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Abstract— Deep learning algorithms, especially convolutional
neural networks (CNNs), have recently emerged as a dominant
paradigm for high spatial resolution remote sensing (HRS)
image recognition. A large amount of CNNs have already been
successfully applied to various HRS recognition tasks, such
as land-cover classification and scene classification. However,
they are often modifications of the existing CNNs derived from
natural image processing, in which the network architecture is
inherited without consideration of the complexity and specificity
of HRS images. In this article, the remote sensing deep neural
network (RSNet) framework is proposed using an automatically
search strategy to find the appropriate network architecture for
HRS image recognition tasks. In RSNet, the hierarchical search
space is first designed to include module- and transition-level
spaces. The module-level space defines the basic structure
block, where a series of lightweight operations as candidates,
including depthwise separable convolutions, is proposed to ensure
the efficiency. The transition-level space controls the spatial
resolution transformations of the features. In the hierarchical
search space, a gradient-based search strategy is used to find the
appropriate architecture. In RSNet, the task-driven architecture
training process can acquire the optimal model parameters of
the switchable recognition module for HRS image recognition
tasks. The experimental results obtained using four benchmark
data sets for land-cover classification and scene classification
tasks demonstrate that the searched RSNet can achieve a
satisfactory accuracy with a high computational efficiency and,
hence, provides an effective option for the processing of HRS
imagery.

Index Terms— High-resolution remote sensing image, remote
sensing recognition, search for convolutional neural networks
(CNNs).

I. INTRODUCTION

W ITH the rapid development of remote sensing technol-
ogy, huge quantities of high-resolution remote sensing

images are now available. Compared with low-resolution
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images, high spatial resolution remote sensing (HRS) images
contain more detailed spatial information, which not only
brings opportunities but also challenges to the recognition of
remote sensing images. Recognition and analysis based on
HRS imagery technology have now been applied in various
recognition tasks.

In the past decades, extensive efforts have been made
to obtain more robust and efficient features in the HRS
imagery recognition tasks, such as land-cover classification
and scene classification. The land-cover classification task
has long been a challenging task in remote sensing. The
conventional methods rely purely upon low-level spectral and
spatial features, such as the histogram of oriented gradients
(HOG) [1], the object spectral index [2], scale-invariant
feature transform (SIFT) [3], and the gray-level co-occurrence
matrix (GLCM) [4]. The conditional random field (CRF)
model, as a contextual classification model, has a natural
advantage in pixel-level classification tasks. Wang et al. [5]
used CRF and Gabor texture features to realize urban forest
cover mapping. Zhao et al. [6] integrated spectral, spatial-
contextual, and location cues within a CRF framework to
provide complementary information from varying perspectives
and addressed the common problem of spectral variability in
land-cover mapping. Differing from land-cover classification,
scene classification requires more abstract information. These
tasks only focus on the entire image label, which usually
contains social semantic information (commercial, residential,
industrial, and so on). Based on the low-level features,
semantic information can be further abstracted through the
bag-of-visual words (BoVW) model [7], feature coding
(FC) [8], or the probabilistic topic model (PTM) [9].
When using these traditional methods, feature designing is
the key factor that affects the final recognition accuracy.
However, handcrafted features may overlook subjective prior
information, in which it is difficult to extract the essential
features of specific HRS image data sets.

Recently, deep learning algorithms have become the
dominant paradigm in machine learning and pattern recog-
nition. From the milestone work of convolutional neural
networks (CNNs) for image classification in the ImageNet
large-scale visual recognition challenge [10], a variety of
CNN-based methods [11]–[14] are now dominating the field
of HRS imagery recognition tasks [15]–[18]. Compared
with traditional handcrafted features, CNNs are data-driven
methods, in which the more representative and essential
features are learned end-to-end hierarchically. Due to their
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Fig. 1. Overview of a handcrafted CNN for the HRS imagery recognition
task.

powerful feature extraction capabilities, more and more
advanced CNN architectures have been applied in HRS
imagery recognition. Castelluccio et al. [19] successfully
transferred GoogLeNet and CaffeNet into scene classification
tasks, as well as proving the importance of the pretraining
strategy. With the appearance of the fully CNN [12],
deep learning methods, i.e., segmentation CNNs, have
gradually been applied in land-cover classification tasks. The
DeepGlobe Workshop at CVPR2018 [20] launched three
HRS land-cover classification challenges: road extraction,
building extraction, and land-cover mapping, where fully
CNNs [21]–[23] produced better performances than the other
baseline networks.

Although the performance of HRS imagery recognition
has been significantly improved with the help of deep
learning methods, designing a good CNN architecture for a
specific recognition task requires a broad mix of expertise.
As shown in Fig. 1, to artificially design a deep learning
architecture, the tasks include different requirements, and
different types of CNNs need to be carefully constructed.
When designing a CNN, the designer needs to be equipped
with the following qualities: 1) excellent data analysis skills;
2) a good understanding of the different HRS imagery
recognition tasks; and 3) broad experience in the design of
various recognition models. This means that the designer
requires a wide range of expertise, in both remote sensing and
computer vision. Furthermore, handcrafted CNNs may not fit
the task well due to the inadequate experiments or the lack of
experience.

