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Abstract— High-resolution land cover mapping over large
areas is a challenging task due to the lack of high-quality
labels. A potential solution is to leverage the existing knowledge
contained in the freely available lower-resolution land cover
products. However, the relatively low resolution and low accuracy
of the products lead to numerous inaccurate labels, which harms
the performance of the neural network. This article addresses
the challenge by jointly optimizing the network parameters and
correcting the noisy labels with a novel online noise correction
approach and a synergistic noise correction loss. By incorporating
the information entropy as a measurement to determine the
probable correct labels, the proposed noise correction approach
learns to make effective correction of the noisy labels during
training and eventually boosts the performance with a training
set containing less noisy labels. Experimental results show that
the proposed method can effectively correct the noisy labels and
reduce their negative impact on network training. By employing
the proposed method, we produce a refined high-resolution (3-m)
land cover map from a lower-resolution (10-m) product in China
and improve the accuracy from 74.96% (10-m) to 81.32% (3-m).
Such an approach that can effectively learn from noisy data sets
leads to many potential opportunities for using and magnifying
existing knowledge and results.

Index Terms— Deep learning, high-resolution imagery, noisy
label, semantic segmentation.

I. INTRODUCTION

H IGH-RESOLUTION land cover maps provide neces-
sary information for detailed national land resource
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Fig. 1. Examples of a large-scale data set built by existing public land cover
products and corresponding land cover mapping results of existing work [7].
(a) Image. (b) Ground truth. (c) Original noise label. (d) Result of baseline [7].

survey, spatial planning, and many sustainability-related appli-
cations [1]. Supervised deep learning methods have been
a widely adopted approach for this task [2]–[5]. However,
training a deep neural network (DNN) requires a vast number
of accurately annotated images. As high-resolution satellite
image interpretation is labor-intensive, time-consuming, and
it especially demands a high level of expertise, existing
high-resolution benchmark land cover segmentation data sets
are scarce over large areas [6].

To address the above issue, some studies begin to utilize
existing public land cover products, produced by automated
and semiautomated processes, to build large-scale data sets [6],
[7]. For example, the 2020 Data Fusion Contest [8] use the
SEN12MS data set, which integrates the Sentinel 1/2 imagery
and moderate resolution imaging spectroradiometer (MODIS)-
derived low-resolution land cover maps. This challenge aims
to train classification models for high-resolution land cover
prediction from low-resolution annotations. However, as sum-
marized by Grekousis et al. [9], the overall accuracies of the
global and regional land cover products are between 64% and
88%. Besides, these large-scale land cover products with lower
resolutions (range from 10 to 1000-m) need to be upsampled
to a higher resolution to build pairing segmentation data for
high-resolution land cover mapping. As a result, large-scale
data sets made by existing public land cover products could
contain plenty of inaccurate labels.

As shown in Fig. 1(a) and (c), Dong et al. [7]
built a large-scale data set by using the 3-m resolution
satellite images and 10-m resolution land cover product.
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Although Dong et al. [7] have demonstrated that training a
DNN directly on the noisy data set can achieve improved
results compared with the original low-resolution products [as
shown in Fig. 1(c) and (d)], the results still suffer from some
confusion between different land cover types. The reason is
that DNNs can learn or memorize on any training data set [10].
Thus, the network is under the risk of overfitting to the noisy
data. In other words, the performance of DNN can be further
improved by handling the noisy label [11].

The traditional noise correction and boundary smoothing
methods, such as the fully connected conditional random fields
(CRFs) [12], can reduce the local noise and optimize the
boundary between different categories. However, the type of
noise in our application is quite different from the pure local
noise. The noise in our application comes from not only the
missing details in lower-resolution labels (e.g., narrow roads
and rivers) but also the confusion between different land cover
types over a vast region. As a result, the noise in our case can
be regarded as class-dependent and global noise. Therefore,
traditional methods cannot correct such global noise in this
task.

In the computer vision domain, there are many studies
focusing on handling noisy labels on classification tasks
[10], [13], where the large-scale data sets are collected from
websites. However, existing methods that deal with noisy
labels on the classification task cannot be directly applied to or
cannot obtain the same effect on the segmentation task [14].
The reason is that we should consider the inner-connection
between labels in each image and the demand for fine bound-
aries on the segmentation task. Meanwhile, the handling of
noisy labels is also involved in the methods of weak supervi-
sion and coarse labeling problems on the segmentation task.
However, confronted with different real-world challenges,
researchers often find the optimal solutions by utilizing the
characteristics of the specific noise scenarios.

In this work, we use a large-scale data set built by com-
bining the latest 10-m resolution land cover product (with an
overall accuracy (OA) of 72.8% at the global scale) [15] with
the 3-m resolution satellite images [7]. The data set provides a
real-world challenge of training with noisy labels. We propose
a workflow with a novel online noise correction approach that
can correct the noisy labels during the training stage to obtain
a relatively clean training set. By employing the proposed
approach, we train the network with the corrected labels to
achieve higher performance. The contributions of our work
are summarized as follows.

