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Class-Aware Domain Adaptation for Semantic
Segmentation of Remote Sensing Images
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Abstract— Unsupervised domain adaptation (UDA) for the
semantic segmentation of remote sensing images is challenging
since the same class of objects may have different spectra while
the different class of objects may have the same spectrum.
To address this issue, we propose a class-aware generative
adversarial network (CaGAN) for UDA semantic segmentation
of multisource remote sensing images, which explicitly mod-
els the discrepancies of intraclass and the interclass between
the source domain images with labels and the target domain
images without labels. Specifically, first, to enhance the global
domain alignment (GDA), we propose a transferable attention
alignment (TAA) procedure to add more fine-grained features
into the adversarial learning framework. Then, we propose a
novel class-aware domain alignment (CDA) approach in semantic
segmentation. CDA mainly includes two parts: the first one
is adaptive category selection, which is to alleviate the class
imbalance and select the reliable per-category centers in the
source and target domains; the second one is adaptive category
alignment, which is to model the intraclass compactness and
interclass separability from source-only, target-only, and joint
source and target images. Finally, the CDA plays as a penalty
of GDA to train GaGAN in an alternating and iterative manner.
Experiments on domain adaptation of space to space, spectrum
to spectrum, both space-to-space and spectrum-to-spectrum data
sets demonstrate that CaGAN outperforms the current state-of-
the-art methods, which may serve as a starting point and baseline
for the comprehensive applications of semantic segmentation in
cross-space and cross-spectrum remote sensing images.

Index Terms— Class-aware domain alignment (CDA),
class-aware generative adversarial network (CaGAN), cross-scene
and cross-spectrum remote sensing images, global domain
alignment (GDA), unsupervised domain adaptation (UDA)
semantic segmentation.
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I. INTRODUCTION

SEMANTIC segmentation is a pixel-wise class classifica-
tion task that assigns a label to every pixel in an input

image, which describes the class of its enclosing region [1].
The semantic segmentation is extremely useful in various
applications of remote sensings, such as traffic analysis and
management [2], urban area monitoring and planning [3], and
hazard detection and avoidance [4], [5]. Semantic segmenta-
tion is typically modeled as a supervised learning task, which
requires a large amount of labeled training samples to train
the model. Semantic segmentation on remote sensing appli-
cations have achieved high performance with active research
studies [6]–[9]. Recently, several different types of sensors
are jointly used to capture the images of the earth’s surface
and atmosphere with the development of modern remote
sensing technology. These sensors capture numerous images
at varying electromagnetic wavebands and different resolutions
from different perspectives. However, labeling those images is
quite challenging due to the huge amount of images. Thus,
adapting the segmentation models trained only with labeled
images from one remote sensing data to inference semantic
segments of the unlabeled images from other remote sensing
data has been attracting much attention.

Toward this end, the concept of domain shift [10] has
emerged, and the unsupervised domain adaptation (UDA)
methods have been proposed to address the domain shift
problem among different data sets, without the need of label-
ing new image data set. UDA aims to learn the invariant
representations between the source domain with labels and
target domain without labels. Among the recent works on UDA
semantic segmentation, adversarial learning frameworks have
attracted significant interest because of the improved quality
of alignment between different distributions by adapting rep-
resentations of different domains, e.g., the source and target’s
pixel, and feature space [11]–[14].

Despite the success of these adversarial learning frameworks
by global domain alignment (GDA) in the pixel, feature, and
output spaces, most methods neglected the category informa-
tion and the marginal distributions across domains cannot
be optimally aligned (Fig. 1). Furthermore, the traditional
generative adversarial models do not work well for UDA
semantic segmentation of cross-scene and cross-spectrum data
sets. The main reason is that the fine structural features of
objects in remote sensing images are difficult to be obtained
due to high intraclass variance and low interclass variance.
Consequently, it is necessary to select the reliable semantic
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Fig. 1. Comparison between traditional GAN and CaGAN. In Traditional
GAN (a) the marginal distributions of the source domain and target domain
cannot be optimally aligned since it neglects the category information of the
samples. (b) Proposed CaGAN enhances the GDA by adding more fine-
grained features, and models the intra-class and inter-class discrepancies
across source-only, target-only and source–target domains. Consequently,
the model can seek a suitable match between source and target domain, which
may deal with the challenge for the UDA semantic segmentation of remote
sensing data sets.

feature maps of each class and align these feature maps for
the semantic segmentation of remote sensing images.

Bearing these concerns in mind, in this article, we propose
the class-aware generative adversarial network (CaGAN)
to optimize the adversarial learning framework with GDA
and class-aware domain alignment (CDA), which models the
intraclass and the interclass discrepancies across domains.
First, a transferable attention alignment (TAA) in the GDA
module is proposed to add more fine-grained features into the
adversarial learning framework. Second, we propose a CDA
module which includes two building blocks: adaptive category
selection and adaptive category alignment. Adaptive category
selection alleviates the class imbalance and selects reliable
per-category features. Specifically, we found that classes
with higher accuracy always have more pixels on the label
map through extensive experiments. Therefore, we propose
the class-balanced weighting label factor to tackle the issue.
Then, since it is challenging to evaluate the correctness
of the “pseudo” label of each target sample, the adaptive
reliable-category selection is proposed. We take a batch of
labeled source and unlabeled target examples and get the
“pseudo” labels of the source and target by the segmentation
model, and then the per-category feature center of the source
is used as a guide to adaptively select the reliable per-category
feature of the target. The second building block, adaptive
category alignment, weighs the intraclass compactness
and the interclass separability. Particularly, the distribution

differences of spectrum and space are reduced by minimizing
the intraclass domain discrepancy, from source-only, source-
target, and target-only dimensions, whereas the source–target
representations of each other become farther away from
the decision boundary by maximizing the interclass domain
discrepancy (Fig. 1).

Considering the stability of GAN training and GDA to drive
CDA work, we put the CDA as a penalty of GDA to seek a
suitable match across domains. Inspired by Chen et al. [15],
we employ the asymptotic training scheme to avoid the insuf-
ficiency of categorical information in each mini-batch. Particu-
larly, an increasing amount of samples of source and target are
taken into account during training. Also, if the segmentation
model is over-saturated on the source data, we can retard the
convergence speed of the source segmentation by adding a
parameter in the softmax function to control the convergence.