To tackle these issues and reduce the difficulty and
complexity of HRS imagery recognition, a remote sensing
deep neural network (RSNet) search framework based on
neural architecture search (NAS) is proposed to automatically
find the most suitable RSNet for HRS image recognition tasks.
The field of NAS is a branch of automatic machine learning
(AutoML), which aims to learn the model architecture directly
on the data set of interest in an automatic manner [24]. In terms
of the NAS methods, the current techniques usually fall into
one of three categories: reinforcement learning (RL) [24]–[26],
evolutionary algorithms (EAs) [27], [28], and gradient-based
(GB) methods [29], [30]. To frame NAS as an RL problem,
the generation of a neural architecture can be considered
to be the agent’s action, with the action space identical to

the search space [31]. The different RL approaches differ in
how they design the agent’s policy and optimization strategy.
Zoph and Le [25] used a reinforcement algorithm to estimate
the parameters of a recurrent neural network (RNN), which
samples a string specifying the structure of the CNN. They
initially chose a reinforcement policy gradient algorithm for
the optimization strategy, which was replaced with proximal
policy optimization (PPO) in their follow-up work [24].

An alternative to RL is to use EAs. These methods encode
the neural network architecture as a sequence of numbers.
According to the performance estimates on the validation set,
crossover and mutation operations are performed, generating
new high-performance architectures. This approach is initially
used to search for both the structures and parameters
of the network [32]. As the number of neural network
parameters continues to grow, more recent works [28], [33]
have used an EA to search for the structure while using
stochastic gradient descent (SGD) methods to optimize the
network parameters. However, RL and EA search algorithms
are computationally demanding, despite their remarkable
performance. For example, it takes 1800 days of RL to
search a state-of-the-art architecture based on the CIFAR-
10 data set [25] or 2000 days of EA [34]. Differing from the
RL and EA methods using a discrete search space, the GB
methods [29], [30] introduce a simple, continuous relaxation
scheme for the search space. All the parameters are trained
based on gradient descent, which reduces the time required for
the neural network search to less than a week. However, these
NAS methods are sophisticated and inflexible and cannot be
applied in HRS imagery recognition tasks (scene classification
and land-cover classification). To the best of our knowledge,
this is the first time that the idea of searching for a suitable
deep neural network automatically has been proposed in the
field of HRS imagery recognition.

Based on the natural advantages of NAS technology,
the proposed RSNet search framework not only eliminates the
need for manual modeling but also achieves well-performing
structures that are suitable for certain data distributions. In
summary, the key contributions are threefold as follows.

1) Remote Sensing Deep Neural Network Search Frame-
work: The proposed RSNet search framework employs
a two-stage cascade optimization strategy. In the
GB architecture search (search stage), we set up
a hierarchical basic search space to increase the
search efficiency, inspired by hierarchical architecture
search [30]. The architecture and model parameters
are optimized alternately based on the gradient-descent
method. After the search finishes, the RSNet can
be decoded with the architecture parameters. In
the task-driven architecture training (training stage),
the RSNet is then retrained again to optimize the model
parameters. To enhance the generalization capability
of the framework, a switchable recognition module is
designed for different HRS imagery recognition tasks.

2) Gradient-Based Architecture Search: According to the
large-scale HRS imagery data sets, the efficient GB
architecture search is proposed. First, the hierarchical
search space is carefully designed, i.e., a module-level
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space and a transition-level space. Under the restriction
of the search space, the GB method introduces a simple,
continuous relaxation scheme for the search space,
which leads to a differentiable learning objective for
the joint optimization of the structure, as well as its
parameters. As opposed to an inefficient asynchronous
optimization [24], [34], all the parameters can be
trained end-to-end, which makes it efficient and quick
to search for high-performance networks. Moreover,
to ensure the efficiency of the searched network,
a series of lightweight operations, including depthwise
separable convolutions, is proposed for the module-level
search.

3) Task-Driven Architecture Training: Because HRS recog-
nition tasks include scene classification and land-cover
classification tasks, which have different output require-
ments, task-driven architecture training is proposed
utilizing a switchable recognition module. For the scene
classification task, the output of the architecture is
processed with global average pooling to obtain the
classification probability vector. For land-cover classi-
fication task, we use atrous spatial pyramid pooling to
process the output for the segmentation probability map,
where multiscale contextual information is utilized. This
switchable module makes the proposed framework more
generalizable for different HRS imagery recognition
tasks.

We implemented the proposed method on scene classifi-
cation and land-cover classification benchmark data sets. All
the networks obtained by the framework and the popular
CNNs were tested from two aspects: accuracy and efficiency.
The experimental results suggest that the searched networks
can achieve a good tradeoff between accuracy and efficiency.
Through our framework, the structures searched for specific
high-resolution remote sensing image data sets can guide the
manual design of efficient CNN networks.

The rest of this article is organized as follows. Section II
introduces the classic CNN architectures for classification and
segmentation tasks. Section III describes the general workflow
and the key components of the proposed search framework.
The experimental results and a comparative analysis are
provided in Section IV, followed by a discussion in Section V.
Finally, Section VI discusses our conclusions and future
research directions.

II. BACKGROUND TO CNN ARCHITECTURES

Many classic CNN architectures have been widely applied
in recognition tasks. These CNNs can be classified into two
categories: classification architectures and segmentation archi-
tectures, according to the different recognition requirements.

As for classification CNNs, they aim to capture the
global information of the image. AlexNet, as proposed by
Krizhevsky et al. [10], was the winner of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012 [35].
This ConvNet, which has 60 million parameters and 650 000
neurons, consists of five convolutional layers, some of
which are followed by max-pooling layers, and three fully

Fig. 2. Classic classification CNN architectures. (a) AlexNet. (b) VGG16.

Fig. 3. Classic segmentation CNN architectures. (a) Deeplabv3. (b) UNet.

connected layers. As the earliest successful deep learning
model, it has been applied to many HRS imagery classification
tasks [36], [37]. The whole architecture is shown in Fig. 2(a).
Although AlexNet has surpassed the traditional methods,
the shallow layers limit its ability to extract complex features.
To fit more complex data distributions, networks are also
becoming more complex. One of the solutions is to increase
the depth of the architecture. VGG16 is a typical network [11].
This network, for which the architecture is shown in Fig. 2(b),
has 13 convolutional layers, five pooling layers, and three fully
connected layers. Compared with AlexNet, VGG16 has shown
a significant improvement in accuracy, but the efficiency is
decreased.

