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Group Self-Paced Learning With a Time-Varying
Regularizer for Unsupervised Change Detection

Maoguo Gong , Senior Member, IEEE, Yingying Duan, and Hao Li

Abstract— Unsupervised change detection based on supervised
or semisupervised classifiers has achieved strong adaptability
and robustness to obtain satisfactory change detection results.
However, these methods suffer from an issue that it is hard
to collect reliable training samples in an unsupervised manner.
In this article, a group self-paced learning (GSPL) framework is
proposed to mine the reliable training samples. In the proposed
method, each sample is assigned a weight to indicate its reliability.
The proposed scheme is able to learn the weighted samples
and update the weights iteratively in a self-paced manner to
identify the reliable training samples. In the phase of updating
weights, a grouping strategy is designed to avoid selecting train-
ing samples from homogeneous regions. Furthermore, a novel
time-varying self-paced regularizer is proposed to automatically
determine the learning scheme of self-paced learning. Finally,
three classifiers, including SoftMax, backpropagation neural
network, and support vector machine, are investigated under this
proposed framework. Experiments on five change detection data
sets demonstrate that the proposed framework can significantly
outperform those state-of-art methods for change detection in
terms of accuracy and robustness.

Index Terms— Change detection, remote sensing image, self-
paced learning (SPL).

I. INTRODUCTION

CHANGE detection aims to detect unchanged and changed
areas between images of the same scene at different

times, which has attracted widespread interests in recent
years [1]–[4]. With the rapid development of various satel-
lite sensors, change detection in remote sensing images has
been applied in civil and military fields, such as glacier
changes monitoring [5], urbanization construction [6], damage
assessment [7], and flood monitoring [8]. The supervised [9],
semisupervised [10], and unsupervised [11] change detection
methods have been proposed to detect the changes between
two remote sensing images. Among them, the unsupervised
methods are popular because they do not require labels. The
threshold methods and the clustering methods are widely used
in unsupervised change detection. The threshold methods,
such as Otsu [12], Kittler–Illingworth (KI), [13], and
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expectation–maximization (EM) [14], aim to find the optimal
threshold value to distinguish the pixels into changed or
unchanged categories properly. The main idea of cluster-
ing methods is to maximize the similarity between pixels
belonging to the same class and minimize the similarity
between pixels of different classes. Many local and nonlocal
clustering methods have been proposed to deal with the
change detection problems, such as the fuzzy local information
C-means (FLICM) clustering algorithm [15] and the fuzzy
C-means (FCM) clustering algorithm with local information
and kernel metric (KWFLICM) [16].

To further improve the change detection performance, some
researchers have tried to introduce a supervised classifier into
the traditional unsupervised change detection method. Wu
et al. [17] first extracted speeded up robust features (SURF)
key points from both images and then matched them using the
random sample consensus algorithm to get training samples
of the changed and unchanged categories. An SVM classifier
was trained to obtain the change detection results. Li et al.
[18] employed an object-based Markov random field method
to obtain the training samples and then considered logistic
regression as the classifier to classify the features extracted
by stacked autoencoders into changed and unchanged classes.
The above-mentioned change detection methods are generally
unsupervised because the training samples are obtained in an
unsupervised manner.

There are two main issues to consider in current unsu-
pervised change detection methods based on the supervised
classifier. On the one hand, some acquired labels based on
unsupervised methods are inaccurate. On the other hand, it is
an urgent task to design an efficient classifier to deal with
inaccurate labels. In this article, self-paced learning (SPL)
is incorporated into traditional change detection methods to
address the above-mentioned issues. SPL is able to collect
reliable samples by automatically assigning weights to training
samples. Furthermore, SPL is able to identify outliers and
reduce their impact on the classifier by assigning their weights
to zero. Recently, SPL has been proven to be effective in
solving many problems, such as human behavior recognition
and long-term tracking [19], [20]. Self-paced convolutional
neural networks (NNs) [21] incorporated SPL into the con-
volutional NNs and achieved good classification results in
handwritten digit recognition. Shang et al. [22] proposed a
change detection method based on SPL to detect the changes
in synthetic aperture radar (SAR) images.

The multitemporal images may have several heterogeneous
regions. For example, the considered image may consist of
rivers, mountains, and forests. The unsupervised change detec-
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tion methods always tend to choose training samples from
homogeneous regions, which would prevent classifiers from
being well trained. In this article, a group SPL (GSPL) frame-
work with a time-varying regularizer is proposed for change
detection in multitemporal remote sensing images. To avoid
selecting training samples from the same region, a grouping
strategy based on superpixel segmentation is designed to
distinguish heterogeneous regions. In the proposed framework,
based on the acquired group information, the sample weights
are assigned according to the “easy first” and “more group”
principles. Furthermore, a time-varying self-paced regular-
izer is proposed to automatically provide reasonable learning
schemes for SPL.

The rest of this article is organized as follows: Section II
gives a brief introduction about the related background and
motivation of this article. The GSPL framework proposed for
change detection is presented in Section III. Experimental
details are given in Section IV. The conclusions are given
in Section V.