A. Deep Adversarial Domain Adaptation
A popular procedure for UDA is to reduce the gap between

the source and target domains by learning invariant feature
representation to domain shift through a variety of statisti-
cal matching approaches. For example, transfer component
analysis (TCA) [16] and joint distribution adaptation (JDA)
[17] used traditional methods as feature extraction, and then
employed margin adaptation or joint adaptation, respectively,
to represent the differences between different distributions.
Maximum mean discrepancy (MMD) [16]–[19] mapped the
data distribution of different domains to reproducing kernel
Hilbert space (RKHS), in which the distance between two
distributions is measured to reduce the domain shift.

Another direction of research studies addressed the domain
adaptation problem by leveraging the adversarial learning
behaviors of GANs to perform distribution alignment in the
pixel, feature, and output spaces [11], [20]–[23]. For instance,
GANs are commonly used at feature spaces generated from
CNNs where a pixel-level or object-level domain discriminator
is trained to correctly distinguish the domain of each input
feature [24], [25]. Some advanced GAN-based methods [15],
[26] utilized attention mechanisms and self-supervision mech-
anisms in feature spaces for domain adaptation problems.
Benjdira et al. [27] designed a GAN-based algorithm to
perform pixel space translation from the source domain to
the target domain. Tsai et al. [12] presented a domain adap-
tation scheme in output space by an adversarial network.
Although these methods have made outstanding contributions
to GAN-based domain adaptation, they usually considered
the marginal distribution adaptation for the global domain,
but lacking category information. Later this technique was
applied to the decision boundary, which utilized task-specific
classifiers to align distributions [28], [29]. These approaches
focused on directly reshaping the target data regions instead
of aligning manifold in feature space under the heuristic
assumptions. Recently, several GAN models were proposed for
UDA tasks: Wasserstein GAN [14], [30], Siamese-based GAN
[20], and ColorMapGAN [31]. In addition, self-supervised
model was used by the generator [29], [32]. Most recently,
deep adversarial attention alignment methods were proposed
for a better adaptation of the source network to the target one



XU et al.: CLASS-AWARE DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION 4500317

by aligning the attention maps of the source network and target
network [33]–[35].

B. Class-Aware Domain Alignment

It is necessary to align the class-aware domain in remote
sensing semantic segmentation. Kang et al. [36] proposed a
contrastive adaptation network to explicitly model the intra-
class compactness and the interclass separability on adaptation
across domains. Chen et al. [15] utilized the intraclass variance
of the target domain and cross-domain class consistency
to address UDA problems. Luo et al. [37] proposed the
category-level adversarial network (CLAN) aimed to address
the problem of semantic inconsistency. Transferable proto-
typical networks (TPNs) [38] were proposed to construct
an embedding space of each class. Category anchor-guided
UDA model (CAG-UDA) [39] was presented to adapt the
segmentation model by aligning category-wise features guided
by category anchors. However, most of these methods were
focused on class-aware issues of natural image classification
and segmentation. Limited research studies have been devoted
to a cross-scene and cross-spectrum segmentation with the
remote sensing images.

C. Contributions

This article proposes CaGAN adopting the two power-
ful techniques: task-specific distribution alignment and CDA.
GDA serves as the task-specific segmentation, which can
strengthen the GDA by adding more fine-grained features.
Furthermore, learning similar prototypes of each class in
different domains reduces class-aware domain differences to
achieve intraclass compactness and interclass separability. Our
specific contributions are listed as follows.

1) A novel per-category selection scheme is proposed to
alleviate the class imbalance and select the reliable
per-category centers for UDA semantic segmentation.

2) A new metric is proposed to reduce the class-level
domain discrepancy to weigh the intraclass compactness
and the interclass separability from source-only, target-
only, and source–target data.

3) A TAA approach is developed to strengthen the GDA,
by adding more fine-grained features (such as the details
contained in the lower layers) into the adversarial learn-
ing framework.

4) A novel and practical paradigm, CaGAN is proposed
to optimize the GAN with GDA and CDA by the end-
to-end asymptotic training scheme.

5) Our proposed method is verified on four remote sens-
ing data sets, including two high-resolution data sets
Postdam and Vaihingen, a synthetic Panchromatic data
set, and a hyperspectral data set PaviaU. The results on
the four data sets prove the performance of the domain
adaption of space to space, spectrum to spectrum, both
space to space and spectrum to spectrum, respectively.
The experimental results demonstrate that the proposed
method outperforms the current state-of-the-art methods.
Also, the ablation study is presented to verify the effec-
tiveness of CDA and GDA.

TABLE I

SUMMARY OF ABBREVIATIONS

D. Organization of This Article

The rest of this article is organized as follows. Section II
describes the proposed model with details of components.
Section III presents experimental results with the ablation
study. Section IV concludes this article with some future
works. The abbreviations used in this article are summarized
in Table I.

II. PROPOSED CLASS-AWARE GAN

A. Problem Statement

This article focuses on the problem of UDA in the semantic
segmentation of remote sensing images. We consider having a
source domain S , with both images XS and pixel-level labels
YS . Meanwhile, we have a target domain T , with images XT

but no annotations. The UDA semantic segmentation problem
is defined as finding a model G predicting pixel-wise class
labels of the target domain. The traditional GAN trains a
prediction network G to learn domain-invariant features by
confusing a domain discriminator network D which is trying
to distinguish domains. This is achieved by minimizing the
segmentation loss Lseg and minimaxing the adversarial loss
Ladv, which are defined as follows:

Lseg(G) = E[�(G(XS),YS )] (1)

Ladv(G, D) = −E[log(D(G(XS )))]
−E[log(1− D(G(XT )))] (2)

where E[ ] denotes the statistical expectation operator and
�( ) is an appropriate loss function, such as multiclass cross-
entropy.