Differing from classification tasks, segmentation tasks not
only focus on contextual semantic information but also on
local details. As the fully CNNs have emerged, Google has
proposed a series of segmentation networks, among which
DeepLabv3 [38] is the representative one. The segmentation
architectures include encoder and decoder structures. The
function of the encoder is to reduce the resolution of the
feature maps and extract high-level semantic information.
The decoder increases the resolution by upsampling to restore
the local details. As shown in Fig. 3(a), DeepLabv3 reuses
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Fig. 4. Overview of the proposed deep neural network search framework for HRS imagery recognition. s: output stride, the reduction factor of the spatial
resolution relative to the original image. L: Number of the CNN’s architecture layers. GAP: global average pooling. ASPP: atrous spatial pyramid pooling.

ResNet [39] as an encoder and bilinear upsampling as
a decoder. In addition, dilated convolutions are used in
ResBlock4 to keep the resolution, and atrous spatial pyramid
pooling is used to acquire multiscale features. However, in the
process of restoring the resolution with 16× upsampling, some
details will be lost.

Another classic segmentation network is UNet [40], which
was first proposed in medical image analysis. UNet has an
elegant symmetric encoding and decoding structure, as shown
in Fig. 3(b). To keep the details, high-resolution features
from the encoder are combined with the upsampled outputs
in the decoder. The two following convolutional layers can
then learn to assemble a more precise output based on this
information. Although this contracting and expansive path has
greatly improved the performance, the high-resolution features
processed in the decoder take up a lot of memory and reduce
the speed. This architecture has already been successfully
applied in HRS imagery segmentation tasks [17], [41].

All of the abovementioned reasons are typical handcrafted
deep learning architectures. However, the design of these
excellent CNN structures requires rich experience and
substantial effort. Furthermore, these architectures, if directly
applied in HRS imagery recognition tasks, may result in a
bottleneck in efficiency.

III. PROPOSED FRAMEWORK

The overview of our search framework is shown in Fig. 4.
The proposed framework is made up of the following.

A. Architecture Search Space
Classic CNNs [11], [39], [40] are composed of repeated

modules and well-designed spatial resolution structures.
Referring to the previous work [24], [29], [30], we set up
a hierarchical basic search space, i.e., a module-level space
and a transition-level space. The architecture search space
consists of various filtering and sampling operations, where
the input images are transformed into different feature maps,
which are represented as the blue nodes in Fig. 4. To relax the
search space to be continuous for optimization, each operation
is given a weight indicating how much it contributes to the
feature map.

The module-level space defines the basic structure block,
which is composed of two feature maps as inputs [29], one
feature map as output, and a series of basic filters (see
Fig. 4). The feature maps maintain the spatial resolution
in the module-level space and the basic operations are
applied to the inputs according to the normalized module’s
weight α. The transition-level space controls the spatial
resolution [30], which is called the output stride in Fig. 4. The
output stride is the reduction factor of the spatial resolution
relative to the original image. In the transition-level space,
each feature map in the previous layer can be transformed
(upsampled/downsampled by a ratio of 2 or maintained)
into the next layer. At the same time, the feature map
in the next layer gathers the outputs from the different
output stride according to the transition’s weights. As shown
in Fig. 4, the module architectures and transition architectures
are inseparable, and they make up the whole search space.
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Fig. 5. Module-level search space. The blue nodes represent the feature
maps in the network. Every green arrow is associated with module parameters
α. The three arrows after concatenation are associated with transition
parameters β.

The module’s weights and transition’s weights are defined as
the architecture parameters, which can be easily trained end-
to-end by standard backpropagation. Our goal is to find the
combination of operations, as well as the resolution transition
path, that contributes the most, referring to these architecture
parameters.

1) Module-Level Search Space: We define a module to be a
combination of B blocks, typically repeated multiple times to
form the entire architecture. As shown in Fig. 5, the module is
a directed acyclic graph, which has two previous feature maps,
H s

l−1, H s
l−2 as inputs, where s and l define the output stride

and the layer index of the feature map, respectively. These two
inputs produce B (B equals 4 in Fig. 5) intermediate results
{T1, . . . , Tb, . . . , TB} in order. For Tb, the specific formula is
as follows:

Tb = Ō1→b
(

H s
l−1

)+ Ō2→b
(

H s
l−2

)+
b−1∑

i=1

Ōi+2→b(Ti ) (1)

where Ō indicates a series of weighted operations, represented
by the green arrow in Fig. 5. They are applied on the
feature maps and obtain the weighted results according to the
module’s parameter α, which is defined as

Ō(x) =
∑

Ok∈O
αk Ok(x) (2)

where
|O|∑

k=0

αk = 1, αk ≥ 0 (3)

where αk are normalized scalars associated with each operator
Ok ∈ O, which is easily implemented as softmax.

We let O be a set of candidate operations consisting
of the following set of eight functions, which are all
prevalent in modern CNNs [26]. To ensure that the obtained
network has high efficiency, all the convolutions are replaced
by lightweight depthwise separable convolutions [42]. The
candidate operations are listed in Table I.

In this article, these operations are shown as abbreviations:
max pooling (max pool), average pooling (avg pool),
depthwise separable convolution (sep conv), and depthwise
separable dilated convolution (dila conv).