II. BACKGROUND AND MOTIVATION

A. Self-Paced Learning

Given training set D = {(x1, y1), . . . , (xn, yn)}, let xi ∈ Rm

represents the i th observed sample, yi denotes its corre-
sponding label and w denotes the model parameter inside
the decision function g. L(yi , g(xi ,w)) represents the loss
function which calculates the cost between the ground truth
label yi and the estimated label g(xi ,w). The objective of
SPL is to jointly learn the model parameter w and the sample
weights v = [v1, v2, . . . , vn] by minimizing

min
w,v∈[0,1]n

E S P L(w,v, λ)=
n∑

i=1

vi L(yi , g(xi ,w))+ f (v; λ) (1)

where vi ∈ [0, 1] is a sample weight that measures how
“reliable” or “easy” the training sample is. f (v; λ) is the
self-paced regularizer that determines how to calculate the
sample weights. λ is used to control the learning pace of
SPL. Alternative convex search (ACS) is usually adopted to
solve (1) [23] during the iteration of SPL. The pseudocode of
SPL is shown in Algorithm 1.

Algorithm 1 Algorithm of SPL
Input: The training dataset: D = {(x1, y1), . . . , (xn, yn)}.
Output: Model parameter w.

1 Initialize v∗ and pace parameter λ;
2 while not converged do
3 Update w∗ = argminw E (w, v∗; λ);
4 Update v∗ = argminv E (w∗, v; λ) ;
5 Increase λ;
6 end
7 return w = w∗.

The SPL model always learns the “reliable” sample first and
then gradually learns the “less reliable” sample by increas-
ing λ. When λ is small, only “reliable” samples with small

loss values will be considered into training. With the increase
of λ, more and more “less reliable” samples with large losses
will be gradually involved to train a more “mature” model.

B. Motivation

1) Motivation of Using GSPL for Unsupervised Change
Detection: Supervised classification technique has become a
popular and effective tool for change detection because it
can significantly improve the performance by using labeled
samples. However, there are two main issues to utilize the
supervised algorithms for change detection. On the one hand,
it is difficult to collect reliable labeled samples. Manual
annotation often requires a lot of manpower. The unsupervised
approach is both convenient and labor saving, but it will
generate many unreliable or noisy labels. On the other hand,
it is an urgent task to design a classifier to deal with the
acquired labels. Traditional machine learning methods, such
as SoftMax (SM) [24], backpropagation NNs (BPNNs) [25],
and support vector machine (SVM) [26], may not achieve
satisfactory change detection results with samples polluted
heavily.

Based on the above-mentioned analysis, the above-
mentioned issues can be converted into how to learn a robust
classifier using unreliable samples generated by unsupervised
methods. Therefore, it is natural to combine SPL with a
traditional unsupervised method. The unsupervised method is
used to generate the training set with unreliable samples, and
then SPL is employed to collect reliable samples from this
training set by automatically assigning weights to samples.
However, the weights determined by SPL only according to the
“easy first” principle may tend to focus on the homogeneous
region of the image. The classifier may not be able to learn
the characteristics of other regions. The above-mentioned issue
can be solved by distinguishing these heterogeneous regions
in advance. Therefore, we propose a GSPL framework for
change detection, in which the training samples are divided
into different groups according to their heterogeneity, and
weights are calculated by the “more group” principle together
with the “easy first” principle so as to get better change
detection performance.

2) Motivation of Proposing Time-Varying Self-Paced Regu-
larizer: The key of SPL is the calculation of sample weights,
which is determined by the self-paced regularizer. Several
efficient self-paced regularizers have already been established,
such as hard weight regularizer, linear weight regularizer,
logarithmic weight regularizer, and mixture weight regular-
izer [27]. The hard weight regularizer assigns weights as
0 or 1 and cannot distinguish the differences between the
reliable samples. The other three soft weight regularizers
assign weights in the range of [0, 1] and can recognize how
reliable the considered samples are. According to the learning
mechanism of SPL, in the early stage, only a small number of
easy samples are assigned to nonzero weights, which would
have an impact on the model parameter. However, all these
nonzero weights are too small, which will lead to the low
speed of model training at the beginning. To address this
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Fig. 1. Workflow of the GSPL framework for change detection.

issue, we propose a time-varying self-paced regularizer for
automatically assigning sample weights reasonably.

III. METHODOLOGY

In this section, we first propose the GSPL framework
for unsupervised change detection. Then, the generation of
pseudolabels and group information of the training set are
introduced in detail. Next, we investigate the updating meth-
ods of parameters under several popular classifiers. Finally,
the time-varying self-paced regularizer is described.

A. GSPL Framework for Unsupervised Change Detection

To further improve the change detection performance, semi-
supervised or supervised classifiers are employed to enhance
unsupervised change detection performance [28]. In order to
achieve satisfactory results, the supervised classifier should
be trained with reliable labeled samples, which is not easy
to acquire. Unsupervised methods can obtain labeled samples
without the need of manpower but may produce many unre-
liable samples due to the existence of noise in images, such
as multiplicative noises in SAR images and additive noises in
optical images [29]. Therefore, it is an urgent task to learn
a reliable classifier from such a training set with unreliable
samples. In this article, SPL is employed to collect reliable
samples from the noisy training set. However, the reliable
samples selected by the original SPL tend to come from
the homogeneous region in images. To address these issues,
we propose a GSPL framework for change detection, which
introduces group information to help choose reliable samples.

Fig. 1 shows the workflow of the proposed change detection
framework. As shown in Fig. 1, the training set, testing
set, and group information are obtained in the initialization
stage, where the training set is filled with samples with

pseudolabels, and the testing set contains all the samples need
to be classified. Then, a robust classifier is established using
the training set and its group information. Finally, the change
detection result can be obtained by classifying the testing set
with the trained classifier.