1) In the land cover mapping application, we propose a
pixel-level noise correction approach, which alleviates
the influence of noisy labels during training and facili-
tates better segmentation performance. Our approach can
be regarded as a data pre-processing mechanism and is
compatible with other noise handling methods.

2) We demonstrate that the proposed approach can itera-
tively correct the noisy labels by introducing an uncer-
tainty estimation module, an adaptive noise correction
module, and a synergistic noise correction loss.

3) We validate the effectiveness of our proposed approach
in both the real-world scenario and the simulated

scenarios. We also produce the 3-m resolution land
cover maps for the whole of China, and part of the
detailed results is published at https://rs.sensetime.com/
land.html.

II. RELATED WORK

A. Use of Large-Scale Public Data With Noisy Labels
in Land Cover Mapping

With the rapid development in land cover mapping stud-
ies over the past few decades, many large-scale or even
global-scale land cover products have become available
[16]–[19]. Although these products contain plenty of noisy
labels, they are free of charge and contain a lot of existing
knowledge. Therefore, some studies begin to utilize these
publicly available data to avoid annotating a vast amount
of training data. Kaiser et al. [20] demonstrated that the
large-scale data in spite of low accuracy can replace a sub-
stantial part (85% in this case) of the manually annotated
high-quality data, with which the network can still achieve
reasonable performance. Lee et al. [21] applied an improve-
ment of the Bayesian Updating of Land Cover (BULC) algo-
rithm sharpening the land cover product from a 300 to 30-m
classification. Schmitt et al. [22] built a large-scale data set
fusing the high-resolution (10-m) images and low-resolution
(250 to 1000-m) land cover products. They apply off-the-shelf
deep learning and machine learning models to demonstrate
the challenges and opportunities of this data set [6]. However,
the above studies directly train on the noisy data set and do
not address the negative impact of a large amount of noise in
the data set.

Some studies utilize these large-scale “imperfect” data sets
while trying to reduce the impact of the noise. For example,
Maggiori et al. [23] initialized the network with a large amount
of possibly inaccurate reference data, and then refine the net-
work on a small amount of accurately labeled data. However,
in most cases, the annotation of the high-resolution clean
data sets is usually limited to certain regions, which limits
these methods’ application scope. Malkin et al. [24] presented
a label super-resolution network using the joint distribution
between the low-resolution and high-resolution labels for
super-resolving the coarse labels. Based on this noise-robust
method, Robinson et al. [3] fused a 30-m resolution public
product and the 1-m resolution high-quality labels to improve
the generalization ability of the model. Maas et al. [25] pro-
posed a label noise-tolerant random forest for the classification
of remote sensing data. Damodaran et al. [26] proposed a
classification loss with entropic optimal transport (CLEOT)
to learn robust DNNs under label noise in remote sensing.
However, although the noise-robust method aims to reduce
the impact of noise, it is difficult to completely avoid the
influence of the noisy labels when keeping those labels during
training. Dong et al. [7] combined the state-of-the-art 10-m
resolution land cover product and 3-m resolution satellite
images, and automatically choose the relatively high-quality
data and remove the low-quality data based on the similarities.
However, this method only evaluates the quality at the image
level and cannot handle the noise at the pixel level.
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In this work, we use the 10-m resolution land cover product
and up-sample it to 3-m resolution as a starting data set with
noisy labels, and then propose a pixel-level noise correction
approach to use the data set for 3-m resolution land cover
mapping.

B. Learning With Noisy Labels in the Computer Vision
Domain

Label noise is a significant problem in the computer vision
domain. Frénay and Verleysen [27] surveyed relatively early
methods. Rolnick et al. [28] demonstrated that DNNs are
promising in noise handling. Deep learning methods have
achieved state-of-the-art results in recent years. Therefore,
we mainly review the existing noise handling methods in deep
learning on both classification and segmentation tasks.

1) On Classification Tasks: Noise handling methods can
be roughly divided into two categories: noise-cleansing-based
methods [29], [30] and noise-robust methods [10], [31]. Some
studies attempt to detect noisy labels and then prune potential
noisy labels or reduce the impact of noise. For example,
Northcutt et al. [30] used the predicted probabilities to deter-
mine the uncertainty of each label and prune noisy images.
Huang et al. [32] proposed a noisy label detection approach by
the normalized average loss of a sample. Alternatively, some
studies gradually correct noisy labels by the predictions of
DNN to improve the quality of the raw labels [13], [33]. For
example, Sukhbaatar and Fergus [34] used a clean data set
to estimate the noisy data and correct them by DNN. Yi and
Wu [13] iteratively updated both the network parameters and
probability distributions of the labels. Our proposed approach
is inspired by this work but is designed for the pixel-level
noise correction instead of the image-level one. To deal with
the pixel-level noise and storage consumption of probability
distributions, we propose an online noise correction approach
that is more effective for segmentation tasks.