TABLE I

CANDIDATE OPERATIONS FOR THE MODULE CONSTRUCTION

As shown in Fig. 5, the output of this module T s→s
l is the

concatenation of the intermediate results {T1, . . . , Tb, . . . , TB}.
Together with (1) and (2), the module-level update can be
summarized as

T s→s
l = Module

(
H s

l−1, H s
l−2, α

)
. (4)

The next node H s
l is the sum of {T s→s

l , T
s
2→s

l , T 2s→s
l }

according to the normalized β in the transition level.
2) Transition-Level Search Space: Within the module, all

the feature maps maintain the same spatial size [29], which
enables the (weighted) sum in (1) and (2). However, the feature
maps in transition space may take different spatial sizes, as is
clearly shown in Fig. 4. To cover the prevalent CNNs, we have
designed it such that each layer will have at most four hidden
states {H 4

l , H 8
l , H 16

l , H 32
l }, with the superscript indicating the

spatial resolution [30].
The feature map H s

l−1 can be transformed into adjacent
resolutions (s/2) and 2s or remains unchanged via the
following three operations.

1) Downsample: Convolution operation with stride 2, both
to reduce the spatial size and double the number of
filters.

2) Upsample: Bilinear interpolation, both to double the
spatial size and reduce the number of filters.

3) Maintain: No operation.

We limit the feature map to a minimum spatial resolution
s = 32 and a maximum s = 4. β indicates the transition
probability between different spatial sizes. After normalization
by softmax, β meets the conditions as follows:

β
s→ s

2
l + βs→s

l + βs→2s
l = 1 ∀l, s (5)

β
s→ s

2
l ≥ 0 βs→s

l ≥ 0 βs→2s
l ≥ 0 ∀l, s. (6)

Thus, in the transition space, we combine the pre-
vious two feature maps and obtain three combinations:
{H

s
2

l−1, H s
l−2}, {H s

l−1, H s
l−2}, and {H 2s

l−1, H s
l−2}. Fig. 5 shows

the {H s
l−1, H s

l−2} as inputs processed by the module. As we
associate a scalar with each gray arrow in Figs. 4 and 5, the
transition level update is

H s
l = β

s
2→s

l Module
(

H
s
2

l−1, H s
l−2; α

)

+ βs→s
l Module

(
H s

l−1, H s
l−2; α

)

+ β2s→s
l Module

(
H 2s

l−1, H s
l−2; α

)
. (7)

In conclusion, α and β are architecture parameters, where
α indicates the weights of the mixed operations in the
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Fig. 6. ASPP attached after each spatial resolution output. The features
extracted for each sampling rate are further processed in separate branches
and fused to generate the final result.

modules and β represents the state transition probability of the
spatial resolution between layers. They are core parameters for
parsing the searched neural network.

B. Switchable Recognition Module

The switchable recognition module is designed to gather
the different resolution feature maps and includes the scene
classification module and land-cover classification module.
Based on the scene classification module, the network we
obtained is suitable for the scene classification task. Through
the land-cover classification module, our obtained network is
designed for the land-cover classification task.

1) Scene Classification Module: After four different spatial
size feature maps are acquired in the last layer, we use
global average pooling layers to generate probability vectors
corresponding to the categories in the classification task.
Compared with traditional fully connected layers, there are no
parameters to optimize in global average pooling layers, thus
avoiding overfitting [43]. Finally, the four vectors are summed
to obtain the output of the classification network.

2) Land-Cover Classification Module: For the land-cover
classification tasks, we have designed an atrous spatial
pyramid pooling (ASPP) module [38] for each spatial
resolution in the recognition head, as shown in Fig. 4. This
strategy exploits multiscale features by employing multiple
parallel convolutional filters with different dilation rates.
Moreover, the multiscale features are fused by concatenation,
which enhances the recognition ability for complex ground
objects. The implementation of ASPP in the land-cover
classification module is shown in Fig. 6. As we obtain four
different multiscale features at the Lth layer, they are bilinearly
upsampled to the original resolution before being summed to
produce the probability map.

C. Two-Stage Cascade Optimization Strategy

The proposed deep neural network search framework
has two types of parameters: the traditional CNN model
parameters w and the architecture parameters α, β. Hence,
we propose a two-stage cascade optimization strategy. In the
search stage, these parameters are optimized alternately.
In the training stage, only model parameters in the decoded
architectures are optimized. The overall cascade optimization

algorithm for HRS imagery recognition tasks is shown in
Algorithm 1.

Algorithm 1 Cascade Optimization
Data: Training dataset
Result: RSNet
Search stage:
Create a search framework for the specific task.
Divide the training dataset into T rain A and TrainB .
while not converged do

w← w −∇w LT rain A(w, α, β) ;
α, β ← α, β −∇α,β LT rainB(w, α, β)

end
Decode the RSNet based on α, β.
Training stage:
Merge the training datasets to T rain and retrain RSNet.
while not converged do

w← w −∇w LT rain(w)
end
Get RSNet with trained parameters.

In the search stage, the training set needs to be divided into
two disjoint parts: T rain A for network parameter optimization
and T rainB for architecture parameter optimization. Both are
trained end-to-end by standard backpropagation on Train A
and TrainB alternately. Following [29], we treat this bilevel
optimization problem using gradient descent. On the one hand,
based on T rain A, we obtain train loss LT rain A and optimize
the model parameters via backpropagation. On the other
hand, the architecture parameters are optimized on search loss
LT rainB based on TrainB . Both losses LT rain A and LT rainB

are determined not only by the architecture parameters but also
by the model parameters in the network. As the search finishes,
the searched RSNet architecture can be decoded according to
the architecture parameters α and β.

In the training stage, the RSNet with the corresponding
recognition module is supposed to be retrained on the whole
training data set. The following training process is the same
as the traditional deep learning method. After the training
stage, RSNet with trained parameters is obtained and the
high-performance and efficient RSNet can be applied to the
associated HRS imagery recognition task.