Assuming that the training set D = {x1, x2, . . . , xn} ∈
R

m×n is partitioned into b groups: X(1), . . . , X(b), where
columns of X(j) ∈ Rm×n j represents the j th group, x( j )

i
denotes the i th sample in the j th group, n j is the number of
the samples in the j th group and

∑b
j=1 n j = n. Accordingly

denote the sample weights as v = [v(1), . . . , v(b)], where v
( j )
i

denotes the weight of the i th sample in j th group, v( j) =
(v

( j )
1 , . . . , v

( j )
n j )T ∈ [0, 1]n j . As described earlier, the GSPL

model attempts to assign nonzero weights to reliable samples
from different groups. This can be realized by optimizing the
following objective function:

min
w,v

EGS P L(w, v, λ) =
b∑

j=1

n j∑
i=1

v( j )
i

L( j )
i

(
y( j )

i , g
(

x( j )
i ,w

))

+
b∑

j=1

n j∑
i=1

f
(
v

( j )
i ; λi

)
(2)

where y( j )
i denotes the corresponding pseudolabel of the i th

sample in j th group, and λi is a threshold determining whether
the i th sample in a group is “reliable” or not. Similar to SPL,
ACS can be applied to optimize (2) for solving the GSPL
model, which updates the model parameter and sample weights
alternatively. The pseudocode of the GSPL framework for
change detection is shown in Algorithm 2.

B. Generation of Pseudotraining Set and Group Information

1) Generation of Training Set: In the proposed framework,
the training set and testing set have the same data information
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Algorithm 2 Algorithm of GSPL for Change Detection
Input: Two images: X1 and X2, the number of groups b

and the number of iterations i ter Max .
Output: A change detection result map.

1 Initialization
2 Generate the DI or the original features;
3 Pre-classify DI or the original features to get pseudo

labels;
4 Get the group information of DI or the original features;
5 Generate training sample set D = {X(1), . . . , X(b)} and

pseudo label set: y = { y(1), . . . , y(b)};
6 Initialize sample weights v = {v(1), . . . , v(b)}, pace

parameter: λt ,γ and the maximum number of iterations:
i ter Max ;

7 Cycling
8 if i ter < i ter Max then
9 Update w∗ = arg minw E

(
w, v∗; λt , γ

)
;

10 Update v∗ = arg minv E
(
w∗, v; λt , γ

)
using

Algorithm 3;
11 Calculate λt by (18), i ter = i ter + 1;
12 else
13 Stop cycling.
14 end
15 Classify the DI or the original features with the trained

classifier.
16 return The final change detection result.

obtained from the difference image (DI) or original features
of the two original images. In this article, DI is adopted for
its simplicity and efficiency in change detection. In general,
different types of images should adopt different strategies [30]
to generate DI. For example, for SAR images polluted by
multiplicative speckle noises, a log-ratio operation is usually
adopted [31]. For multispectral images, change vector analysis
(CVA) [32] can be adopted to generate a multidimensional
DI, containing the magnitude information and direction
information. After obtaining DI, a sliding window with
size ρ2 × d will be used to generate data information for
the training set and testing set. Each sample consists of a
pixel and its neighborhood of size ρ2 × d [28] (d is the
dimension of the DI). Then, pseudolabels can be obtained
by analyzing the pixels in DI with traditional unsupervised
methods.

2) Generation of Group Information: An image may have
several heterogeneous regions, such as rivers, mountains, wet-
lands, and grasslands. As shown in Fig. 2(a), unchanged areas
contain four types of change information denoted as u1, u2,
u3, and u4. The changed areas contain three types of change
information denoted as c1, c2, and c3. The reliable samples
determined by SPL are likely to come from homogeneous
regions. For example, Fig. 2(b) (1) indicates that the reliable
positive samples are all from c3, and the reliable negative
samples are all from u4. However, the pixel information
varies greatly between different regions. To get a more robust
classifier, those reliable samples should come from different
areas, as shown in Fig. 2(b) (2).

Fig. 2. Examples of binary change detection and sample selection using SPL
and GSPL. (a) Example of binary change detection (white areas represent
the changed areas and the black areas represent the unchanged areas).
(b) Comparison of samples selected by SPL and GSPL. (1) Select samples
with SPL. (2) Select samples with GSPL.

Different types of images may be classified into different
numbers of groups, which is determined by the imaging mech-
anism of the image. For example, an SAR image is the reflec-
tion of the ground object to the radar beam; therefore, it can
only reflect the strength information. Therefore, the number of
groups in the SAR image is two, indicating that the reflection
coefficient is strong or weak. Therefore the number of groups
in the corresponding change detection map is three, reflecting
the information of becoming stronger, weaker, or unchanged.
Multispectral images are obtained by capturing multiple bands
on the same target and usually contain a large amount of
information. According to different spectral features, ground
objects can be identified. Therefore, the number of groups in
a multispectral image is roughly the number of objects in the
image. The change detection map can contain more than three
categories, and different categories indicate different change
types. Unsupervised methods can be adapted to generate group
information. However, group information generated by unsu-
pervised methods directly is susceptible to noise. Therefore,
the superpixel segmentation technique, simple linear iterative
clustering (SLIC) [33], is used in this framework.