However, significant limitations exist in using traditional
GAN for the semantic segmentation of remote sensing images.
First, the marginal distributions of the source domain and
target domain cannot be optimally aligned because most adver-
sarial learning methods align only high-level representations,
such as activations in the fully connected (FC) layers. In this
manner, the details contained in the lower layers cannot be
aligned well. Second, there might be a negative transfer that
leads to different mapping in feature space of the same class
of objects from different domains because objects in remote
sensing images usually have high intraclass variance and
low interclass variance. More importantly, as the adversarial
training going on, the interclass errors will be accumulated.
Thus, these models are incapable of preserving cross-domain
category consistency. This phenomenon is called “deterioration
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Fig. 2. Overview of the proposed CaGAN, the input of the model includes RGB/Panchromatic/Hyperspectral remote sensing images. The model consists
of a semantic segmentation model G and a discriminator D. In the source flow, a segmentation loss is first computed based on the source ground truth, and
we calculate the per-category aggregation centers of source feature maps, encoded by model G . In the target flow, we select the reliable per-category feature
centers of target samples by the model G and adaptive category selection. To push the distributions of the two domains as close as possible, first, we minimize
the domain shift between representations of the source and target data by GDA-based domain adversarial training, and we add more fine-grained features into
the adversarial learning framework by TAA; second, CDA is proposed as a penalty of GDA to further model the intraclass compactness and the interclass
separability. Detailed descriptions can be found in Section II-B. The back-propagating with minimax loss [(29)] is used to align the global and class-aware
domain.

of interclass performance” by us. Therefore, it is necessary to
extract semantic feature maps of each class, and guarantee
correct pseudo-labels in the target domain. Inspired by this,
we propose our CaGAN model depicted in Fig. 2.

As in any UDA model, we first make the necessary assump-
tion that the source and target domains share the same label
space and the source model achieves higher performance than
that on the target domain. A source domain DS is given as

DS =
{(

xSi , ySi
)}ns

i=1, xSi ∈ XS , ySi ∈ YS (3)

with ns labeled samples and a target domain DT is given as

DT =
{

xTj
}nt

j=1, xTj ∈ XT (4)

with nt unlabeled samples. In addition, we consider C classes
in the CaGAN.

B. Class-Aware Domain Alignment

CDA mainly includes two parts, namely adaptive category
selection and adaptive category alignment. Adaptive category
selection aims to extract the semantic features in each class,
and adaptive category alignment aims to adaptively match the
features from the source domain to the target domain. In the
following, we describe these two parts in detail.

1) Adaptive Category Selection: Inspired by self-supervised
learning, we directly utilize a semantic segmentation model G
(i.e. the feature extractor in Fig. 2) learned on labeled source
data by minimizing the segmentation loss, and then assign
the source/target sample a “pseudo” pixel label. In this way,
the source and target samples are defined with pseudo pixel
labels as follows:

Ŝs = {(xs
i , ŷs

i

)}ns

i=1, xs
i ∈ R

w×h×c, ŷs
i ∈ R

w×h (5)

Ŝ t = {(xt
i , ŷt

i

)}nt

i=1, xt
i ∈ R

w×h×c, ŷt
i ∈ R

w×h (6)
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where ŷs
i and ŷt

i denote “pseudo” pixel labels of the source
sample xs

i and target sample xt
i , respectively. ns and nt are

the number of the source and target samples. w and h are
the width and height of the sample, and c is the number of
channels of the sample. After obtaining the pseudo pixel labels
of the source–target data, per-category feature maps can be
selected by class-balanced weighting label factor and adaptive
reliable-category selection.

a) Class-balanced weighting label factor: Through suffi-
cient experiments, we found that classes with higher accuracy
always have more pixels on the label maps, which leads to
an imbalance in quantity. To address this issue, we count
the class frequency of the entire target and source data sets,
respectively. Given an image x ∈ R

w×h×c and a pseudo label
map ŷ ∈ R

w×h

wk
i, j |Ck=1 =

{
1, ŷi, j = k

0, otherwise
(7)

Nk |Ck=1 =
∑

j

∑
i

wk
i, j |Ck=1 (8)

F̂k |Ck=1 =
(

1+ 1

Nk
n |Ck=1

)
wk |Ck=1 � G(x) (9)

where � denotes the element-wise product, (i, j) are the
indices of the pixel location, and k = 1, . . . ,C represents
the class number. w ∈ R

C×w×h is the category mask of each
image. Furthermore, we balance the influence of category pix-
els by the number of classes N ∈ R

C . Ultimately, we acquire
per-category feature maps F̂ ∈ R

C×w×h×ĉ , where ĉ is the
number of channels of feature maps.

b) Adaptive reliable-category selection: In order to
decrease the sparsity of the per-category feature maps mean-
while to increase the compactness of the per-category feature
maps, we impose downsampling to the feature maps. For the
source domain samples, we calculate the aggregation centers
for each class. Then a set of per-category feature centers
of source samples ck

S |Ck=1 is obtained. This strategy can be
formulated as

ck
S,n
∣∣C
k=1 = Downsampling

(
Fk
S,n
∣∣C
k=1

)
(10)

ck
T ,n
∣∣C
k=1 = Downsampling

(
Fk
T ,n
∣∣C
k=1

)
(11)

ck
S
∣∣C
k=1 =

1

Nk
S

∑
n

ck
S,n
∣∣C
k=1 (12)

where Nk
S denotes the number of the set of samples including

class k in the source domain.
Inspired by the easy-to-hard transfer strategy [15], we find

reliable pseudo labels of target samples are closer with the fea-
ture centers of source samples. Thus, similar to [15] and [40],
we use a similarity measurement ψ to select the reliable
per-category feature centers of target samples. To control the
similarity process, we set an increasing threshold T during
training. The per-category feature maps are determined by the
relationship between the similarity and this threshold. This

strategy can be formulated as

ψ
(
ck
T ,n
) = ρ(ck

S
∣∣C
k=1, ck

T ,n
∣∣C
k=1

)
(13)

T = 1

1.5+ e−μ(m+1) (14)

Rn =
{

1, if ψ
(
ck
T ,n
) ≥ T

0, if ψ
(
ck
T ,n
)
< T

(15)