D. Decoding Architecture

After the search finishes, the best module architecture is
chosen by the ranking module’s weights, and the transition
architecture is decoded using the Viterbi algorithm [44].
Finally, the trimmed deep neural network is the output of our
search framework, which we call RSNet (see Fig. 4). The
details of the decoding architecture are as follows.

1) Decoding Module Architecture: We decode the module
by first retaining the two strongest predecessors for each
block [29], where the strength of an edge is denoted as
max{αk|0 ≤ k < 7}, noting that no connection operation is
excluded here. In other words, the maximum normalized αk

for each edge indicates the strength, and we retain the two
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Fig. 7. Relationship from basic operation and search space to the searched
network.

strongest edges by ranking. Each edge only keeps the operation
Ok with the largest weight.

2) Decoding Transition Architecture: As shown in Fig. 4,
each gray arrow indicates the transition probability between
two spatial sizes across the adjacent layers. Intuitively, our
goal is to find the path with the “maximum probability” from
start to finish [30]. We then treat it as a dynamic planning
problem, and this path can be decoded using the classic Viterbi
algorithm [44]. The details of the algorithm are given in
Algorithm 2.

Algorithm 2 Decoding Transition Architecture
Data: transition weights β
Result: The maximum probability transition path

Imax = (i1, . . . , il, . . . , iL)
Initialize the start node transition probability p4

0 ← 1.
Initialize the four transition paths {I 4, I 8, I 16, I 32}.
while l < L do

for s in {4, 8, 16, 32} do

ps
l ← max{p s

2
l−1β

s
2→s

l , ps
l−1β

s→s
l , p2s

l−1β
2s→s
l };

update the current path I s .
end

end
Get the maximum probability transition path Imax ← I s .

In conclusion, a series of basic operations forms the
architecture search space, where the best architecture can be
searched. The relationship from basic operation and search
space to the searched network is shown in Fig. 7.

IV. EXPERIMENTS

A. Data Set Description

We carried out two groups of experiments to assess the
performance of the proposed approach in HRS imagery
recognition tasks, compared with the state-of-the-art deep
learning methods. For the HRS scene classification task,
we applied the proposed framework to the well-known

Fig. 8. Examples from the UC Merced data set. (a) Forest. (b) Airplane.
(c) Buildings. (d) Parking lot. (e) Tennis court.

Fig. 9. Examples from the NWPU45 data set. (a) Forest. (b) Airplane.
(c) Commercial. (d) Parking lot. (e) Tennis court.

UC Merced data set [45] and the NWPU RESISC45 [46]
(NWPU45) data set. For the HRS land-cover classification
task, two land-cover data sets were adopted: the Gaofen Image
data set (GID) [47] and the 2019 IEEE GRSS Data Fusion
Contest Track1 data set (DFCTrack1) [48], [49].

The UC Merced data set was released in 2010 [45] with
21 classes, taken over various regions of the United States.
Each class in the UC Merced data set consists of 100 optical
aerial images with 256 × 256 pixels and a 0.3-m resolution.
This data set has been widely used for the task of remote
sensing image scene classification since its release. Some
examples from this data set are shown in Fig. 8.

The NWPU45 data set is a large-scale data set for aerial
scene classification, which contains 31 500 images divided
into 45 scene classes [46]. Each class consists of 700 optical
images with a size of 256 × 256 pixels. The spatial resolution
varies from about 30 to 0.2 m per pixel for most of the scene
classes. Due to its rich image changes and huge data volume,
many classic CNNs have been applied to this benchmark data
set. Some examples from this data set are shown in Fig. 9.

The GID data set is a pixel-wise land-cover classification
data set [47]. It contains 150 high-resolution Gaofen-2 (GF-2)
images acquired from more than 60 different cities in
China. These images cover a geographic area that exceeds
50 000 km2. As shown in Fig. 10, five representative
land-cover categories are annotated: built-up, farmland, forest,
meadow, and water. Each image contains 6800 × 7200 pixels
with the pan-sharpened spatial resolution of 1 m. Areas that do
not belong to the abovementioned five categories or that cannot
be artificially recognized are labeled as unknown. Due to the
large within-class diversity and high between-class similarity,
this data set is more challenging.
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Fig. 10. Visualization of the GID data set.

Fig. 11. Visualization of the DFCTrack1 data set.

The DFCTrack1 training data set contains 2783 WorldView-
3 images with a size of 1024 × 1024 pixels, together with
the corresponding 2-D labeled land-cover classification images
and the nDSM images in meters with the same image size. The
resolution of this data set is 0.3 m for the RGB images and
1.2 m for the eight-band multispectral images. The validation
data set containing 50 images was released without labels;
however, it has a public evaluation system online, where
the predictions for the validation images can be uploaded to
evaluate the performance. As we focus on the 2-D land-cover
classification task, the experiments only considered RGB color
images and 2-D land-cover annotations. This data set contains
five land-cover classes: ground, high vegetation, building
roof, water, and bridge. The unrecognized areas are not
classified. A visualization of the DFCTrack1 data set is shown
in Fig. 11.

B. Evaluation Metrics

Accuracy and efficiency are important metrics for HRS
imagery recognition tasks. We use the overall accuracy (OA)
and Kappa index to evaluate the classification accuracy,
while the pixel accuracy (PA) and mean intersection over
union (mIoU) are reported for the land-cover classification
tasks. These indices are calculated as follows:

OA =
∑n

i=1 Xii

M
(8)

Kappa = M
∑n

i=1 Xii −∑n
i=1

( ∑n
j=1 Xi j ×∑n

j=1 X ji

)

M2 −∑n
i=1

( ∑n
j=1 Xi j ×∑n

j=1 X ji
) (9)

where Xi j denotes the number of image class i predicted as
class j . Let n be the number of classes and M be the total

number of images

PA =
∑n

i=1 xii

T
(10)

mIoU = 1

n

n∑

i=1

xii∑n
j=1 xi j +∑n

j=1 x ji − xii
(11)

where xi j denotes the number of pixel class i predicted as
class j and T represents the total number of pixels.