C. Update Model Parameters Under Different Classifiers

Given sample weights v, the updating of model parameters
is only related to the selected samples from the training set
and their sample weights. Therefore, in the process of updat-
ing model parameters, the training set can be expressed as
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, and the model parame-
ters can be updated as follows:

w∗ = arg min
w

b∑
j=1

n j∑
i=1

vi L(yi , g(xi ,w))

= arg min
w

n∑
i=1

vi L(yi , g(xi ,w)) (3)

where n is the total number of training samples in all
groups. A variety of classifiers can be embedded into the
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GSPL framework. In this article, SM, BPNN, and SVM are
investigated under the GSPL framework for their efficiency in
the classification task. Their model parameter updating process
will be described in Sections III-C.1–III-C.3.

1) Group Self-Paced Softmax: Given training set D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} and their corresponding sam-
ple weights. The model parameters θ can be obtained as

θ = arg min
θ

⎛
⎝ n∑

i=1

vi L(yi , g(xi , θ)) + λ

2

K∑
k=1

m∑
j=0

θ2
kj

⎞
⎠ (4)

where xi is the i th sample with m + 1 features, xi = (1, xi1,
xi2, . . . , xim )T, yi is the corresponding one-hot encoded label,
n is the total number of training samples, L(yi , g(xi , θ))
is the loss value of the i th sample, θ = (θ0, θ1, . . . , θm),
λ/2

∑K
k=1

∑m
j=0 θ2

kj is a weight penalty item, and K is the
number of categories.

With fixed sample weights, the parameter θ is updated based
on the gradient descent method as follows:

θ t+1 = θ t − η
∂ J (θ)

∂θ
(5)

where

∂ J (θ)

∂θ j
= −

n∑
i=1

vi xi(I{yi = j} − p(yi = j |xi; θ))+λθ j (6)

p(yi = j |xi; θ) = eθT
j xi∑K

j=1 eθT
j xi

(7)

where I{.} is an indicator function, whose value is 1 or 0 when
the expression inside is true or false. The derivation of (6) is
described in Section II-A of the Supplementary Materials. We
can see from (5) and (6) that the sample weight v together
with the step parameter η is the real control parameter of the
learning rate. When the samples are reliable, the corresponding
weights are high, and the model parameters can be updated
in a large step, and vice versa. Samples with 0 weights will
have no influence on the model parameters.

2) Group Self-Paced Neural Networks: Let h0 = Di

denote the input of the networks, hl = f (Wl hl−1 + bl), l =
1, 2, . . . , L donate the output of the lth layer, and Oi = hL =
f (WL hL−1 +bL) denote the final output of the networks. The
objective of GSPNN is defined as follows:

min
θ,v

E(θ , v; λ) =
n∑

i=1

(vi L(Oi , yi ) + f (vi ;λ)) (8)

where θ = {W1, b1, . . . , WL, bL}, L(Oi , yi ) is the loss value.
With fixed sample weights, the model parameter is updated

based on gradient descent as follows:

Wl = Wl − ηvi (δl+1 � hl) (9)

bl = bl − η∇bl

= bl − η
∂vi

1
2 ||Oi − yi ||2

∂Wl
= bl − ηviδl+1 (10)

where � represents the dot product operation and δl is the
residual error of the lth layer. The derivation process is
explained in Section II-B of the Supplementary Materials.

Different from BPNN, it can be observed from (9) and (10)
that the true learning rate of GSPNN is ηvi , which means that
the real learning rate of the GSPNN model is controlled by
the sample weights together with η. Furthermore, only samples
with nonzero weights can have impact on the model parameter.

3) Group Self-Paced Support Vector Machine: Given train-
ing set: D = {(x1, y1), (x2, y2), . . . , (xn, yn)} and their cor-
responding weights, the objective of GSPSVM is defined as
follows:

min
w,b

1

2
||w||2 +

n∑
i=1

(Cvi li + f (vi ; λ))

s.t. yi(w
T φ(xi) + b) ≥ 1 − li

li ≥ 0, i = 1, 2, . . . , n (11)

where li is the standard hinge loss, which is calculated as

li = max(0, 1 − yi (w
T φ(xi ) + b) (12)

where φ(·) is a feature mapping function to obtain nonlinear
decision boundaries. C (C > 0) is the standard regularization
parameter to trade off the hinge loss and the margin. vi li is
the weighted loss value of the i th sample.

With fixed sample weights, the model parameter in (11) can
be solved by the following dual problem:

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα j yi y j K (xi , x j )

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ Cvi , i = 1, 2, . . . , n (13)

where K (xi , x j ) = φ(xi)
T φ(x j ) is the kernel function. The

proof process of (13) is described in Section II-C of the
Supplementary Materials.

Compared with the dual form of the original SVM,
(13) imposes a sample-specific upper bound on the support
vector coefficient, which is the key to computing decision
boundary [27]. A sample upper bound is proportional to its
weight, and therefore, a sample with a small weight vi will
have less influence on the decision boundary as its support
vector coefficient is limited by a small value Cvi . Only
samples with nonzero weights can be selected to train the
classifier in the change detection task. When samples’ weights
are 0, the corresponding samples will not be selected into
the training set and will have no influence on the decision
boundary.

