered the standard SVM with radial basis
function (RBF) kernel functions [54]. The parameters of the
random forest classifier are tuned according to, where Pelletier
et al. [53] suggest to use Random Forest classifier when
dealing with noisy training sets (such as the one extracted from
the thematic products) by setting the number of trees to build
equal to 200, the number of input features per node equal to
the square root of the total number of features, the maximum
depth of the tree growth equal to 25, and the minimum number
of instances in the node equal to 10.

To perform the spectral filtering step, Radoux et al. [35] sug-
gested to tune the probabilistic iterative trimming considering
α ∈ [0.05, 0.1, 0.2]. In the following, we reported the best
results that were achieved with α = 0.05. For the supervised
learning analysis, the proposed system employed an ensemble
of five SVMs with RBF kernels. For the proposed system,
the standard RBF SVM [35] and the optimal kernel parameters
(i.e., the regularization parameter C and the spread of the
kernel γ ) were selected by fivefold cross-validation. For the
domain-adaptation analysis, we need to tune two regularization
parameters of the LapSVM, namely, γM and γL . While γM

controls the complexity of the classifier decision function in

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 16:36:20 UTC from IEEE Xplore.  Restrictions apply. 



PARIS AND BRUZZONE: NOVEL APPROACH TO THE UNSUPERVISED EXTRACTION OF RELIABLE TRAINING SAMPLES 1939

Fig. 5. France data set. (a) Reference data superimposed on the true color composite of the Sentinel 2 image acquired on August 26, 2018. (b) Original
thematic product. Coordinates are reported in the UTM WGS84 31N system. The scale of the validation units is exaggerated to improve their visibility.

the geometry of the marginal data distribution, γL controls its
complexity in the associated Hilbert space. According to [9]

and [10], γM was set equal to 0.5 for both the baseline and
the proposed methods, while γL was set equal to γM/(u + l)2,
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TABLE IV

SEMANTIC PROPERTIES OF THE 2018 CLC MAP FOR THE CONSIDERED
STUDY AREA (FRANCE DATA SET)

where u and l are the numbers of unlabeled and labeled units,
respectively.

B. Results: Source-Domain Modeling

Fig. 6 reports some examples of the obtained map decom-
position results by showing the original crop type maps [see

TABLE V

SENTINEL 2 IMAGES DATA SET CLASSIFIED BY USING THE TRAINING SET
EXTRACTED FROM THE 2018 CLC MAP (FRANCE DATA SET)

TABLE VI

2018 REFERENCE DATA USED TO VALIDATE THE CLASSIFICATION

RESULTS OBTAINED ON THE 2018 SENTINEL 2 IMAGES (FRANCE DATA

SET)

Fig. 6(a), (f), (k), (p), and (u)], the spatially decomposed
maps [see Fig. 6(b), (g), (l), (q), and (v)], the semantically
decomposed maps [see Fig. 6(c), (h), (m), (r), and (w)],
the false color representations of the NDVI derived from three
L8 images of the considered TS [see Fig. 6(d), (i), (n), (s),
and (x)], and the true color compositions of the L8 image
acquired in April 2015 [see Fig. 6(e), (j), (o), (t), and (y)]. The
false color composition of the NDVI was stretched for visual
enhancement to emphasize the different cultivations present in
the scene.

From the results obtained, it turned out that even though
the units of the LPIS polygon database represent agricultural
parcels managed by single farmers [49], more cultivations may
be present in the same polygons. This is mainly due to the
multiple cropping practice (growing two or more crops in
the same piece of land in the same growing seasons) or can
be related to possible outdated information present in the
database. However, the TS of images contemporary to the map
allows the accurate discrimination of different crops present in
the same polygon. For instance, in Fig. 6(u), the two largest
polygons associated with the “sugar beet” label include dif-
ferent cultivations (parcels characterized by different spectral
behaviors) clearly visible in the false color composition of
the NDVI [see Fig. 6(x)]. In contrast, the smallest “sugar
beet” polygon is associated with a homogeneous area from
the spectral viewpoint and similar to the ones selected by the
proposed system. The spatial decomposition step accurately
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removes the labeled units belonging to the minor clusters,
thus increasing the probability of selecting units correctly
associated with the “sugar beet” label [see Fig. 6(v)]. Similarly,
in Fig. 6(p), the largest crop labeled as “maize” includes a
parcel having spectral behavior similar to the “spring cereal”
cultivation [see Fig. 6(s)], which is discarded by the spatial
decomposition step. Note that no postprocessing was per-
formed on the decomposed maps, and the results are presented
at the pixel level.