For the model efficiency, the theoretical indices and
practical efficiency are both evaluated. The theoretical indices
are the floating-point operations (FLOPs) and the model
parameter number. The FLOPs [50] indicate the computational
power required by the model. For the convolutional kernels,
we compute these as follows:

FLOPs = 2HW(Cin K 2 + 1)Cout (12)

where H, W, and Cin are the height, weight, and number of
channels of the input feature map, respectively, Cout denotes
the number of channels of the output feature map, and K
denotes the kernel size of the convolution operation. For the
fully connected operations, we have

FLOPs = (2Nin − 1)Nout (13)

where Nin and Nout represent the number of input and
output channels, respectively. This index is related to the
model prediction speed in a runtime environment. For
the practical efficiency experiments, we recorded the GPU
memory occupation (which is related to the model parameter
number and the intermediate variable number) and the
prediction speed.

C. Scene Classification Experiments

We used four promising classification CNNs as baselines.
Several architectures have been already proposed and tested
in [36]. Due to the limitations of GPU memory, we considered
a total of L = 7 layers in the network and B = 4 blocks in
a module. A stem layer contains two stride = 2 convolutional
layers to reduce the spatial resolution to s = 4 as well as
increase the filters to filters = 128.

1) Search on the UC Merced Data Set: Five-fold
cross-validation was performed, in which the data set
was partitioned into five equal subsets. During the search,
we conducted our search on four folds of data, half of which
was T rain A and the other half was T rainB .

The architecture search optimization was conducted for a
total of 4000 steps. To make the convergence faster, we set
1000 warm-up steps, where only model parameter w was
optimized. The batch size was 16. We used a moderate
data augmentation strategy, i.e., 224 × 224 patches were
randomly cropped from the 256 × 256 images with random
mirroring and rotation, to increase the effective training set
size. When optimizing the model parameters w, we used an
SGD optimizer with momentum 0.9, a cosine learning rate that
decayed from 0.03 to 0.001, and a weight decay of 0.0003.
When learning the architecture parameters α and β, we used
the Adam optimizer with a learning rate of 0.003 and a weight
decay of 0.001. The entire architecture search optimization
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Fig. 12. Decoded architecture searched on the UC Merced data set.

TABLE II

PERFORMANCE OF THE REFERENCE AND SEARCHED CNNS
ON THE UC MERCED DATA SET

took about one day on one P100 GPU accelerator. When
the training result converged, the decoded architecture was
obtained, as shown in Fig. 12. The searched results show
that for the module architecture, three 3× 3 separable dilated
convolutions were chosen, which indicates the need for a large
receptive field. For the transition architecture, the features
maintain a high spatial resolution (s = 4) at the shallow layers
and are successively reduced finally to s = 16 in the deep
layers. This result matches our perception of the classification
network design. With the reduction of the features’ spatial
correlation, the noise is suppressed, and features of higher
abstraction are captured [51].

After we obtained the best architecture, we retrained our
network on the UC Merced data set. To ensure the fairness
of the experiments, all the compared CNNs were trained from
scratch with the same training settings. Through preliminary
experiments, we decided on the training strategy and learning
rate schedules. We trained the CNNs for 25 200 steps
with 16 examples per mini-batch. An SGD optimizer with
momentum 0.9 was adopted. We set a base learning rate
of 0.03 and gradually reduced this to one-tenth at 16 800 and
22 400 steps.

Table II shows the mean accuracy of the five-fold
cross-validation and architecture efficiency compared with the
other benchmark classification CNNs [52].

As can be seen in Table II, our searched network achieves
the best performance compared with the benchmark CNNs.

2) Search on the NWPU45 Data Set: For the NWPU45 data
set, five-fold cross-validation was also applied. The total
number of search steps was 12 000, and only the model

Fig. 13. Decoded architecture searched on the NWPU45 data set.

TABLE III

PERFORMANCE OF THE REFERENCE AND SEARCHED CNNs
ON THE NWPU45 DATA SET

parameters were optimized during the first 4000 steps. During
the search, the training strategy and optimizer settings were
the same as for the UC Merced data set. The suitable
network architecture was acquired after two days of searching,
as shown in Fig. 11. When the search results converged,
the decoded architecture was obtained, as shown in Fig. 13.

Compared with the architecture searched on the UC Merced
data set (see Fig. 12), this architecture uses three 5×5 dilated
convolution operations in each module, which makes the
receptive field of the network larger. Moreover, the transition
result shows that a lower resolution feature map (s = 32)
is obtained for the classification. Because the NWPU45 data
set has multiple spatial resolutions and more complex scene
categories, a wider range of contextual information and
deeper semantic information is needed.

To prove the validity of the model we obtained, we also
conducted five-fold cross validation on the NWPU45 data set.
The data augmentation and optimizer settings were the same as
for the UC Merced experiments. We set the number of training
iterations as 60 000, and the base learning rate was set to
0.01, which was gradually reduced to one-tenth at 40 000 and
54 000 steps. Table III lists the classification accuracies of the
reference and searched CNNs on the NWPU45 data set.