D. Update Sample Weights With a Time-Varying Self-Paced
Regularizer

With a fixed model parameter w in (2), the sample weights
can be updated by optimizing

min
v

E(v) =
b∑

j=1

n j∑
i=1

(
v( j )

i
L( j )

i + f
(
v

( j )
i ; λt

i

))
. (14)

To calculate the sample weights, the pace parameter λt
i

and the self-paced regularizer f (v; λt
i ) should be specified in

advance.
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For the self-paced regularizer, several soft self-paced
regularizers have been proposed, such as linear soft weight,
logarithmic soft weight, and mixture weight [27]. However,
all the soft weight methods assign small weights to the
reliable samples in the early stage of SPL. To deal with this
situation, we propose a novel self-paced regularizer in this
framework. The proof of it is explained in Section I-B of the
Supplementary Materials. The proposed regularizer f (vi ; λt )
can be described as follows:

f (vi ; λt ) = −2λt

π

(
vi arccos(vi ) −

√
1 − v2

i

)
. (15)

Supplementary materials can prove that (15) is convex with
respect to v in [0, 1]. Therefore, the global optimal solution
of (14) can be obtained at ∇v E(v) = 0. Therefore, we have

∂ E

∂vi
= Li − 2λt

π
arccos(vi ) = 0. (16)

From (16), the closed-form optimal solution for vi (i =
1, 2, . . . , n) can be obtained as

vi =
{

cos
( π

2λt
Li

)
, Li < λt

0, else.
(17)

A time-varying pace parameter λt
i is designed in this arti-

cle so that reliable samples distributed in the heterogeneous
regions of the image with low-loss values will be assigned a
large weight in the early stage. The calculation of λt

i is defined
as follows:

λt
i = λ + γ qt (i) (18)

qt (i) = 1
Ct√

i
, i = 1, 2, . . . (19)

qt (i) in (18) is a decreasing function indicating that samples
in the same group have a monotonically decreasing weights
with respect to their corresponding rank i in the group. When
γ = 0, λt

i is a constant value; only easy samples with low loss
values will be selected into the training set, which may also
tend to come from a homogeneous region in images. When
γ 	= 0, the pace parameter λt

i will decrease, and the samples
distributed in heterogeneous regions will be selected.

Ct in (19) is used to automatically provide reasonable
learning schemes at different stages of change detection. In the
early stage, only a small number of reliable samples will
be given nonzero weights to train a classifier, these nonzero
weights need to be large numbers so that the parameters of
the classifier can be updated in a large step. In the later stages,
more reliable samples will be given nonzero weights, but
only a part of these reliable samples with lowest loss values
should be given large weights, and others should be given
small weights. Considering the above-mentioned situations,
we design Ct by the following formula:

Ct = tan

(
π

2

(
1− itert

iterMax + 1

))
, itert = 1, 2, . . . (20)

where itert is the current iteration number and iterMax is the
maximum number of iterations.

The algorithm of calculating sample weights is presented
in Algorithm 3. In Fig. 3, we use a simple example to show

Algorithm 3 Algorithm of Calculating Sample Weights
Input: The training sample data set:

D = {X(1), . . . , X(b)} and pseudo label set:
y = { y(1), . . . , y(b)}.

Output: The global solution v = {v(1), . . . , v(b)}.
1 for j = 1 to b do
2 Sort the samples in X( j ) in ascending order of their

loss values;
3 Accordingly, denote the labels and weights of X( j ) as

(y( j )
1 , . . . , y( j )

n j ) and (v
( j )
1 , . . . , v

( j )
n j );

4 for i = 1 to n j do
5 if L( j )

i < (λt + γ 1
Ct√

i
) then

6 v( j )
i

= cos( π
2(λt+γ 1

Ct√
i
)
L( j )

i );

7 else
8 v( j )

i
= 0 ;

9 end
10 end
11 end
12 return v.

Fig. 3. Example of sample weights calculated by Algorithm 3.

the calculation of sample weight under different parameters.
In Fig. 3, squares with different colors represent different areas
in the image, and boxes in colored blocks represent samples
collected from the DI or the original features. When γ = 0
in Fig. 3(1), GSPL considers only the “easy first” principle and
assigns nonzero weights only according to the sample loss,
which is the same as the original SPL. Meanwhile, samples
with the same loss value in a group share the same sample
weight. When γ 	= 0 and λt 	= 0 in Fig. 3(2) and 3(4),
GSPL considers both “easy first” principle and “more group”
principle so that samples scattered in more different groups are
assigned to nonzero weights, thus producing more reasonable
weight distributions. In addition, samples sharing the same loss
value in a group are assigned to different weights because of
the decrease of threshold in step 6 in Algorithm 3. Moreover,
GSPL can control the distribution of weights in a group by
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TABLE I

PROPERTIES OF DATA SET

Fig. 4. Ottawa data set. (a) Image acquired in May 1997. (b) Image acquired
in August 1997. (c) Reference image.

the value of C—weights in a group calculated with C = 1
is not greater than the corresponding weights calculated with
C = 2, as shown in Fig. 3(2) and Fig. 3(4). When γ = 0
and λt 	= 0 in Fig. 3(3), GSPL considers only “more group”
principle, ignoring the “easy first” principle, which would lead
to outliers being assigned to nonzero weights, as seen that the
sample in Group 4, whose loss value is 0.25, has a nonzero
weight 0.26. Therefore, considering both “easy first” principle
and “more group” principle seems to be more reasonable for
change detection than considering anyone alone.

IV. EXPERIMENTAL STUDY

In the proposed framework, SLIC [33] is applied to extract
superpixel blocks. The FCM algorithm is employed as the
unsupervised method to generate group information. In this
section, the data sets and evaluation criteria will be presented
first. Then, four parts of the experiments are carried out for
evaluating the proposed framework. At last, contrast experi-
ments with other methods will be shown.