Most of the noise-robust methods modify the loss function
to achieve noise-robust classification. Ghosh et al. [35], [36]
proved the mean absolute error (MAE) is robust against noisy
labels and used it for noise-tolerant loss function. The gener-
alized cross-entropy (GCE) loss is a generalization of MAE
and categorical cross-entropy loss for both noisy robustness
and reduced the difficulty in training [31]. The symmetric
cross-entropy loss (SCE) is created to address both the insuffi-
cient training and overfitting problem of cross-entropy on the
noisy data set [10]. Noise-robust methods can be easily applied
to segmentation tasks. Therefore, we compare our proposed
method with the GCE and SCE methods in this article.

2) On Segmentation Tasks: Pixel-level noise optimization
efforts mostly focus on weak labeling, coarse labeling, and
incomplete labeling [37], [38]. Researchers apply different
prior knowledge and construct a particular model to differ-
ent scenarios. For example, Lu et al. [39] cast the weakly
supervised semantic segmentation problem into a noise reduc-
tion problem and propose a super-pixel label noise reduction
model. Ibrahim et al. [40] proposed a semisupervised approach
to utilize both a fine-labeled data set and a weakly labeled
data set. This approach uses the fine-labeled data set and an

ancillary model to correct the noisy labels. Vicente et al. [41]
addressed incomplete labeling in the shadow detection task
by jointly learning a shadow region classifier and recovering
the labels in the training set. Damodaran et al. [42] pro-
posed Wasserstein Adversarial Regularization (WAR) for both
classification and semantic segmentation problems, which use
distances between word embeddings of the class names to
derive a semantic ground cost. However, due to the complexity
of scenes in different applications, noise label removal in
segmentation is still underexplored. Without a fine-labeled data
set or reliable foreground annotation, we propose an adaptive
noise correction approach that is different from the previous
ones.

III. APPROACH

Assume that a training set of high-resolution satellite
imagery and noisy labels is given. The set of N training images
is denoted as X = {xi |xi ∈ R

H×W×C, i = 1, 2, . . . , N},
where each image xi has a height of H , a width of W , and
a channel depth of C . The associated label set is denoted as
Y = {yi |yi ∈ [1, . . . , L]H×W , i = 1, 2, . . . , N}, where L is
the number of classes. Generally, the optimization problem
on clean data involves minimizing a standard loss function L,
such as the cross-entropy loss, with respect to the network
parameters θ , i.e., min

θ
L(θ |X, Y ). However, in our task with

the noisy labels, models trained with such a standard loss
function are subject to being misled by the incorrect labels.

In this work, we jointly optimize network parameters and
noisy labels, i.e., min

θ,Y
L(θ, Y |X). We define the predicted dis-

tribution as Ŷ d = f (X; θ), where f is the model’s prediction
processed by the softmax function, and the updated label set as
Ŷ = {ŷi |ŷi ∈ [1, . . . , L]H×W , i = 1, 2, . . . , N}. At the start of
the training, Ŷ is initialized by Y , i.e., Ŷ = Y . In the training
epoch t , we obtain Ŷ (t) by updating the label Ŷ (t−1) from last
epoch t−1, of which the details are presented in Section III-B.
The final updated label set is denoted as Ŷ (T ), where T is the
number of the total training epochs.

The noise correction framework is shown in Fig. 2. The
convolutional neural network (CNN) backbone is trained to
predict the class probability distribution of each pixel. The
uncertainty estimation module calculates the uncertainty map
based on the class probability distributions. Then, an adaptive
noise correction module is introduced to determine the portion
of labels that needs to be updated. We update the network
parameters θ and label ŷi through forward computation and
backward propagation in each mini-batch step. To facilitate
more accurate label correction, we apply a synergistic noise
correction loss to make use of the original correct labels, while
benefitting from the updated labels in the iterative process. In
Sections III-A–III-C, we elaborate on each module and the
overall procedures of the proposed approach.

A. CNN Backbone and Loss Function

We use the semantic segmentation method to estimate
the class probability distribution. Various commonly adopted
segmentation models can be applied as the CNN backbone,
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Fig. 2. Noise correction learning framework. It jointly optimizes network parameters and noisy labels through an online noise correction approach and a
synergistic noise correction loss.

such as the U-Net [43] and fully convolutional denseNets
(FC-DenseNet) [44]. We apply the high-resolution network
(HRNet) [45] as the CNN backbone, as it can maintain strong
high-resolution representations and achieves favorable perfor-
mance against state-of-the-art methods in land cover mapping.
We also adopt the same generalization strategy as Dong
et al. [7] to maintain stable performance in different areas
or different satellite image sources. The batch normalization
(BN) [46] layer after the first convolution layer is replaced
with the instance normalization (IN) [47].

The loss function is the cross-entropy loss between the
predicted class probability distribution and the updated labels
from the last epoch. In this way, the network can iteratively
utilize better annotated data. However, to produce more reli-
able label correction, the original labels are also utilized for
training because they contain a decent proportion of correct
labels. Therefore, we propose a noise correction loss function
L(θ, Y |X), which consists of two terms and is formulated as

L(θ, Y |X) = Lce
(
θ, Ŷ

) + αLce(θ, Y ) (1)

where Lce(θ, Ŷ ) and Lce(θ, Y ) denote a cross-entropy loss
with the updated label and a cross-entropy loss with the
original noisy label, respectively. α is a hyperparameter that
balances the two loss terms during training.