As shown in Table III, the VGG16 model slightly exceeds
our model accuracy by 1.22%. We conclude that the
NWPU45 data set is more complex, and a deeper network
with a larger number of parameters has advantages in fitting a
complex data distribution. However, our framework has more
potential when we deepen the search layers and sufficient
computational power.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 16:33:32 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: RSNet: THE SEARCH FOR RSNets IN RECOGNITION TASKS 2529

TABLE IV

EFFICIENCY OF THE REFERENCE AND SEARCHED CNNS
FOR THE SCENE CLASSIFICATION TASK

3) Efficiency Analysis: To analyze the efficiency of the
various scene classification models, we set up a series of
comparative experiments in a real environment. The model
theoretical indices and practical efficiency were tested. As
we carried out the performance tests on a single P100 GPU
accelerator in the case of double floating-point precision
operations, the inputs were 224 × 224 images with a batch
size of 16. All the experiments were performed in the native
environment of the PyTorch deep learning framework, without
any additional optimization or acceleration.

The results are shown in Table IV, where AlexNet has the
fastest predictive speed due to its simple network structure,
as shown in Fig. 2(a). However, because of the huge amount
of parameters, i.e., 138.177 M, VGG16 requires the most
GPU memory occupation of 1857 M and takes the slowest
speed of 151 samples/s. The searched networks RSNet (UCM)
and RSNet (NWPU45) have the least amount of theoretical
parameter size, as well as practical memory usage. In addition,
the searched networks possess considerable predictive speeds.

We can conclude from the results of the performance and
efficiency experiments that on the one hand, compared with
a naive structure such as AlexNet, the searched networks
can achieve a better accuracy. On the other hand, compared
with a cumbersome network such as VGG16, the searched
networks possess higher efficiency. Therefore, the search
framework can find a more suitable network for the HRS
imagery classification task than handcrafted architectures in
an affordable timeframe.

D. Land-Cover Classification Experiments

In the land-cover classification experiments, we took five
classic segmentation CNNs as a reference. Due to the
limitations of the GPU memory, we considered a total of
L = 9 layers in the network and B = 4 blocks in a module.

1) Search on the GID Data Set: Every image was clipped
to a 1024 × 1024 size to generate a large-scale data set
of 6300 images. We kept the same five-fold cross-validation
settings as before, and we set 15 000 steps for the architecture
search optimization and 5000 for the warm-up steps. Due to
the limitations of the GPU memory, we set the batch size
as 2 and the crop size as 256 × 256. The data augmentation
and learning rate policy were the same as for the UC Merced
data set. We set the model optimizer’s initial learning rate
as 0.01 and the architecture optimizer’s initial learning rate as
0.001. The entire architecture search optimization took about a
week on one P100 GPU accelerator. The searched architecture
is shown in Fig. 14.

Fig. 14. Decoded architecture searched on the GID data set.

TABLE V

PERFORMANCE OF THE REFERENCE AND SEARCHED CNNS

ON THE GID DATA SET

In terms of the module architecture, most of the operations
are dilated convolutions, which once again proves the
importance of contextual information for remote sensing
image recognition tasks. For the transition architecture,
the spatial resolution first reduces twice to s = 16
and then increases to s = 16. This may be because
land-cover classification tasks not only focus on contextual
semantic information but also on local details, which helps
with semantic segmentation. Compared with the handcrafted
architectures shown in Fig. 3, the searched network has a larger
receptive field, as well as lighter operations.

In order to verify the performance of the searched network,
we retrained the searched network and reference networks
under the same conditions. All the networks are trained for
12 000 steps using the SGD optimizer. We used a weight decay
of 10−4 and a momentum of 0.9. The initial learning rate was
set to 0.01, controlled by a “poly” policy with power 0.9.
The data augmentation included random flip and rotate. More
specifically, we used 512 × 512 random image crops from the
1024 × 1024 images in the training data set.

We can conclude from the results listed in Table V that
UNet achieves a better performance than the other reference
CNNs. This is because UNet has an elegant spatial transition
architecture [see Fig. 3(b)]. The contracting path and the
expansive path in UNet keep the high-resolution feature map,
which learns to assemble more precise localization details [40].
However, keeping the high-resolution feature maps takes up
a large amount of memory and also reduces the efficiency
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Fig. 15. Decoded architecture searched on the DFCTrack1 data set.

(see Table VII). Although the searched network RSNet (GID)
does not use contracting and expansive structures, it exceeds
the other benchmarks in PA and mean IoU. This proves the
effectiveness of our search framework. The framework also has
great potential to be improved for mining special structures.

2) Search on the DFCTrack1 Data Set: The DFC-
Track1 data set was part of the 2019 Data Fusion Contest
provided by the IEEE Geoscience and Remote Sensing Society
and is still open for contributions. The images in the test set
are publicly available, but its land-cover maps are kept secret.
An IoU and elevation error evaluation can be obtained by
submitting the predicted results online, and we only focus on
mean IoU. Only RGB images and 2-D land-cover annotations
were used in the experiments.

For searching, we used similar settings: 12 000 steps for the
architecture search optimization and 4000 for the warm-up
steps. Images of 256 × 256 were randomly cropped from
the 1024 × 1024 images with a batch size of 2. The data
augmentation and learning rate policy were the same as for
the UC Merced data set. We initially set the model optimizer
learning rate as 0.03 and the architecture optimizer learning
rate as 0.003. The architecture search took about four days on
a P100 GPU accelerator. The searched architecture is shown
in Fig. 15.

As can be seen in Fig. 15, the module architecture
is composed of 5 × 5 separable convolutions and dilated
convolutions, which is similar to RSNet (GID). Moreover,
the transition architecture is similar to RSNet (GID) because
they are both land-cover classification tasks and there is a
tradeoff between localization accuracy and the use of context.

A series of comparative tests was conducted. We retrained
our searched network RSNet (DFCTrack1) and the other
benchmark CNNs on the DFCTrack1 data set to evaluate their
performances. The optimizer settings and data augmentation
remained the same as for the GID data set.