A. Data Sets and Evaluation Criteria

Five remote sensing image data sets are investigated to
validate the effectiveness of the proposed framework for
change detection, including an SAR image data set for binary
change detection, an optical image data set of panchromatic
band for binary change detection, two SAR image data sets
for ternary change detection, and a multispectral image data
set for multiclass change detection, as shown in Fig. 4–Fig. 8
The size, the imaging location, and imaging time of each data
set are listed in Table I.

To evaluate the change detection results quantitatively, it is
necessary to adopt some criteria. Four evaluation criteria are
adopted in our experiments, including the overall error (OE),

Fig. 5. Stone-Gate data set. (a) Image acquired in August 2004. (b) Image
acquired in September 2004. (c) Reference image.

Fig. 6. San Francisco data set. (a) Image acquired in August 2003. (b) Image
acquired in May 2004. (c) Reference image.

Fig. 7. Yellow River data set. (a) Image acquired in June 2008. (b) Image
acquired in June 2009. (c) Reference image.

Fig. 8. Bahe data set. (a) Image acquired in August 2013. (b) Image acquired
in August 2015. (c) Reference image.

percentage of correct classification (PCC), kappa coefficient
(KC) [34], and normalized mutual information (NMI). OE is
the number of pixels misclassified. PCC represents the
proportion of pixels classified correctly. KC and NMI are
two different indices that can measure the agreement of
experimental results and the reference map.
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Fig. 9. Change detection results with different neighborhood size ρ.
(a) Ottawa data set. (b) Stone-Gate data set. (c) San Francisco data set.
(d) Yellow River data set. (e) Bahe data set.

B. Experiments on the Proposed GSPL Framework

This part of the experiment aims to demonstrate the effec-
tiveness of adopting SPL, group information, and time-varying
self-paced regularizer in the proposed framework. Specifically,
we first analyzed the influence of neighborhood size on change
detection performance, and then, tested the detection results
based on the original classifier, SPL-based classifier, and
GSPL-based classifier. Finally, we compared the proposed
time-varying self-paced regularizer with other regularizers to
verify the validity of the proposed regularizer. In addition, for
the sake of handwriting convenience, we abbreviate the SM,
NN, and SVM based on SPL as SPSM, SPNN, and SPSVM,
respectively.

1) Test of the Neighborhood Size ρ: In the proposed GSPL
framework, a sample is generated by extracting the local
neighborhood of the current pixel in the DI with the size of
ρ × ρ. In the experiments, the parameter ρ is set to 1, 3, 5,
7, and 9, respectively.

The values of OE and KC on the five data sets are displayed
in Fig. 9 in the form of a broken line graph. According to
Fig. 9, the best change detection results are acquired by the
proposed method on the first four data sets when the parameter
ρ is set to 3. For the Bahe data set, the best results are obtained
when ρ = 5. When ρ is small, the generated samples may
lose some vital neighborhood information. With the increase
of ρ, more neighborhood information is considered to learn
the difference between the multitemporal images. However,
when ρ is too large, it is difficult to distinguish the difference

between two adjacent samples since they almost share the
same neighborhood information. In general, satisfactory results
can be obtained by the proposed method when the parameter ρ
is set to 3 or 5.

2) Test of the Proposed Time-Varying Self-Paced Regular-
izer: In order to demonstrate the effectiveness of the proposed
time-varying self-paced regularizer, we investigate it in the
proposed GPSL framework in comparison with the linear soft
weight, the logarithmic soft weight, and the mixture weight
regularizers. The results are drawn in Fig. 10, where the
ordinate in the bar charts of Fig. 10 represents the KC values.

As shown in Fig. 10, except for the results of GSPSVM
on the Ottawa data set, GSPSM, GSPNN, and GSPSVM
always acquire the highest KC values with the time-varying
regularizer because the proposed regularizer is able to provide
reasonable learning schemes during iterations. In the early
stage of learning with a small pace parameter λ, the involved
samples tend to be easy and should be given large weights.
The proposed self-paced regularizer can automatically assign
reasonable weight schemes at different stages of SPL.

C. Ablation Studies

In this experiment, we aim at investigating the proposed
grouping strategy based on the five change detection data
sets. Fig. 11 shows the curves of the KC values obtained by
SPNN and GSPNN with respect to the pace parameter. All the
SPL-based methods gradually increase the pace parameter to
involve more samples into training. Due to the increasing pace
parameter, we cannot guarantee the convergence of the whole
SPL algorithm. However, for a fixed pace parameter, according
to the theoretical studies [20], the procedure of SPL is able to
converge to a stationary solution. Therefore, it consists of an
inner loop for each pace, and the resulting stationary results are
reported in Fig. 11. As shown in Fig. 11, the best KC values
obtained by GSPNN are larger than those of SPNN. Note that
the algorithm can be terminated when the best results have
been acquired. From Fig. 11, GSPNN is always the first to
acquire the best KC values on the five change detection data
sets in comparison with SPNN. It is reasonable to assign the
weights under the “more group” principle together with the
“easy first” principle.

Fig. 12 shows the change detection results of NN, SPNN,
and GSPNN on the five change detection data sets. It can
be seen from Fig. 12 that the results obtained by SPNN and
GSPNN are much better than those of NN. Therefore the
proposed SPL framework for change detection is efficient to
detect the changes between the multitemporal images. For
the Yellow River data set and the Bahe data set, the results
of GSPNN are much better than those obtained by SPNN.
It is difficult to distinguish the difference between the results
obtained by SPNN and GSPNN for the other data sets.