ĉk
T
∣∣C
k=1 =

1

N̂k
T

∑
n

ck
T ,n
∣∣C
k=1 (16)

where ρ(xi , x j ) = ((xi · x j )/(‖xi‖ × ‖x j‖)) denotes the
cosine similarity function. μ is a hyperparameter, and m
denotes the training step. In (15), Rn = 1 indicates ck

T ,n
to be selected; otherwise, Rn = 0 indicates ck

T ,n not to be

selected. N̂k
T denotes the number of the set of target samples

selected by the adaptive reliable-category selection. Finally,
a set of per-category feature centers of target samples ĉk

T |Ck=1
is obtained. It is worth noting that if the kth class ĉk

T = 0,
the feature map ck

T corresponding to the maximum value of
ψ(ck

T ,n) in all the kth samples will be selected as the kth
category feature centers of target samples, in order to further
ensure the reliability of ĉk

T |Ck=1 and the stability of the training
process.

2) Adaptive Category Alignment: Adaptive category align-
ment explicitly models the intraclass and the interclass discrep-
ancies across domains. The domain discrepancy of intraclass
is minimized to reduce the spectrum and space distribution
differences from three dimensions: source-only, source-target,
and target-only, whereas the domain discrepancy of interclass
is maximized to put the source–target representations fur-
ther away from the decision boundary. As shown in Fig. 2,
we define the class-level discrepancy loss as follows:

L intra
(
ĉk
T , ck

S , ck
S−T

) = 1

C

C∑
k=1

∥∥ĉk
T − ck

S
∥∥

+ 1

C

C∑
k=1

∥∥ĉk
T − ck

S−T
∥∥

+ 1

C

C∑
k=1

∥∥ck
S − ck

S−T
∥∥ (17)

L inter
(
ck
S−T , ck′

S−T
) = 1

C ′
C−1∑
k=1

C∑
k′=k+1

∥∥ck
S−T − ck′

S−T
∥∥

(18)

ck
S−T

∣∣C
k=1 = ck′

S−T
∣∣C
k′=1 =

1

2

(
ĉk
T
∣∣C
k=1 + ck

S
∣∣C
k=1

)
(19)

where C ′ = ((C(C − 1))/2). �1-norm is used as the distance
measure. Different from [15], [36] and [38], we experi-
mentally found that Euclidean distance cannot lead to the
high performance of our model, and MMD is limited to the
mini-batch size, which does not fit the semantic segmentation.
More importantly, because the category information in each
mini-batch is insufficient and false pseudo pixel labels of
source and target images may cause huge model bias in seman-
tic segmentation, the adaptive category alignment is employed
here to solve the problem. The adaptive category alignment
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first computes the initial per-category feature maps of two
domains based on the Adaptive Category Selection. Then,
in each iteration, we compute a set of local category features
ck

t |Ck=1 using samples of mini-batch. The accumulated features
are computed by averaging all previous local features in each
iteration. Finally, we update ĉk(I )

T based on the similarity of
ĉk(I−1)
T and c̄k(I )

t . Specifically

ĉk(0)
T = ĉk

T
∣∣C
k=1 (20)

c̄k(I )
t = 1

I

I∑
i=1

ck(i)
t (21)

ĉk(I )
T ← ρ2

t c̄k(I )
t + (1− ρ2

t

)
ĉk(I−1)
T (22)

ρt = ρ
(
c̄k(I )

t , ĉk(I−1)
T

)
(23)

where I denotes the iteration time in the current training step.
ρt is a balancing parameter. ck(I )

S is similarly updated for the
source domain. Ultimately, the CDA loss Lcda is defined as
follows:
Lcda(θg) = L intra

(
ĉk(I )
T , ck(I )

S , ck(I )
S−T

)− L inter
(
ck(I )
S−T , ck′(I )

S−T
)
.

(24)

C. Global Domain Alignment

GDA is proposed to minimize the domain shift between
representations of the source and target data. Similar to the
traditional adversarial loss, we use the features in the last layer
of the generator G of both source and target domains, which
can be described as

Ladv(θg, θd) = −E[log(D(G(XS )))]
−E[log(1− D(G(XT )))]. (25)

a) TAA: To further eliminate the domain shift and using
the GDA during training to align the class-aware domains, it is
necessary to add more fine-grained features into the adversarial
learning framework. We propose TAA here to reduce the
discrepancies across domains. Formally, given an input image
X, the attention map Al(X) is obtained by feeding X to G.
The corresponding feature maps for the layer l is represented
by Gl(X). Inspired by the image-to-image translation [41],
the attention map Al(X) is defined as follows:

Al(X) =
∑

c

|Gl,c(X)|2 (26)

where Gl,c(X) denotes the cth channel of the feature maps.
The operations are element-wise across the channel dimension.
Thus, we penalize the distance between the last layer and the
penultimate layer attention maps of the source and the target
network models to minimize their discrepancies. The trans-
ferable attention maps of different layers in a segmentation
network focus on different features. For instance, the lower
layer attention maps have higher activations on local regions
of transferable targets, while the attention maps of the higher
layers focus on global semantic information of targets. Thus,
the TAA loss is defined as

Ltaa(θg) =
∑

l

∑
i

∥∥∥∥∥ AS
l

(
XS

i

)
∥∥AS

l

(
XS

i

)∥∥2 −
AT

l

(
XS

i

)
∥∥AT

l

(
XS

i

)∥∥2

∥∥∥∥∥
2

. (27)

Algorithm 1 Optimization of CaGAN

Require: source data: Ds =
{(

xs
i , ys

i

)}ns

i=1,

target data:Dt =
{

xt
j

}nt

j=1
epoch = 0

1: Initialize:G0 and D0
2: while not converge or epoch < maxepoch do
3: epoch = epoch + 1;
4: Run Adaptive Category Selection based on Gepoch−1

5: Calculate the per-category feature center ck(epoch−1)
S |Ck=1

and ĉk(epoch−1)
T |Ck=1

6: for I = 1, I ≤ Imax; I ++ do
7: I = Imax(epoch − 1)+ I ;
8: Derive Bs and Bt sampled from Ds and Dt