The term Lce(θ, Ŷ ) is the primary loss which guides the
update of the network parameters θ . It is noted that the updated
labels used in each epoch are obtained from the last epoch
through the noise correction module. Lce(θ, Ŷ ) is defined as

Lce
(
θ, Ŷ

) = −
H×W∑
m=1

L∑
j=1

ŷm, j log fm(xm; θ). (2)

To prevent increasingly coarse boundary, we also keep the
original noisy label Y in use, Lce(θ, Y ) is defined as

Lce(θ, Y ) = −
H×W∑
m=1

L∑
j=1

ym, j log fm(xm; θ). (3)

B. Online Noise Correction Approach

As the image quality and scenario complexity of each satel-
lite image are different, we update the labels of each image
independently rather than rely on the statistical information of
all images. The independent update strategy makes it possible
to correct the labels in every mini-batch training step rather
than after every training epoch, which improves the training
efficiency by avoiding an extra inference process on the entire
training data set. After each mini-batch training step, we only
record the single label with the maximal probability rather than
a class probability distribution for each pixel, which facilitates
the reduction of the memory consumption on a large data set.
Note that all labels on the entire data set are updated in every
training epoch.

1) Uncertainty Estimation: For each image, we utilize the
output of the CNN backbone, i.e., the class probability dis-
tribution Ŷ d , to estimate the uncertainty of the prediction by
using the entropy as the measurement. We choose the largest
and the second largest probability values of each pixel to
calculate the uncertainty. The reason why we do not use all
probability values of the distribution is that the distribution
of other classes could introduce redundant information for
determining whether the pixel label needs to be updated. Then,
we normalize the two probability values. The uncertainty value
ui at a pixel is defined as

ui = −(ŷmax log ŷmax + ŷsec log ŷsec). (4)

We define an uncertainty map U composed of the uncer-
tainty values of all pixels on an image, where ui ∈ (0, log 2).
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A smaller value of ui indicates less uncertainty, and the
corresponding prediction label is more likely to be ground
truth.

2) Adaptive Noise Correction: We utilize the uncertainty
map U obtained from the uncertainty estimation module to
determine the pixels that need to be updated. Due to the
different scenario complexity of each image, using a fixed
threshold for label updates is unreasonable, which may lead to
insufficient or excessive updates on different images. There-
fore, an adaptive threshold vi is adopted for each image.
We calculate the mean value of each uncertainty map as
its updated threshold, which empirically facilitates effective
updates on different images. To avoid insufficient updates
using relatively low mean values in simple scenarios, thresh-
olds below K are truncated to K . The adaptive noise correction
threshold for each image is formulated as

vi =
{

meanH×W (ci), if meanH×W (ci ) > K

K , if meanH×W (ci ) ≤ K .
(5)

The predicted labels at different pixels on an image are
treated as the correct predicted labels if the corresponding
uncertainty values are below the threshold. If the current labels
are inconsistent with the correct predicted labels, they will
be considered as noisy labels and corrected to the correct
predicted labels.

C. Overall Procedure of the Proposed Approach

The overall training procedure consists of three phases.
In the first phase, we obtain the initial network parameters
for the next phase of noise correction by training the back-
bone network from scratch with only the cross-entropy loss
Lce(θ, Y ) between the predictions and original labels. To avoid
overfitting to the noisy labels, we use a fixed learning rate and
train only a few epochs. In the second phase, we perform
the correction of labels and obtain a relatively clean label
set. We jointly optimize network parameters and noisy labels,
in which a fixed learning rate is adopted to prevent overfitting
to updated labels. In the third phase, we use the final updated
label set Ŷ (T ) to train the network from scratch with a gradu-
ally reduced learning rate as in standard network training. Note
that other noise handling methods can be easily integrated into
the third step of our pipeline to boost the performance even
further.

D. Implementation Details

The size of the input image is 513 × 513 pixels, which
is an empirically optimal input size considering the receptive
field and GPU memory in the high-resolution land cover
mapping scenario. All networks are trained using stochastic
gradient descent (SGD) with a momentum of 0.9, and a weight
decay of 10−4. We use the largest mini-batch that can fit
in GPU memory (i.e., a batch size of 2 for a single GPU).
We implement the algorithms using synchronized BN over
16 NVIDIA 1080Ti GPUs, with a total batch size of 32.
In the first phase of our approach, we train the network for
10 epochs with a fixed learning rate of 0.01. In the second

phase, we use the network parameters obtained in the last
phase as initialization and set the fixed learning rate to 0.01.
The network is trained for 30 epochs until no obvious changes
of the labels are observed. The hyperparameter α in the loss
function is set to 0.2. We set K = 0.1 to truncate the
noise correction thresholds. In the final phase, the network
is trained from scratch for 50 epochs with an initial learning
rate of 0.01 on the corrected labels obtained in the last phase.
We schedule the learning rate using the “poly” policy, in which
the learning rate is scaled by (1 − (iter/total_iter))0.9 [48].