Due to the semantic aggregation of the map legend, it is
necessary to guarantee the selection of labeled units belonging
to all the land-cover classes belonging to the same semantic
class to accurately model the class distribution. Also, in this
case, the qualitative evaluation confirms the effectiveness of
the proposed approach. For instance, in Fig. 6(b), the “winter
cereals” class (i.e., ω2) includes cultivation having different
spectral behaviors [see Fig. 6(d)]. Its semantic decomposition,
reported in Fig. 6(c), associates different parcels to different
land-cover classes (i.e., c3 and c4). Fig. 6(f) depicts a similar
example related to the “spring cereals” semantic label (i.e.,
ω3), decomposed in Fig. 6(h) in c6 and c7 that clearly have
different spectral behaviors with respect to most of the pixels
present in the polygon [see Fig. 6(i)]. Fig. 6(s) shows different
crops associated with the “annual crops” label (i.e., ω7) clearly
visible in Fig. 6(s) and accurately discriminated in Fig. 6(r)
(i.e., c13, c14, c15, and c17). It is worth mentioning that the
spatial decomposition of the previous step correctly removes
minor crops associated with the wrong labels. However, since
we need to transfer the labels to a multitemporal data set,
it is fundamental to accurately characterize all the land-cover
classes included in the semantically aggregated ones in order
to face possible shifts of the class distribution. Also, in this
case, no postprocessing was performed on the decomposed
maps in order to show the results at the pixel level. Note that
this step is fundamental to extract an informative database of
weak labeled units from the source map. Thus, the missed
selection of labeled units belonging to dominant land-cover
classes present in the scene would result in a poorly represen-
tative training set that does not allow accurate land-cover map
updates.

Fig. 7 reports several examples of the decomposition result
obtained from the 2018 CLC map on the France data set.
Fig. 7(a), (f), (k), (p), and (u) shows the original thematic
maps, Fig. 7(b), (g), (l), (q), and (v) shows the converted
thematic products, Fig. 7(c), (h), (m), (r), and (w) shows
the spatially decomposed maps, Fig. 7(d), (i), (n), (s), and
(x) shows the semantically decomposed maps, and Fig. 7(e),
(j), (o), (t), and (y) shows the true color compositions of
the Sentinel 2 image acquired on June 2018. Different from
the crop type map, the 2018 CLC map presents a complex
classification scheme characterized by land-cover, land-use
classes, spatially, and semantically aggregated classes. In the
semantically converted thematic product, the spatially aggre-
gated classes are removed. For instance, in Fig. 7(a), the poly-
gons associated with the “Complex Cultivation Pattern” are
discarded [see Fig. 7(b)] since this class includes land-cover
classes already present in the map legend (i.e., “Crops,”
“Pastures,” and “Vegetation”). The land-use is converted into

land-cover when possible according to the LCCS. In Fig. 7(p),
the “Industrial Units” and “Roads” labels are converted into
“Artificial Surfaces” since all these classes present similar
spectral behavior [see Fig. 7(q)]. Finally, the semantic classes
are decomposed according to their number of land-cover
classes. In the considered study, the semantic classes are
“Irrigated Crops” and “Non Irrigated Crops.” Both the classes
present three land-cover classes according to the definition of
the CLC map legend.