9: Train GI on labeled source data:
10: Train GI by minθg Lseg

11: Train GI to fool DI

12: Calculate local per-category feature center ck(I )
T and

ĉk(I )
T

13: Update: ck(I )
S |Ck=1, ĉk(I )

T |Ck=1 bu using Eq. (22) and
Eq. (23)

14: Train GI on unlabel target data by
minθg βLadv(θg, θd)+ γLcda

(
θg
)+ αLtaa(θg)

15: Train DI on source and target data by
maxθd βLadv(θg, θd)

16: end for
17: end while

D. Optimization

Given a source domain DS = {(xSi , ySi )}, (xSi ∈ XS , ySi ∈
YS), the semantic segmentation model G is trained by mini-
mizing the multiclass cross-entropy loss

Lseg(θg) =
h×w∑
i=1

C∑
c=1

−ySic log pSic (28)

where pSic and ySic denote the predicted probability and the
ground truth of class c on the pixel i , respectively. Formally,
the goal of training is to optimize the following minimax
objective:
min
θg

max
θd

Lseg(θg)+ βLadv(θg, θd)+ γLcda(θg)

+ αLtaa(θg) (29)

where β, γ , and α are weights that control the adversarial
loss, the CDA loss, and the TAA loss, respectively. Algo-
rithm 1 shows the flow of our CaGAN procedure. Specifically,
per-category feature centers of the source domain and target
domain are initialized in every epoch (Steps 4 and 5). For each
iteration, GI is first trained on labeled source data (Step 10),
GI is then trained to fool DI (Steps 12–14), and DI is trained
on source and target data (Step 15). Note that the first step is
pre-trained for an epoch, and then all the three steps are itera-
tively trained in the training procedure. In addition, if the seg-
mentation model G is oversaturated on the source data, we can
retard the convergence speed of the source segmentation by
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adding a speed parameter S(S > 1) in the softmax function:
Zi = exp(qi/S)∑

j exp(q j/S)
(30)

where qi is the final output feature maps by source
segmentation model, Zi denotes the class probabilities of
pixels for a source sample.

E. Theoretical Analysis

We utilize the theory of domain adaptation [10] to conduct
the theoretical analysis of our model. Let H be the hypothesis
class. Given two domains S and T

∀h ∈ H, RT (h) ≤ RS (h)+ 1

2
dH	H(S,T )+ λ. (31)

The RT (h) is thus limited by three terms.
1) The expected error on the source domain RS (h), which

is expected to be small and prone to be optimized by
the segmentation model G based on the source labels.

2) dH	H(S,T ) measures the domain discrepancy in the
hypothesis space H. According to the prior work [10],
[42], it can be minimized by the global domain adver-
sarial training, proved by the XOR-function [42]

dH	H(S,T ) = 2 sup
(h,h′)∈H2

| E
x∼S

P[h(x) �= h′(x)]

− E
x∼T

P[h(x) �= h′(x)] |
≤ 2 sup

h∈H
| E

x∼S
P[h(x) = 1]

− E
x∼T

P[h(x) = 1] |
= 2 sup

h∈H
| E

x∼S
P[h(x) = 0]

+ E
x∼T

P[h(x) = 1] − 1|. (32)

3) λ is related to dH	H(S,T ). However, dH	H(S,T )
does not guarantee the alignment of λ on cross-domain
category distributions. Thus, it is necessary to further
analyze λ. Let fT̂ ∈ D̂t and fŜ ∈ D̂s be the
pseudo-labeling functions of target and source domains,
respectively. And fT and fS are the corresponding true
labels. Thus, λ is approximately evaluated by the true
labels of source domain and the pseudo-labels of target
domain. In addition, this proof relies on the triangle
inequality [43]

λ = min
∀h∈H

RS (h, fS )+ RT̂ (h, fT )

≤ min
∀h∈H

RS

(
h,

fŜ + fT̂
2

)
+ RS

(
fŜ + fT̂

2
, fŜ

)

+ RS( fŜ , fS )+ RT̂

(
h,

fŜ + fT̂
2

)

+ RT̂

(
fŜ + fT̂

2
, fT̂

)
+ RT̂ ( fT̂ , fT )

≤ min
∀h∈H

RS (h, fŜ )+ 2RS

(
fŜ + fT̂

2
, fŜ

)
+ RS( fŜ , fS )+ RT̂ (h, fT̂ )

+ 2RT̂

(
fŜ + fT̂

2
, fT̂

)
+ RT̂ ( fT̂ , fT )

≤ min
∀h∈H

{
RS (h, fŜ )+ RS ( fŜ , fS )+ RT̂ (h, fT̂ )

+RT̂ ( fT̂ , fT )
}

+
{

2RS

(
fŜ + fT̂

2
, fŜ

)
+2RT̂

(
fŜ + fT̂

2
, fT̂

)

+ 2RT̂ ( fŜ , fT̂ )
}
. (33)

We thus have the following conclusions.
Remark 1: Minimizing {RS (h, fŜ ) + RS ( fŜ , fS ) +

RT̂ (h, fT̂ )+RT̂ ( fT̂ , fT )}. This term is minimized by the pro-
posed adaptive category selection and the segmentation model
G. The proposed adaptive category selection is to alleviate the
class imbalance and select the reliable per-category centers in
the source and target domains, which minimizes RS ( fŜ , fS )
and RT̂ ( fT̂ , fT ). Furthermore, the softmax function in the
segmentation model G aims to get a better target performance,
i.e., minimizing RS (h, fŜ )+ RT̂ (h, fT̂ ). Ultimately, the gaps
between pseudo-labels and true labels are gradually narrowed.

Remark 2: Minimizing {RS ((( fŜ + fT̂ )/2), fŜ ) +
RT̂ ((( fŜ + fT̂ )/2), fT̂ ) + RT̂ ( fŜ , fT̂ )}. The proposed
adaptive category alignment is to reduce the spectrum
and space distribution differences within the class across
domains from three dimensions: source-only, source-target
and target-only, which minimizes RS ((( fŜ + fT̂ )/2), fŜ ),
RT̂ ((( fŜ + fT̂ )/2), fT̂ ) and RT̂ ( fŜ , fT̂ ), respectively.
Finally, adaptive category alignment can align features in
category-level, i.e., when the categories are aligned, fŜ = fT̂ ,
then λ is expected to be minimized.