IV. EXPERIMENTS

A. Data Sets

The evaluation is performed on two data sets, which are
the planet image data set (PID) [7] and the GaoFen image
data set (GID) [4]. PID is a large-scale noise data set of land
cover mapping in China. GID is a well-annotated land cover
segmentation data set in China with various scenes and large
distribution [4]. To gain more insights into the effect of the
noise correction approach in the land cover task, we simulate
the noisy scene and conduct the noise-controlled experiments
on the training data set of GID.

1) Planet Image Data Set: We fuse the 3-m resolution
Planet satellite images and the latest public 10-m resolution
land cover product, Finer Resolution Observation and
Monitoring of Global Land Cover (FROM-GLC10),
to build the training data set. The Planet images were
acquired from Planet satellites with four bands [R, G,
B, near-infrared response (NIR)] in June, 2017. Planet
satellite images are downloaded through Planet application
programming interface (API) (https://www.planet.com/
products/platform), which has a screening function for clouds.
The Radiometric correction has been applied to the data. The
Planet images that we download are less than 15% cloud
cover. FROM-GLC10 was produced by a random forest
classifier for global land cover mapping in 2017. FROM-
GLC10 includes ten land cover types (i.e., Cropland, Forest,
Grassland, Shrubland, Wetland, Water, Tundra, Impervious,
Bare land, and Snow/Ice) and achieves an OA of 72.8%.
The training data set contains 210 000 images of 513 × 513
pixels, covering about 5% of China (i.e., 500 000 km2).

Planet image test data set (PITD) is a human-annotated land
cover segmentation data set. PITD is collected from China
and contains 165 manually labeled 1024 × 1024 images.
PITD includes six land cover types (i.e., Cropland, Forest,
Grassland, Water, Impervious, and Bare land). Note that the
PITD is a pixel-level annotated data set, instead of a point-level
annotated test data set in [7]. Fig. 3 shows the distribution and
examples of PITD, and Table I lists the proportion of each land
cover type of PITD.

2) GaoFen Image Data Set: GID is a public land cover
data set collected from China. The images are acquired from
Gaofen-2 satellites. Gaofen-2 images are 4-m resolution with
four bands (R, G, B, and NIR). GID contains 120 training
images and 30 validation images, each with a size of 6800 ×
7200 pixels. GID includes five land cover types (i.e., Farmland,
Forest, Meadow, Water, and Built-up). Note that our land cover
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Fig. 3. Distribution and examples of PITD. (a) Distribution of PITD. (b) Examples of PITD.

TABLE I

PERCENTAGE OF EACH LAND COVER TYPE ON PITD

mapping results consist of ten types, which cover all the types
of GID.

B. Results on PID

PID is a large-scale land cover segmentation data set.
Although PID contains a certain degree of noise, DNN can
still learn the existing knowledge contained in PID and obtain
reasonable results. Therefore, we first analyze the baseline
model which is trained without the noise correction. Then,
we compare our proposed method with the baseline method
and two noise-robust methods.

1) Baseline Method: We use the cross-entropy loss
Lce(θ, Y ) to train the baseline model without noise correction.
The baseline model is trained for 50 epochs with an initial
learning rate of 0.01 and the “poly” policy for scheduling the
learning rate scaling. Note that all the experimental settings are
the same as those in the final phase of our proposed method
except for the labels. We use 40 human-annotated images as
the validation set to collect the model. For evaluation, we adopt
the Overall Accuracy (OA) and the mean-Intersection-over-
Union (mIoU) as the performance metrics. The results of
the baseline model are presented in Table II. Compared with
the 10-m resolution land cover product, which is treated as
noisy labels in this work, the baseline method can improve
the OA from 74.96% to 79.74% on the PITD. Thanks to the
rich texture information in higher resolution satellite images,
even though trained on the noisy data, the DNN can still
achieve reasonable results. However, there are still some short-
comings with the results of the baseline model. Specifically,
the vegetation classes (e.g., Cropland and Grassland) are easily

TABLE II

EVALUATION ON THE PITD AND GID DATA SETS. THE MODELS

ARE TRAINED ON THE PID. THE AVERAGE SCORE OF

FIVE TRIALS IS REPORTED

confused, as shown in the blue rectangles in Fig. 1. The
narrow roads (belonging to impervious type) are difficult to
be identified, as shown in the red rectangles in Fig. 1. These
problems are caused by the noise in the original labels, e.g.,
the disappearance of details and the serious confusion between
vegetation types. To tackle these problems, we can gradually
correct the original noise labels using the proposed method
and hence, reduce the negative impact of the noisy labels.