Due to the minimum mapping unit of 25 Ha, most of the
polygons include many pixels wrongly associated with their
labels. In such a thematic product, the spatial decomposition
step is fundamental to sharply increase the probability of
selecting pixels correctly associated with their labels. Due to
the high spatial resolution provided by the Sentinel 2 images
(i.e., 10 m), we are in the condition of accurately removing
wrong labeled units. For instance, Fig. 7(p) shows an urban
area associated with the “Artificial Surfaces” label, which
includes also many “Grass” pixels. The spatial decomposition
accurately removes those labeled units [see Fig. 7(r)] by
correctly delineating the geometrical details of the build-
ings. In Fig. 7(c), the spatial decomposition step accurately
removes the small island present in the river [see Fig. 7(e)],
by keeping only the water pixels. Similarly, in Fig. 7(k),
the pixels that do not belong to the mineral site are discarded
from the polygon [see Fig. 7(m) and (o)]. Accurate results
are obtained also for the complex case of the semantically
aggregated classes. In Fig. 7(f), a polygon associated with
the “Non Irrigated Crops” label is reported. By removing the
pixels belonging to the smallest parcels, the spatial decom-
position automatically enhances the crop boundaries while
keeping all the land-cover classes belonging to the semantic
class [see Fig. 7(h)].

The importance of the semantic decomposition step can
be assessed from the qualitative viewpoint. Fig. 7(n) and (i)
shows the capability of the method of accurately detecting
different cultivations belonging to the “Non Irrigated Crops”
semantic class. The true color compositions of the Sentinel 2
image acquired in June [see Fig. 7(o) and (j)] demonstrate the
presence of different cultivations that should be accurately rep-
resented to obtain reliable classification results. Thus, the lack
of one of those land-cover classes in the training set hampers
the possibility of producing an accurate thematic product.
Similar results are visible in Fig. 7(b) and (v). Also, in these
cases, parcels characterized by different spectral responses
are associated with the same semantic labels [see Fig. 7(e)
and (y)]. However, the semantic decomposition allows us to
accurately distinguish the land-cover classes present in the
scene [see Fig. 7(d) and (x)].

C. Results: Updated Land-Cover Map Production

The qualitative evaluation of the decomposed maps is con-
firmed by the quantitative classification results of the obtained
pixel land-cover maps. Tables VII and VIII report the classi-
fication accuracy of the obtained land-cover products derived
by extracting the database of weak labeled units from the crop
type map and the 2018 CLC map, respectively. The producer
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Fig. 6. Examples of map decomposition results of the 2015 crop type map. (a), (f), (k), (p), and (u) Original thematic products. (b), (g), (l), (q), and (v)
Maps spatially decomposed. (c), (h), (m), (r), and (w) Maps semantically decomposed. (d), (i), (n), (s), and (x) False color representations of three NDVI
derived from the TS of the L8 images. (e), (j), (o), (t), and (y) True color compositions of the L8 image acquired on April 2015. The false color composition
of the NDVI was stretched for visual enhancement to emphasize the different cultivations present in the scene (Czech Republic data set).

accuracy (PA%), the user accuracy (UA%), the F-score (F1%),
and the overall accuracy (OA%) metrics calculated on the
validation set are reported for the baseline methods (on 5 trials)
and the proposed system.

Let us focus the attention on the Czech Republic data set.
The outlier filtering method achieves an F1% ranging from

4.57% (for the “Annual Crops” class) to 87.20% (for the
“Rapeseed” class), whereas the random forest F1% ranges
from 29.13% (for the “Sugar Beet” class) to 88.43% (for
the “Winter Cereals class). By taking advantage from the
multitemporal information, the LapSVM obtains better clas-
sification results with respect to the other baselines, with
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Fig. 7. Examples of map decomposition results of the 2018 CLC map. (a), (f), (k), (p), and (u) Original thematic products. (b), (g), (l), (q), and (v) Converted
map. (c), (h), (m), (r), and (w) Maps spatially decomposed. (d), (i), (n), (s), and (x) Maps semantically decomposed. (e), (j), (o), (t), and (y) True color
compositions of the Sentinel 2 image acquired on June 2018 (France data set).

an F1% that ranges from a minimum of 57.82% (for the
“Fodder Crops” class) to a maximum of 94.29% (for the
“Rapeseed” class). The proposed system outperforms all the
baseline techniques, with a minimum F1% of 64.51% (for the
“Fodder Crops” class) and a maximum F1% of 94.81% (for
the “Winter Cereals” class).