III. EXPERIMENTS

A. Setups

1) Data Sets: Four remote sensing data sets are employed
in our experiments, including two high-resolution data sets
Postdam1 and Vaihingen,2 a synthetic Panchromatic
data set, and a hyperspectral data set PaviaU.3 These data
sets are used to validate the domain adaption ability of the
proposed method for space to space, spectrum to spectrum,
and both space to space and spectrum to spectrum scenes.

The Postdam data set consists of 3-band IRRG4 and 3-band
RGB5 image data. The data set includes 38 annotated images
where a spatial resolution is 5 cm. We randomly split the data
set into 28 images of the training set and ten images of the
testing set. Images are labeled with six classes: building, low
vegetation, impervious surface, car, tree, and clutter. We ran-
domly sample 512 × 512 patches from the original images
and generate 3024 patches for training while 500 patches for
testing.

The Vaihingen data set consists of 3-band IRRG image
data with 33 images. Twenty-three images and 10 images are

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.
html

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.
html

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

4IRRG: Infra-red, Red, and Green.
5RGB: Red, Green, and Blue.



4500317 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

selected for training and testing, respectively. We randomly
sample 512 × 512 patches from the original images and
generate 2484 patches for training while 500 patches for
testing.

The synthetic Panchromatic data set is created from the
Vaihingen data set, from which we select 3-band IRRG
images and normalize the pixel values into [0, 255]. There
are 3000 panchromatic gray images of 512× 512 pixels, and
we randomly sample 2400 images as the training set with the
rest as the testing set.

The PaviaU data set is one of the public hyperspectral image
data sets, which has a single HSI with a size of 489× 388×
103. We select the first 20 bands as the source domain and
the bands from 21 to 40 as the target domain. We randomly
sample 128×128×20 patches from the first 20 band images.
3000 patches are generated for training with 1000 patches for
testing. Similarly, we randomly sample 128×128×20 patches
from the second 20 band images, 2000 patches are generated
for training and 1000 patches for testing.

2) Implementation Details: We use Deeplab-V2 [44] with
ResNet-101 [45] pretrained on ImageNet [46] as the basic
semantic segmentation model G. To better align the global
feature distribution, Atrous spatial pyramid pooling (ASPP)
is applied on the last and penultimate layer’s feature outputs,
and TAA is used on multilevel outputs coming from the last
layer and the penultimate layer, as illustrated in Fig. 2. We
modify the sampling rates of ASPP as {6, 12, 24, 36} and the
dilation rates of the last layers so that they produce dense
feature maps with larger field-of-views. For discriminator
network D, we adopt the same architecture as the one used
in DCGAN [47], which is composed of five convolution
layers with the kernel size of 4 × 4, channel numbers are
{64, 128, 256, 512, 1}, and a stride of 2. Leaky-ReLU with
the slope of 0.2 follows each convolution layer except the
last layer. All the network weights are shared for the source
domain and the target domain.

The stochastic gradient descent (SGD) is used as the opti-
mizer for G with momentum = 0.9, weight decay = 5 e− 4,
while using Adam to optimize D with β1 = 0.9, β2 = 0.99.
For SGD, initial learning rate = 2.5 e−4, while initial learning
rate = 1 e − 4 for Adam. A poly learning rate policy is used
for two optimizers. max_iteration = 7000 in every epoch. We
adopt the overall pixel accuracy (OA) and mean intersection
over union (mIoU) as evaluation criterion [48]. We use Pytorch
for implementation on a high-performance computing cluster,
with four Tesla K80 12 GB GPUs. The code will be made
publicly available.6

B. Model Analysis

1) Hyperparameter Analysis: To study the effect of hyper-
parameter settings on our proposed method, we perform sen-
sitivity analysis on the weights of training loss (β, γ , and α),
the threshold parameter (μ), and the speed parameter (S).

a) Weights of training loss: β, α, and γ correspond to the
adversarial loss, the TAA loss, and the CDA loss, respectively.
A series of cross-validation experiments are conducted to

6https://github.com/xupine/CaGAN

TABLE II

HYPERPARAMETER ANALYSIS OF THE TRAINING LOSS WEIGHTS ON
TRANSFER TASK IRRG VAIHINGEN→ IRRG POSTDAM. THE VALUES

IN BOLD ARE THE BEST

investigate the impact of these three weights on CaGAN. For
instance, a space-to-space adaptation scenery IRRG Vaihingen
→ IRRG Postdam with μ = 0, S = 1 is illustrated in Table II.
First, our adversarial loss performs the best with β = 0.001,
hence the same value of β is utilized in the following exper-
iments. Second, by evaluating the impact of adding a TAA
loss in GDA, we find that the weight of α = 0.0002 achieves
the best result. A larger power of TAA (e.g., α = 0.001)
results in a decreased performance. In the case of fixing the
weight of β = 0.001 and α = 0.0002, we further analyze the
impact of CDA for our CaGAN. It can be seen that higher
performance is achieved when γ is set to 0.0002. In addition,
the GAN training process is more stable when β and γ are set
to 0.001 and 0.0002, respectively. This is because the global
distribution alignment should guide and drive the alignment of
class-aware distributions. Thus, we use the same β = 0.001,
γ = α = 0.0002 for all our experiments.