2) Comparison Results: We train the model using the
proposed method on the PID and evaluate the performance
on both the PITD and the GaoFen image validation data
set. As the noise-robust methods can also be applied to the
segmentation problem, we evaluate the GCE loss [31] and
SCE loss [10] with the backbone and training strategy that
is the same as the baseline on the segmentation task. For the
hyperparameters in these two noise-robust methods, we use
noise-robust coefficient q = 0.7 for the GCE loss, and loss
weight α = 1 of cross-entropy, loss weight β = 0.025 of
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Fig. 4. Visualization of the land cover mapping results on the PITD. The models are trained on the PID. (a) Image. (b) Ground truth. (c) Baseline. (d) GCE.
(e) SCE. (f) Ours.

reverse cross-entropy, and hyperparameter A = −4 for the
SCE loss. The implementation is based on the released codes
of these two works, and the parameter tuning is performed
according to the original parameter settings. The experimental
results are shown in Table II. The GCE loss achieves similar
accuracy compared to the baseline model, while the SCE loss
can obtain slightly better accuracy in both the PITD and GID
data sets. Although the GCE loss and SCE loss can improve
the robustness against the noisy labels, the impact of the
label noise remains serious especially when the noise rate is
high, leading to only a slight improvement of the accuracy.
However, the proposed method achieves significantly better
results than both the GCE and SCE methods on this task.
As shown in Figs. 4 and 5, the proposed method can produce
a more accurate segmentation of the linear objectives (e.g.,
road) and reduce the confusion between vegetation classes
(e.g., Cropland and Grassland).

3) Results for Each Land Cover Type on PITD: To further
understand the effectiveness of the proposed method, we ana-
lyze the results for each land cover type on PITD. Table III lists
the Precision, Recall, and F1-score for each type. It can be seen
that the effectiveness of our method for each type is related
to its original accuracy. The original F1-scores of cropland,
water, and impervious types are between 50%–80%, and our
method can increase the F1-score by 1.5%–2% compared with
the baseline. The original F1-scores of forest and bare land
types are higher than 80%, and the improvements of F1-score
are about 0.6%. However, the original F1-score of grassland is
38.31%, and the performance of our method is reduced by 1%

compared with the baseline. The reason is that the initial model
cannot provide a reasonable estimation of grassland from the
original noise label.

C. Results on GID

To evaluate the performance of the proposed approach
under different noise levels and types, we corrupt the train-
ing set labels of the GID by applying various percentages
of pixel-level and object-level noise. Specifically, for the
pixel-level noise, we first use the original training data of
GID to train the segmentation model, i.e., without adding label
noise. Then, each image of the training data is evaluated by
the resulting model to produce the class prediction for each
pixel. The easily-confused class for each pixel is recorded as
asymmetric label noise. We define the easily-confused class for
each pixel as the predicted class for the incorrect prediction
or the class with the second-largest probability for the correct
prediction. Then, we randomly select 40%, 50%, and 60%
pixels of each image, respectively, to change the original
label to the easily-confused class. For the object-level noises,
we first use a simple linear iterative cluster (SLIC) algorithm
[49] to segment the image. SLIC adopts a k-means clustering
approach to generate superpixels for each image, and the
resulting clusters can be regarded as objects. We randomly
select 20%, 30%, and 40% objects of each image, respectively,
to flip labels.

We use the same CNN backbone and training strategy
as introduced in Section III-C. The experimental results are
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Fig. 5. Visualization of the land cover mapping results on the Gaofen image validation data set. The models are trained on the PID. (a) Image. (b) Ground
truth. (c) Baseline. (d) GCE. (e) SCE. (f) Ours.

TABLE III

SUMMARY OF THE EXPERIMENTAL RESULTS (%) FOR EACH CLASS ON PITD. THE MODELS ARE TRAINED ON THE PID

TABLE IV

EXPERIMENTAL RESULTS (%) OF DIFFERENT MODELS ON THE GID WITH VARIOUS PERCENTAGES OF PIXEL-LEVEL

AND OBJECT-LEVEL NOISY LABELS

shown in Table IV. The baseline results of different noise level
data show that label noise degrades segmentation performance.
However, the proposed method performs consistently better
compared with the baseline method. As the percentage of
pixel-level noise increases, the proposed method achieves
more significant performance gains than the noise-robust meth-
ods (i.e., GCE and SCE). For the object-level noises, when
the training set contains 30% object-level noises, the results
of our method obtain the maximum benefit. Besides, we also

train the model on the training set with 70% pixel-level noise
or 50% object-level noise. Both the baseline experiments and
the proposed method fail in those settings. The reason is
that the noise correction is based on the probability estimate
from the baseline model. A baseline model obtained from a
training set with too much label noise will not produce reliable
enough class estimations adopted for the noise correction
approach. These findings shed light on the limits of the
proposed noise correction method and verify that it can work
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Fig. 6. Examples of the noise correction process on the training data set. Each row shows a sample image. (c)–(e) Demonstrate the iteratively updated
labels at different epochs in the noise correction process. Note that due to the high uncertainty value estimated by our method in the cloud coverage area,
the corresponding labels will not be updated. (a) Image. (b) Original noise label. (c) Epoch 1. (d) Epoch 15. (e) Epoch 25.