Both the outlier filtering and random forest methods obtain
very poor classification accuracy on semantic aggregated
classes �Sem. In particular, the worst results are obtained on
the “Annual Crops” class (i.e., F1% of 4.57 and 54.05 for
the outlier filtering and random forest, respectively), which
includes five land-cover classes. Due to a large number
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TABLE VII

LAND-COVER MAP UPDATE RESULTS OF THE CZECH REPUBLIC DATA SET. THE OVERALL ACCURACY (OA%), USER ACCURACY (UA%), PRODUCER
ACCURACY (PA%), AND F-SCORE (F1%) ARE REPORTED FOR: 1) THE REFERENCE METHOD BASED ON AN OUTLIER FILTERING PROCEDURE

[35]; 2) THE RANDOM FOREST NOISE-TOLERANT CLASSIFIER [53]; 3) THE STANDARD LAPSVM [10]; AND 4) THE PROPOSED

UNSUPERVISED APPROACH

TABLE VIII

CLASSIFICATION RESULTS OF THE FRANCE DATA SET. THE OVERALL ACCURACY (OA%), USER ACCURACY (UA%), PRODUCER ACCURACY (PA%),
AND F-SCORE (F1%) ARE REPORTED FOR: 1) THE REFERENCE METHOD BASED ON AN OUTLIER FILTERING PROCEDURE [35]; 2) THE RANDOM

FOREST NOISE-TOLERANT CLASSIFIER [53]; 3) THE STANDARD RBF SVM [54]; AND 4) THE PROPOSED UNSUPERVISED APPROACH

of changes present in the scene, poor classification accu-
racy is achieved also on some land-cover classes (i.e., F1%
of 28.16 on the “Sugar Beet” class with the random for-
est). This problem is alleviated by the use of the LapSVM.
However, most balance classification results are achieved
by the proposed system. Thus, even though the considered
classification problem is complex due to the crop rotation
practice (which leads to many changes on the ground) and
the complex structure of the semantically aggregated classes,
the proposed system is able to achieve good F1% for all the
land-cover classes. This is confirmed by the OA%, which is
89.55% for the proposed approach, which is much higher than

those obtained by the baseline methods (i.e., 76.73, 73.85,
and 85.18 for the outlier filtering, the random forest, and the
LapSVM classifier, respectively).

Similar results are obtained on the pixel land-cover method
generated by extracting the labeled units from the 2018 CLC
map on the France data set. The proposed system sharply
improves the classification accuracy with respect to the base-
line methods by achieving an OA% of 89.93% compared
with 54.40%, 71.43%, and 77.77% of the outlier filtering,
the random forest, and the SVM classifier, respectively. In par-
ticular, the F1% achieved by the proposed system ranges from
a minimum of 63.83% (for the “Inland Marshes” class) to
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a maximum of 95.45% (for the “Water” class). The outlier
filtering method ranges from 8.77% (for the “Mineral Site”
class) to a maximum of 93.85% (for the “Water” class),
whereas the random forest ranges from 0% (for the “Inland
Marshes” class) to 95.81% (for the “Water” class). The best
results among the baseline are achieved by the standard SVM
that reaches an F1% ranging from a minimum of 25.49% (for
the “Inland Marshes” class) to a maximum of 87.94% (for
the “Grass” class). The outlier filtering fails in modeling the
land-cover classes penalized by the spatial aggregation rule
(i.e., “Mineral Site” and “Artificial Surfaces”) and the semantic
aggregated classes (i.e., “Irrigated Crops” and “Non Irrigated
Crops”). Thus, discarding the outliers using a spectral filtering
technique for such complex land-cover class distributions leads
to the removal of informative labeled units that are fundamen-
tal for accurately training the classifier. Similar problems are
encountered also with the random forest classifier, which is not
able to deal with the semantically aggregated classes as well
as to manage classes having a low number of training samples
(i.e., “Inland Marshes”). In contrast, the standard RBF SVM
can handle the noisy training set extracted from the map even
though some classes achieve low F1% (e.g., Non “Irrigated
crops” and “Inland Marshes”).