b) Threshold parameter: To investigate the impact of
the reliable pseudo label selection parameter μ of target
samples on different domain adaptation scenarios, we conduct
cross-space domain (different objects with the same spectra)
and cross-spectrum domain (the same object with different
spectra) experiments with μ in {0,0.4,0.8,1.2,1.6,2} and
S = 1. As depicted in Fig. 3(a) and (b), it has been seen that
the best result is obtained when μ is set as 0.8 in terms of
cross-space experiments (IRRG Postdam→ IRRG Vaihingen).
In terms of cross-spectrum domains, it is shown that better
performance is achieved when μ = 0.8 on cross-spectrum
scenarios with a small number of bands (IRRG Postdam →
RGB Postdam), while the peak performance is reached when
μ = 1.6 on cross-spectrum scenarios with a large number
of bands (First 20-band PaviaU → Second 20-band PaviaU).
Digging further, μ between 0.8 and 1.6 leads to favorable
performances for all adaptation scenarios. However, the perfor-
mance is relatively poor when μ is either too small or too large.
When μ is small (the threshold is low), reliable pseudo labels
of target samples cannot be selected. When μ is large (the
threshold is high), the generated pseudo label samples cannot
provide effective per-category feature centers for subsequent
training.

c) Speed parameter: We perform a sensitivity analysis
of the speed parameter S on cross-space and cross-spectrum
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Fig. 3. Sensitivity analysis for the parameters μ and S. (a) Threshold parameter μ on mIoU. (b) Threshold parameter μ on OA. (c) Speed parameter S on
mIoU. (d) Speed parameter S on OA.

domain adaptive experiments. Fig. 3(c) and (d), respectively,
shows the mIoU and OA results by changing S in
{1,1.5,1.8,2,2.2}. The performance first increases and then
decreases as S varies. The peak performances are obtained
when S is set as 1.8 for cross-space experiments (IRRG Post-
dam → IRRG Vaihingen) and cross-spectrum scenarios with
a small number of bands (IRRG Postdam→ RGB Postdam).
When S is set as 2.0, the CaGAN model performs better for
cross-spectrum scenarios with a large number of bands (First
20-band PaviaU → Second 20-band PaviaU). Furthermore,
the results implicitly demonstrate that a good UDA model
needs a non-saturated source segmentation network.

2) Ablation Study for Each Module in CaGAN: The pro-
posed model has two main components: CDA and GDA.
To analyze the effects of those two components, the ablation
study was conducted in the UDA semantic segmentation of
remote sensing images. Fig. 4 presents the contrastive analysis
of the segmentation results and visualized features obtained
from source-only, CaGAN with CDA and CaGAN without
CDA. In addition, to analyze the enhancement of TAA to the
GDA, we visualize the feature map of the models with/without
TAA on every category. We randomly sample some target
images from the transfer task IRRG Postdam → IRRG Vai-
hingen. The category heatmaps of the segmentation network
before softmax operation are then overlaid with a target image.
The visualization analysis results are shown in Fig. 5.

First, it has been shown that GDA can be used to min-
imize the domain shift according to (f) and (g) in Fig. 4.
The segmentation model G-based source-only can capture
the features, which are originally aligned between domains.
However, the fine structural features of the objects with the
same label possibly have huge differences in different spatial
or spectral domains because of the same objects with different
spectra and different objects with the same spectra. Thus,
GDA can encourage G to capture the domain-invariant features
of pixels, as a result of reducing the intra-class dispersion.
As shown in Fig. 4(b), the result is poor without GDA.
Furthermore, it has been demonstrated that TAA in GDA can
focus more transferable regions (especially in the objects in
different domains), by adding more fine-grained features into
the adversarial learning framework according to Fig. 5.

Second, the results in Fig. 4 show that CDA can
further model the intraclass compactness and the interclass

Fig. 4. Contrastive analysis of proposed CaGAN without CDA and
with CDA. (a) Target images of IRRG Vaihingen, synthetic panchromatic
Vaihingen, and Second 20-band PaviaU. Red boxes are the focused regions.
(b) Nonadapted segmentation results based on source-only. (c) Adapted
(CaGAN without CDA) results of three experiments, in which a decent
segmentation map is produced. However, the inter-class discrepancy is low
and this leads to “deterioration of inter-class performance.” (d) Adapted results
from CaGAN. CaGAN reduces the distribution differences within the class
and improves appropriately the inter-class domain discrepancies. (e) Ground
truth of target images. The h-dimensional features of (b)–(d) are mapped
to a 2-D space with t-SNE [49] in (f)–(h). Each color represents a class.
The comparison of feature distributions proves that CaGAN can model the
intra-class compactness and the inter-class separability.

separability, especially in the space domain and spectrum
domain adaptive experiments. Different from other
category-level alignment models [37], [39], [50], CDA
visually builds the class-aware model. Furthermore, according
to Table II, γLcda(θg) is a penalty for global adaptation.
When γ is large, CDA is dominant, but it cannot capture
correct pseudo-labels for target samples, and thus G cannot
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Fig. 5. Visualization analysis results of category features with/without TAA module in target images. (From Left to Right) First two columns represent car
category, the second two columns represent building category, the third two columns represent impervious surfaces category, the fourth two columns represent
low vegetation category, the fifth two columns represent tree category.

TABLE III

ADAPTATION FROM IRRG POSTDAM TO IRRG VAIHINGEN. PER-CLASS IOU: 5–9TH COLUMNS, OA: OVERALL PIXEL

ACCURACY, AND MIOU: MEAN IOU

TABLE IV

ADAPTATION FROM IRRG VAIHINGEN TO IRRG POSTDAM. PER-CLASS IOU: 4–8TH COLUMNS, OA: OVERALL PIXEL ACCURACY,
AND MIOU: MEAN IOU

fool D on the global domain. This causes diverse model
training. When γ is small, G tends to have similar joint
distributions and similar class-aware marginal distributions
between two domains. D is encouraged to be trained to
distill more knowledge from images suffering from class
inconsistency rather than well-aligned classes.

We further evaluate the performance of TAA, GDA, and
CDA in different scenes of remote sensing images. The results
of space-to-space scenes are shown in Tables III and IV.