TABLE V

COMPARISON OF DIFFERENT THRESHOLDING STRATEGIES. THE MODELS
ARE TRAINED ON THE PID. WE EVALUATE THE RESULTS OF THE

FIXED THRESHOLD AND THE ADAPTIVE THRESHOLD ON BOTH THE

PITD AND THE GAOFEN IMAGE VALIDATION DATA SET. THE
AVERAGE SCORE OF FIVE TRIALS IS REPORTED

effectively when the pixel-level noise is no more than 60%,
or the object-level noise is no more than 40%.

D. Effectiveness of the Noise Correction

In this section, we present a more detailed analysis of the
noise correction approach on the PID. The ablation studies
are conducted to investigate the importance of the adaptive
threshold. We also visualize and present statistics for the noise
correction process.

1) Fixed Threshold Versus Adaptive Threshold: We com-
pare the use of the fixed threshold and the adaptive threshold
on the noise correction module. The fixed threshold is empir-
ically set to 0.1, which is decided based on the ablation study
in Section V-A.2. As shown in Table V, our method obtains
consistently better performance than the baseline model for
both the fixed threshold and the adaptive threshold. The results
demonstrate that the noise correction approach effectively
corrects the noisy labels and thus maintains good performance
despite the noise. Moreover, using the adaptive threshold
achieves 0.28% and 1.44% improvement in OA and 0.24%
and 1.54% improvement in mIoU on the two test data sets,
respectively, compared with using a fixed threshold. The
reason is that the adaptive threshold considers that different
images have different levels of uncertainty, enabling a more
reasonable selection of the labels that need to be corrected.

2) Visualization and Analysis of the Noise Correction:
Example training images for the noise correction are shown
in Fig. 6. As shown in the red rectangles, a clear road
and buildings (both belonging to the impervious class) are
gradually emerging during the noise correction phase although
they are initially confused with the grassland and cropland.
Also, the mislabeled impervious is corrected into the crop-
land, as shown in the blue rectangles. The black rectangles
show that large tracts of pixels, mislabeled as grassland, are
gradually updated to the correct cropland. Therefore, these
examples reveal that the proposed noise correction approach
can effectively eliminate the noise. Besides, we empirically
find that the results become stable after 25 epochs during the
noise correction phase. In the last few epochs, only minor
improvement is observed for the updated results, which means
that the noise correction phase is gradually converging.

3) Statistics of the Noise Correction: We calculate the total
noise correction ratio on the training data set as 6.03%. Fig. 7
reports the transfer matrix of the label updates between classes,
where each number is calculated by (the number of label
updates from class A to B)/(total number of label updates
from class A). Each row is interpreted as the distribution of
the new classes that the original class is transferred to. Larger
values in the transfer matrix indicate that the two classes are
more likely to be confused in original noise labels.

E. Land Cover Mapping for China

As an application of the proposed approach, we produce
the first 3-m resolution land cover map for the whole of
China, as shown in Fig. 8(a). The time distribution of Planet
satellite images used for land cover mapping in China is shown
in Fig. 8(b). The Planet satellite images are collected in June,
2018, and March, 2019. There is a total of 26 000 image tiles
with a size of 8000 × 8000 pixels in China. The prediction
of each image tile using the proposed method takes 15 min
on a single NVIDIA TITAN Xp GPU. We produce the land
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Fig. 7. Transfer matrix of the updated labels between classes. Each row
is interpreted as the distribution of the new classes that the original class is
transferred to. We ignore no updated labels and set the value on the diagonal
to 0. The transfer distribution for each class is normalized.

TABLE VI

COMPARISON RESULTS OF DIFFERENT LOSS WEIGHTS ON GID.
THE AVERAGE SCORE OF FIVE TRIALS IS REPORTED

cover map for the whole of China within 3 days on 64 NVIDIA
TITAN Xp GPUs. Here, we show the more detailed land cover
map of Beijing in Fig. 9 as an example. We can see that,
even though the training starts from a faulty lower-resolution
result, our proposed approach can effectively produce refined
3-m resolution land cover maps. Compared with the latest
GlobeLand30 2020 data set [50], we can see the advantages
of the 3-m resolution land cover map.

V. DISCUSSIONS

A. Discussion of Hyperparameters

In this section, we discuss the setting of hyperparameters,
i.e., the loss weight and threshold truncation K , of the pro-
posed method.

1) Loss Weight α: α is a hyperparameter that balances the
two loss terms, i.e., Lce(θ, Ŷ ) and Lce(θ, Y ), in (1) during
training. Lce(θ, Ŷ ) and Lce(θ, Y ) denote the cross-entropy loss
with the updated label and the cross-entropy loss with the
original noise label, respectively. Therefore, a large α indicates
that network training is more dependent on the original labels.
We experiment with different loss weights on GID with
50% pixel-level noise, and the comparison results are shown
in Table VI. When α = 0, i.e., we only use the cross-entropy
loss with the updated label, the performance drops significantly
compared with other settings. Therefore, it is necessary to
employ both the original labels and the updated labels for
training since plenty of correct labels are contained in the
original labels. It also shows that an appropriate weight of the

TABLE VII

COMPARISON RESULTS OF DIFFERENT TRUNCATIONS ON GID.
THE AVERAGE SCORE OF FIVE TRIALS IS REPORTED

TABLE VIII

RESULTS (%) OF OUR METHOD WITH DIFFERENT INITIAL MODEL.
THE MODELS ARE TRAINED ON THE PID

cross-entropy loss with the original labels is favorable for the
optimization of the model, while an excessive weight reduces
the benefit of the label correction process.