Due to the capability of the system of extracting reliable
informative training samples, high classification accuracies are
achieved on all the land-cover classes. In particular, the spatial
decomposition results strongly increase the probability of
selecting correctly labeled units. For instance, in the “Artificial
Surfaces” class, the proposed system achieves an F1% of
91.59% compared with the 73.58%, 74.24%, and 82.12%
obtained by the outlier filtering, the random forest, and the
SVM, respectively. Note that due to the minimum mapping
unit of 25 Ha, the “Artificial Surfaces” polygons include many
“Grass” pixels that are discarded by the proposed system.
Similar results are obtained on the “Mineral Site” class, where
the proposed system achieves an F1% of 92.86% compared
with 8.77%, 52.31%, and 54.90% of the outlier filtering,
the random forest, and the SVM, respectively. Also, in this
thematic product, the baseline methods achieve low classifica-
tion accuracy on the �Sem. For instance, F1%’s obtained for
the “Non Irrigated Crops” are 39.15%, 74.86%, and 83.56%
for the outlier filtering, the random forest, and the SVM,
respectively, compared with 92.15% of the proposed system.

D. Results: Weak Training Set Analysis

In this section, we evaluate the quality of the extracted weak
training set. First, the sensitivity of OA% of the proposed
approach versus the considered number of training samples
was analyzed. Fig. 8 reports the OA% obtained by increasing
the number of samples from 1641 to 8271 for the outlier
filtering procedure [35], the random forest classifier [53],
the standard SVM [54], and the proposed method. Note that,
for each trial, the number of samples selected per class has
been calculated according to the stratified random sampling
strategy considering the original thematic product. From the
results obtained, one can notice that the proposed approach
outperforms the baseline methods for all the trials. Moreover,
it is slightly affected by the number of training samples by

Fig. 8. Overall accuracy (OA%) classification performance versus the number
of training samples for: 1) outlier filtering procedure [35]; 2) random forest
classifier [53]; 3) standard SVM [54]; and 4) proposed method.

obtaining OA% that ranges from almost 85% to 90%. This
proves the effectiveness of the method used for the selection
of the training samples, as increasing the number of samples
increases the amount of information given to the classifier.

Then, we evaluate the reliability of the labeled units
extracted from the map. The main goal of the proposed
approach is to extract training units that: 1) have the highest
probability to be correctly associated with their labels and
2) are representative of the land-cover class distribution.
Although it is reasonable to assume that classifiers trained with
high quality samples achieve high classification accuracy, this
is an indirect measure that does not guarantee that the training
set is made up of reliable training samples. To verify the
quality of the extracted labeled units, a quantitative evaluation
of the training samples was performed by checking their labels
via photointerpretation of both Sentinel 2 data and ESRI
ArcGIS Online World high-resolution aerial optical images.
To this end, we focused the attention on one of the five
training sets automatically extracted by the method, and we
randomly selected the 10% of samples per class (for a total
number of 822 samples checked). Different from the previous
experimental results, this analysis has been carried out only for
the second data set (France) since a reliable identification of
the different crop types in the Czech Republic is not possible
by photointerpretation.

The proposed method was compared with the Bayesian
uncertainty evaluation strategy, which is used in sample selec-
tion [55]. To this end, first, the prior probabilities and the
conditional density functions of the land-cover classes were
estimated by using the 2018 CLC thematic product and the TS
of Sentinel 2 images. Then, for each sample, we computed the
Bayes decision rule that maximizes the posterior probability
(i.e., that minimizes the error probability in the sense of
Bayesian theory) [55]. Only the most reliable samples per class
were selected to generate the training set.

Table IX reports the comparison between the labels of the
training units automatically extracted from the map and the
ones assigned by photointerpretation for both the proposed
method and the Bayesian strategy. For each class, the number
of samples extracted is presented. Moreover, the classification
results obtained on the validation set with the considered
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TABLE IX

COMPARISON BETWEEN THE TRAINING LABELS AUTOMATICALLY EXTRACTED FROM THE THEMATIC PRODUCT AND THE ONES ASSIGNED BY
PHOTOINTERPRETATION AND CLASSIFICATION RESULTS OBTAINED ON THE VALIDATION SET. THE OVERALL ACCURACY (OA%) AND F-SCORE