We trained all the networks for 24 000 steps. The initial
learning rate was set to 0.03 and was divided by 10 at
16 000 and 21 000 steps. The evaluation results are listed

TABLE VI

PERFORMANCE OF THE REFERENCE AND SEARCHED CNNS
ON THE DFCTRACK1 DATA SET

TABLE VII

EFFICIENCY OF THE REFERENCE AND SEARCHED CNNs
FOR THE LAND-COVER CLASSIFICATION TASK

in Table VI, where it can be seen that our searched network
RSNet (DFCTrack1) achieves the best performance.

3) Efficiency Analysis: We also carried out efficiency
analysis experiments with the searched networks and the
benchmark segmentation CNNs. All the experiments were
performed in the same environment. The inputs were 512×512
images with a batch size of 8.

Table VII lists the efficiency analysis results. The two
most notable differences with respect to the classification
case (see Table IV) are the high memory occupation and
low efficiency. This is mainly because segmentation CNNs
focus on semantic segmentation, whereas high-resolution
feature maps are required to participate in the calculation.
Especially for UNet, although it has a relatively few
parameters, i.e., 9.852 M, there are a lot of high-resolution
feature map operations in the contracting and expansive path
structure, taking up a lot of memory, i.e., 10 547 MB. In
addition, UNet also requires the most amount of computation,
i.e., 80.53 GFLOPs and has the lowest prediction speed
of 10 samples/s. Our searched networks RSNet (GID) and
RSNet (DFCTrack1) demonstrate excellent efficiency in the
land-cover classification tasks. The amount of parameters is
very small, and the memory is less occupied in the runtime
environment. With regard to speed, RSNet (GID) and RSNet
(DFCTrack1) theoretically require less computation (indicated
by GFlops) and, in practice, the prediction speeds are four
times faster than UNet and twice as fast as DeepLabv3.

We can conclude from the land-cover classification
experiments that the proposed framework can obtain a
good tradeoff between accuracy and efficiency. The searched
networks RSNet (GID) and RSNet (DFCTrack1) not only
achieve the best accuracy but also have a higher efficiency.

V. DISCUSSION

In this article, we have shown that the proposed framework
can obtain superior CNN architectures for the HRS scene
classification and land-cover classification tasks. The two
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Fig. 16. Losses in the different experiments during the search. (a) Losses in the UC Merced experiment. (b) Losses in the NWPU45 experiment. (c) Losses
in the GID experiment. (d) Losses in the DFCTrack1 experiment.

Fig. 17. Search visualization in the different experiments. (a) Search visualization in the UC Merced experiment. (b) Search visualization in the
NWPU45 experiment. (c) Search visualization in the GID experiment. (d) Search visualization in the DFCTrack1 experiment.

most notable characteristics of the module structure are the
multibranch structure and the dilated convolutions.

1) Multibranch Structure: Differing from the VGG module
design [see Fig. 2(b)], which stacks convolutions
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repeatedly, our searched network tends to select a
complex multibranch structure. This may be because
HRS images contain multiscale ground objects, such
as airplanes and buildings. The current methods
for processing multiscale features include multiscale
training and designing multibranch structures for a
network such as GoogLeNet. Therefore, driven by the
UC Merced data set, our search framework chooses
multibranch structures to accommodate multiscale
features.

2) Dilated Convolutions: The classic classification net-
works, such as AlexNet, VGG, and GoogLeNet, do not
consider the use of dilated convolutions. This is mainly
due to two reasons. On the one hand, research into
classification tasks began early, and these classification
networks were put forward before the development of
dilated convolutions [38]. On the other hand, these
networks were initially designed for natural images
obtained by close-range photography. These images have
high resolutions but cover a small spatial range, making
the included object information simple. Therefore,
dense sampling operators, such as normal convolutions,
are already enough for natural image classification
tasks. However, HRS images are obtained by ultralong
distance observation and thus have low resolutions
and cover wide ranges. Extracting the relationships
between complex ground objects is important for HRS
scene classification. Dilated convolutions cover a larger
receptive field through sparse sampling. Therefore,
driven by the data set, our framework automatically
chooses dilated convolutions to acquire long-distance
information.

In the search stage, we recorded the training and search
losses based on the four recognition experiments. As shown
in Fig. 16, we found that the search loss is often higher than
the training loss and is more difficult to converge. This may
be because the amount of model parameters is much higher
than the architecture parameters, which makes the model more
inclined to fit the T rain A data set. Compared with the other
experiments, the losses in the GID experiment had a smaller
difference due to the similar distribution between T rain A and
T rainB . We list some intermediate results at regular intervals
in Fig. 17.

VI. CONCLUSION

In this article, an RSNet architecture search framework has
been proposed to automatically find the most suitable CNNs
for HRS image recognition tasks. Specifically, the proposed
RSNet search framework employs a two-stage cascade
optimization strategy. In the GB architecture search (search
stage), a hierarchical basic search space is designed and
the architecture as well as model parameters are optimized
alternately based on the gradient-descent method. In the
task-driven architecture training (training stage), the searched
RSNet with the corresponding recognition module is retrained
again to optimize the model parameters.

Experiments were carried out on four benchmark data
sets, from the two aspects of accuracy and efficiency.

The CNNs obtained from our framework achieved a better
tradeoff between accuracy and efficiency than the state-of-
the-art deep learning architectures of AlexNet, GoogLeNet,
VGG16, FCN8S, PSPNet, DeepLabv3, DeepLabv3+, and
UNet. The searched RSNets always showed excellent per-
formances. Compared with the advanced handcrafted CNNs,
the RSNets showed a higher efficiency and a comparable
accuracy. Because our work can provide more lightweight
deep neural network architectures that are more suitable for
remote sensing imagery recognition, we will extend this to
in-orbit satellite data processing [53], [54] and hyperspectral
image analysis [55] in further research.
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