2) Threshold Truncation K : Due to the variations of the
uncertainty for different images, we use adaptive thresholds
to update the labels. A proper value of truncation K is needed
to alleviate the insufficient update problem when the inputs
are from simple scenes, leading to low thresholds. As shown
in Table VII, when K = 0, i.e., we do not use the threshold
truncation strategy, the mIoU is reduced by 0.94% compared
with K = 0.1. The best performance is observed when
K = 0.1, which is the setting we adopt in the experiments
of Section IV.

B. Discussion of the Initial Model

It is essential to provide a reasonable initial model to
estimate the uncertainty at the second phase. Therefore, in the
first phase, we use early stopping and fixed learning rate
strategies to prevent the initial model from overfitting to the
noisy labels. The early stopping criterion is to obtain the
highest accuracy on the validation set in the first phase. There
are some regularization techniques, e.g., dropout strategy,
which can be used to improve the performance of the initial
model. As shown in Table VIII, when the performance of the
first phase model is improved, our method can achieve better
results. Therefore, our method can be used in conjunction with
other regularization techniques to improve the performance.

C. Discussion of Spatial Heterogeneity in the Label Update
Process

In the second phase (i.e., noise correction phase), we use
the loss weight, threshold truncation K , and the number of
training epoch to control the label update. As a result, most of
the label updates are reasonable, as shown in Fig. 6. There is
inevitably a small number of errors in the update, which may
harm the spatial heterogeneity of the updated labels. However,
the small spatial heterogeneity loss of training data in the noise
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Fig. 8. 3-m resolution land cover map of China produced by the proposed approach. (a) 3-m resolution land cover map of China. (b) Time distribution of
the 3-m resolution land cover map.

Fig. 9. 3-m resolution land cover map of Beijing in 2018 and the comparison results of GlobeLand30 in 2020. (a) 3-m resolution land cover mapping results
of Beijing. (b) Planet image. (c) 3-m resolution land cover mapping results (ours). (d) GlobeLand30 in 2020.

correction phase has a minor effect on the spatial heterogeneity
on the final results obtained by the third phase (i.e., training the
network from scratch using the updated labels), because the
most updated labels are correct. Specifically, the total noise
correction ratio on the training data set is 6.03%, and most
of the correction can reduce the confusion between different
types over a vast region. As shown in Figs. 4 and 5(f) is
the result obtained by using the updated training data, and
Figs. 4 and 5(c) is the result obtained by using the original
training data. Figs. 4 and 5(f) not only have better spatial
heterogeneity than Figs. 4 and 5(c) (e.g., the road and water),
but also has a further improvement in accuracy.

D. Weaknesses and Potential Strategies for Further Research

In this section, we analyze the weaknesses of the pro-
posed method and introduce potential strategies for further

research. The first weakness involves the hyperparameter tun-
ing. Loss weight α controls the dependence on the original
labels in this work. We will encode this assumption into the
network, for example, in the last layer of the network or
using a separate branch to estimate α dynamically. This can
reduce the cost of the hyperparameter tuning and obtain a more
reasonable dynamic α during the training.

The second weakness concerns the applicability of our
approach. As the noise correction depends on the probability
estimation of the model obtained in the first phase, it requires
the baseline model to extract the useful information from the
original noise labels. If the original labels contain too much
noise (e.g., 70% noise), it is difficult for the noise correction
approaches to take effect. Therefore, we assume that the
excessive resolution difference (e.g., over ten times) between
the land cover products and high-resolution images is not
suitable for the noise correction methods. Similarly, if some

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 16:35:05 UTC from IEEE Xplore.  Restrictions apply. 



4402013 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

types individually contain too much noise in their original
labels, e.g., Shrubland, Wetland, Tundra, and Snow/Ice in
this work, it is hard to correct the labels for these types.
In future work, we will add a small number of manually
labeled samples of these types and employ few-shot learning
methods to improve the performance.

VI. CONCLUSION

In this article, we propose a noise correction approach for
large-scale land cover mapping. We demonstrate the proposed
method is effective on both the real-world noise data set and
the simulated noise data sets. Using the proposed approach
with the existing 10-m resolution land cover product, we pro-
duce the refined 3-m resolution land cover maps without any
human-labeled data. The noise correction approach would lead
to lots of potential opportunities to use existing knowledge and
results in remote sensing scenarios, such as road extraction
using Open Street Map (OSM) data. In future research, we will
further explore the characteristics of the noisy labels in the
land cover scenario, then utilize them as prior knowledge to
improve the results.
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