(F1%) ARE REPORTED FOR: 1) THE PROPOSED METHOD AND 2) A BAYESIAN UNCERTAINTY METHOD. THE NUMBER OF TRAINING UNITS

EXTRACTED PER CLASS IS REPORTED

training sets are reported. In particular, the OA% and F1%
scores are presented for the proposed method and the Bayesian
uncertainty strategy. Note that the results obtained with the
proposed method on the validation set are the same as
in Table VIII and are replicated here to help the reader
in the comparison with the Bayesian method. As expected,
the Bayesian approach is able to select more reliable samples,
by selecting the samples closer to the cores of the land-cover
Gaussian distributions. However, the results on the validation
set demonstrate the importance of selecting also training
units that describes more complex classes and better repre-
sent their distributions. Although the training set extracted
with the proposed method is slightly less accurate compared
with the Bayesian ones, the proposed approach allows for
a database of labeled units, which is more representative of
the considered study area. This is particularly evident for
semantically aggregated classes, such as “Irrigated Crops,”
where the selection of most reliable training units leads to
a poor representation of all the land-cover classes aggregated
under the same semantic label (i.e., the F1% of the Bayesian
method is 29.03 on the validation set compared with the
73.21 of the proposed method). In contrast, due to the semantic
and spatial decomposition steps, the proposed method achieves
high F1% scores for all the land-covers.

IX. CONCLUSION

In this article, we have presented a novel approach to
the automatic extraction of labeled units from existing car-
tographic products. The goal is to extract training samples
having the highest probability of being correctly associated
with their labels according to the information provided by the
satellite RS data. The main assumptions of the approach are
that: 1) RS data contemporary to the map used for extracting

the labels of the units are available; 2) the vector map has been
converted into raster and accurately coregistered to the RS
data; and 3) the map legend has been converted into an exhaus-
tive set of classes discriminable with the considered RS image.
In the considered implementation, we focused the attention
on satellite MS optical data. To prove the effectiveness of
the proposed approach, we considered two thematic products
characterized by different spatial properties and classifications
scheme: a 2015 crop type map of the Czech Republic and the
2018 CLC map representing a study area located in France.

The crop type map has a better spatial resolution compared
with the 2018 CLC map (i.e., smaller mapping units). How-
ever, it represents a complex data set since it is characterized
by a classification scheme that is made up very similar culti-
vations, where many semantic classes are present. Moreover,
due to the crop rotation practice, the update of this thematic
product is not trivial since many changes happened on the
ground. In contrast, the 2018 CLC map is characterized by
a minimum mapping unit of 25 Ha, which leads to large
polygons that include many pixels associated with wrong
labels. Moreover, its classification scheme is characterized by
spatially aggregated classes, semantically aggregated classes,
and land-use and land-cover classes. Thus, this data set demon-
strates the importance of performing the spatial and semantic
decompositions to extract a reliable and informative database
of labeled units.

From the results obtained, one can observe that the pro-
posed system outperforms the baseline methods in both the
experiments. By accurately understanding the properties of
the considered map, the proposed approach is able to convert
the thematic product into a set of land-cover classes that can
be discriminated by the spectral properties of the MS data.
For each polygon, the approach accurately extracts (in an
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unsupervised way) the pixels that have a high probability to
be correctly associated with their labels. This spatial decom-
position step strongly increases the probability of extracting
reliable labeled units from the maps. Although the spatial
decomposition is fundamental to increase the probability of
selecting correctly labeled units, to generate an informative
training set, it is fundamental to accurately decompose the
thematic product from the semantic viewpoint. The importance
of this step is highlighted by the capability of the proposed
approach to achieve accurate classification results on the
semantically aggregated classes.

As future developments, we aim to exploit the proposed
system to extract huge databases of labeled units from existing
thematic products to train deep networks tailored to the
specific properties of RS data. Indeed, even though deep
architectures typically outperform standard machine learning
classification systems, their main bottleneck is the need for
hundreds of labeled units to train the network to avoid overfit-
ting problems. While, in the computer vision community, huge
databases of training samples have been created, when moving
to the RS community, we clash with the major problem of
limited training data. In this context, the proposed approach is
promising to generate in an unsupervised way large databases
of weak training samples to train the network. Moreover,
we plan to investigate the possibility of integrating the pro-
posed method with a further step, which aims to detect new
land-cover classes that may appear in the most recent RS data.
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