In order to further investigate the proposed grouping strat-
egy, we employ two tests of significance for comparison of
multiple algorithms over multiple data sets [35], [36]. First,
we take the Friedman test followed by the Nemenyi test into
consideration [35]. This comparison involves the SPL and
GSPL methods based on SM, NN, and SVM with five change
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Fig. 10. KC values of GSPSM, GSPNN and GSPSVM under 1: linear soft weight, 2: logarithmic soft weight, 3: mixture weight, and 4: the proposed
time-varying self-paced regularizer on five real data sets. (a) GSPSM. (b) GSPNN. (c) GSPSVM.

Fig. 11. Curves of KC value with respect to iteration number in SPNN and GSPNN on five real data sets. (a) Ottawa data set. (b) Stone-Gate data set.
(c) San Francisco data set. (d) Yellow River data set. (e) Bahe data set.

Fig. 12. Change detection results of A: NN (blue bar), B: SPNN (red bar), and C: GSPNN (yellow bar) on the five data sets. (a) Ottawa data set.
(b) Stone-Gate data set. (c) San Francisco data set. (d) Yellow River data set. (e) Bahe data set.

detection data sets. Therefore, we can acquire 15 sets of
change detection results for each method. The Friedman statis-
tics for PCC, OE, KC, and NMI are 7.8750, 7.8750, 16.2885,
and 5.5652, respectively. Then, the p-values for PCC, OE,
KC, and NMI are 0.0049, 0.0049, 2.9758E-04, and 0.0135,
respectively. All the above-mentioned values are less than
0.05. Therefore, we conclude that the tested algorithms are sig-
nificantly different in the four criteria, with a confidence level
of 95%. Next, the Nemenyi test is employed to compare the
SPL and GSPL frameworks. The differences between SPL and
GSPL for PCC, OE, KC, and NMI are 0.6000, 0.6000, 0.7333,
and 0.5333, respectively. All the above-mentioned values are
larger than the critical difference 0.5061. It can be observed
that the SPL and GSPL frameworks are significantly different
in terms of the four criteria based on the Nemenyi test.

D. Comparison of the Proposed Method With Other Methods

The contrast experiments are conducted on the five data sets
to substantiate the superiority of the proposed GSPL change
detection framework. For the binary change detection task,

the FCM algorithm [37], the FLICM algorithm [15], the fuzzy
clustering algorithm with a modified MRF energy function
(MRFFCM) [38], the EM algorithm, and the generalized
KI algorithm (GKI) [39] are considered as the competing
schemes. For the ternary change detection task, CM, FLICM,
KWFLICM, EM, and Otsu [12] are selected. For multiclass
change detection in multispectral images, CVA [32], princi-
pal components analysis (PCA) [40], multivariate alteration
detection (MAD) [41], the iteratively reweighted multivariate
alteration detection (IRMAD) [42], and CVA_T [43] are
adopted as the contrast methods.

1) Results on Ottawa Data Set: The Ottawa data set is
a section of two SAR images over the city of Ottawa, ON,
Canada, acquired by the RADARSAT SAR sensor. The two
images were taken in May and August in 1997, respectively.
The areas were once afflicted with floods.

The change detection maps obtained by different methods
on the Ottawa data set are shown in Fig. 13. As shown
in Fig. 13, the change maps obtained by FCM, EM, and GKI
consist of a lot of noise. Many unchanged areas are wrongly
detected as the changed ones. FCM clusters samples according
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Fig. 13. Reference image and change detection results on Ottawa data
set. (a) Reference. (b) FCM. (c) FLICM. (d) MRFFCM. (e) EM. (f) GKI.
(g) GSPSM. (h) GSPNN. (i) GSPSVM.

TABLE II

QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON

OTTAWA DATA SET. THE BEST RESULTS ARE REPRESENTED

IN BOLD AND THE SECOND BEST RESULTS ARE IN ITALICS

to the membership between the samples and the centers, which
cannot mitigate the impacts of noise pixels. FLICM takes the
neighborhood information into consideration to classify the DI,
and MRFFCM utilizes a modified MRF energy function to
modify the membership of each pixel. Therefore, both FLICM
and MRFFCM are robust to noise. It is obvious that the
change maps obtained by the proposed GSPSM, GSPNN, and
GSPSVM are close to the reference map. Table II lists the
evaluation criteria values. EM obtains the worst results with
quite a number of pixels misclassified. The KC values of the
proposed three methods are larger than 0.9.

2) Results on Stone-Gate Data Set: This data set records the
changes in the Stone-Gate Reservoir, Taiwan. The two images

Fig. 14. Reference image and change detection results on Stone-Gate data
set. (a) Reference. (b) FCM. (c) FLICM. (d) MRFFCM. (e) EM. (f) GKI.
(g) GSPSM. (h) GSPNN. (i) GSPSVM.

TABLE III

QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON

STONE-GATE DATA SET. THE BEST RESULTS ARE REPRESENTED
IN BOLD AND THE SECOND BEST RESULTS ARE IN ITALICS

were acquired by the Formosat-2 sensor in August and Sep-
tember in 2004, respectively. The typhoon led to the collapse
of the ground with bare land emerging.

The change detection maps obtained by different methods
on the Stone-Gate data set are shown in Fig. 14. It can be
observed that MRFFCM, EM, and GKI get the worst results
with numerous noise points in the final maps. The change
maps obtained by the proposed three methods have a relatively
clear background. Table III lists the change detection results
based on the four criteria. GKI receives the highest OEs
because many unchanged regions are wrongly classified. The
PCC values of the proposed three schemes are larger than 0.97.
The proposed methods obtain the highest PCC, KC, and NMI
values and the lowest OE values.

3) Results on San Francisco Data Set: San Francisco data
set was acquired by the ESAERS-2 satellite over the city of
San Francisco, CA, USA, in August 2003, and May 2004,
respectively. In Fig. 15, the black areas indicate the unchanged
areas. The red and green areas indicate two different kinds of
change information.
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Fig. 15. Reference image and change detection results on San Francisco data
set. (a) Reference. (b) FCM. (c) FLICM. (d) KWFLICM. (e) EM. (f) OTSU.
(g) GSPSM. (h) GSPNN. (i) GSPSVM.

TABLE IV

QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON

SAN FRANCISCO DATA SET. THE BEST RESULTS ARE

REPRESENTED IN BOLD AND THE SECOND BEST
RESULTS ARE IN ITALICS

The change detection maps obtained by different methods
on the San Francisco data set are shown in Fig. 15. It can
be observed that many unchanged regions are detected as the
changed ones in the change maps obtained by FCM, FLICM,
and KWFLICM. The FCM-based algorithms may not be good
at classifying the unbalanced data sets since the number of
red pixels is smaller than that of green pixels. The change
detection results obtained by the eight algorithms are shown
in Table IV. The OE values of the proposed three methods
are smaller than 8000, which indicates the superiority of the
proposed GSPL framework.

4) Results on Yellow River Data Set: The Yellow River
data set was acquired by Radarsat-2 over the Yellow River
Estuary, China, in June 2008 and June 2009, respectively.
It is worth noting that the two images are the single-look
image and four-look image, respectively. It means that the

Fig. 16. Reference image and change detection results on Yellow River data
set. (a) Reference. (b) FCM. (c) FLICM. (d) KWFLICM. (e) EM. (f) OTSU.
(g) GSPSM. (h) GSPNN. (i) GSPSVM.

TABLE V

QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON

YELLOW RIVER DATA SET. THE BEST RESULTS ARE

REPRESENTED IN BOLD AND THE SECOND

BEST RESULTS ARE IN ITALICS

influence of speckle noise on the image acquired in 2008 is
much greater than that acquired in 2009. The huge difference
in the speckle noise level between the two images makes the
change detection task fairly complicated.

The change detection maps obtained by different methods
on the Yellow River data set are shown in Fig. 16. These
traditional unsupervised methods, except the EM algorithm,
obtain poor results with a great number of noise points
in the results. On the contrary, the maps obtained by the
methods under the proposed framework have a relatively clear
background. The two types of changed regions are detected
precisely. Table V lists the evaluation criteria values obtained
by the eight algorithms. The values of PCC obtained by the
proposed GSPL framework are larger than 0.94. The results
obtained by GSPSM rank first in comparison with other
methods.

5) Results on Bahe Data Set: The Bahe data set was
acquired by the GF-1 sensor over the city of Xi’an, China,
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Fig. 17. Reference image and change detection results on Bahe data
set. (a) Reference. (b) CVA. (c) PCA. (d) MAD. (e) IRMAD. (f) CVA_T.
(g) GSPSM. (h) GSPNN. (i) GSPSVM.

TABLE VI

QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON BAHE

DATA SET. THE BEST RESULTS ARE REPRESENTED IN BOLD AND

THE SECOND BEST RESULTS ARE IN ITALICS

in August 2013 and August 2015, respectively. The two images
have the same spatial resolution of 2 m. In the reference,
the black areas indicate the unchanged areas, and the other
colored areas indicate changed areas with different change
information.

The change detection maps obtained by different methods
on the Bahe data set are shown in Fig. 17. Among these
competing methods, CVA achieves the best result visually.
On the contrary, IRMAD obtains the worst result with many
undetected regions. Table VI lists the evaluation criteria values
obtained by the eight algorithms. PCA achieves the worst
result with a lot of misclassified pixels because the dimension-
ality reduction of PCA leads to the loss of useful information.
The KC values of GSPSM, GSPNN, and GSPSVM are larger
than 0.6, and the NMI values of GSPSM, GSPNN, and
GSPSVM are larger than 0.4. The results have demonstrated
the effectiveness of the proposed GSPL framework.

V. CONCLUSION

In the image change detection task, unsupervised change
detection methods based on a supervised classifier have
achieved strong adaptability and robustness and have achieved
good change detection performance. However, it is difficult to
obtain high-quality labeled samples for training. In this article,
we put forward a GSPL framework to address the above
issue. Different from the existing change detection methods
using a supervised classifier, in the proposed framework, each
sample is assigned to weight for indicating its reliability,
and only samples with nonzero sample weights can have an
influence on the model parameter. Specifically, in the phase
of updating weights, group information is integrated to avoid
the training samples coming from the homogeneous region.
Besides, a time-varying self-paced regularizer is proposed to
automatically determine the learning schemes for SPL.

Our theoretical analysis shows that the proposed framework
can mine reliable samples from heterogeneous regions in
images, and the proposed time-varying self-paced regularizer
can provide a reasonable learning scheme for SPL. Further-
more, experiments on five real data sets have demonstrated
the feasibility and effectiveness of the proposed framework,
which can acquire satisfactory change detection results with
high PCC, KC, and NMI values.
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