The results of spectrum to spectrum scenes are provided
in Tables V and VI. In addition, The more complex scenes
(both space to space and spectrum to spectrum) are considered
in Tables VII and VIII. The tables show that introducing the
TAA in GDA improves the mIoU performance by an average
12.57% (between 7.99% and 15.24%) and an average 0.88%
(between 0.37% and 2.15%) compared with the source-only
segmentation model and the Deeplab-V2 + DAT model.
Digging further, it has been shown that the TAA module
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TABLE V

SMALL DOMAIN ADAPTATION FROM IRRG POSTDAM TO RGB POSTDAM. PER-CLASS IOU: 4–8TH COLUMNS, OA: OVERALL PIXEL ACCURACY, AND
MIOU: MEAN IOU

TABLE VI

LARGE DOMAIN ADAPTATION FROM FIRST 20-BAND PAVIAU TO SECOND 20-BAND PAVIAU. PER-CLASS IOU: 4–12TH COLUMNS, OA: OVERALL PIXEL

ACCURACY, AND MIOU: MEAN IOU

TABLE VII

ADAPTATION FROM RGB POSTDAM TO IRGB VAIHINGEN. PER-CLASS IOU: 4–8TH COLUMNS, OA: OVERALL PIXEL ACCURACY,
AND MIOU: MEAN IOU

TABLE VIII

ADAPTATION FROM IRRG POSTDAM TO SYNTHETIC PANCHROMATIC VAIHINGEN. PER-CLASS IOU: 4–8TH COLUMNS, OA: OVERALL PIXEL ACCURACY,
AND MIOU: MEAN IOU

has more advantages in space-to-space scenes than spectrum-
to-spectrum scenes, which is because the cross-space scenes
have a more considerable domain shift. Overall, the results in
different scenes of remote sensing images show that TAA can
be used as a novel pipeline in the UDA semantic segmentation
to enhance the global distribution alignment. Furthermore,
the use of the CDA module improves the mIoU performance

by more than 8.34% (between 8.34% and 17.65%) compared
with the source-only model. Importantly, CDA can bring
an average 2.40% (between 0.35% and 4.62%) performance
compared with the Deeplab-V2+ GDA (without CDA), which
performs better than introducing the TAA module in GDA.
Thus, CDA can be used as a practical module in different
scenes of remote sensing images.
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3) Model Parameter Analysis: Table III shows the number
of parameters under different methods and different backbones
(including ResNet-101, VGG-16 and ResNet-50). It is shown
that the introduction of TAA and CDA modules did not bring
additional parameters. Thus, TAA and CDA in this article can
be widely used in other related UDA semantic segmentation
models, because these modules improve model performance
without increasing the number of model parameters. In terms
of different backbones, although the parameter amount of
CaGAN with ResNet-101 is 2.7 times larger than that of
CaGAN with VGG-16, the mIoU performance of CaGAN
with ResNet-101 is improved by 7.5%. Thus, it has been
demonstrated that the backbone has a stronger ability to
express multiscale features in remote sensing images, and
CaGAN will achieve better domain adaptation effects. Fur-
thermore, CaGAN improves the mIoU performance by an
average of 16% compared with the source-only model in
different backbones, which shows the effectiveness of CaGAN
in different models.

C. Comparing Methods

For a comprehensive evaluation, we compare our model
with existing state-of-the-art methods, including MCD [28],
AdasegNet [12], and Advenet [51] with multilevel and
CLAN [37].

1) Source-only is a baseline model which only utilizes
source domain data for training and tests on target data.

2) Target-only is a traditional supervised semantic seg-
mentation model which means training target domain
with annotations. It is necessary to verify the effective-
ness and reliability of unsupervised adaptive methods
in remote sensing image application scenarios, by the
comparison with the performance of the supervised
model (target-only).

3) MCD [28] is proposed to align distributions of source
and target by utilizing the task-specific decision bound-
aries.

4) AdasegNet [12] with multilevel is an effective adver-
sarial learning method for UDA in semantic segmenta-
tion, which performs output space domain adaptation
at different feature levels by a multilevel adversarial
network. Compared with adaptation in the feature space,
output space adaptation with multilevel can contain rich
information and low computational cost for semantic
segmentation.

5) Advenet [51] with multilevel is presented to address
domain shift in the UDA semantic segmentation
based on the entropy-based adversarial training
approach. An entropy-based loss is proposed to directly
penalize low-confident predictions on the target domain,
which does not add significant overhead to segmentation
frameworks. In addition, the entropy-based adaptation
scheme is performed on multilevel outputs coming
from different scale features.

6) CLAN [37] is to align category-level joint distributions
by adaptively weighting the adversarial loss for different
features. CLAN is a cooperative adversarial training

Fig. 6. UDA segmentation for the space-to-space scene (IRRG Postdam →
IRRG Vaihingen). Legend–blue: buildings, white: impervious surfaces, green:
trees, yellow: cars, cyan: low vegetation. (a) Target image. (b) Before DA
(Source only). (c) After DA (Adapt with multilevel). (d) After DA (CaGAN).
(e) Ground truth.

approach by increasing the weight of adversarial loss
for category-level features poorly aligned.

7) The existing adversarial learning methods proposed for
the UDA semantic segmentation of the same remote
sensing data sets (such as Postdam and Vaihingen) are
considered, including Siamese-based GAN [20], tradi-
tional GAN [27] and conditional GAN [25].

8) Deeplab-V2 + DAT is the traditional domain adver-
sarial training method without applying the TAA and
CDA modules; Deeplab-V2 + GDA is our proposed
GDA (DAT + TAA) adversarial training method without
applying the CDA module; Deeplab-V2+ GDA + CDA
is our full method that employs the CDA module to
Deeplab-V2 + GDA.

D. UDA Results in Different Scenarios

In all the tables, the values in bold are the best and the val-
ues underlined are the second best. “Seg,” “Adv,” and “Adv-C”
represent the segmentation-based source, adversarial learning,
and task-specific classifiers adversarial learning-based DA,
respectively. “Adv-R*” denotes the most excellent adversarial
learning method proposed for remote sensing images, where *
represents the results directly selected from the corresponding
article.

1) UDA Cases of Space to Space Scenes: The adaptation
results on tasks IRRG Postdam→ IRRG Vaihingen and IRRG
Vaihingen → IRRG Postdam are given in Tables III and IV,
respectively. These tasks focused on the cases of space to
space scenes in remote sensing data. The baseline method
is a source-only model achieving an mIoU of 34.19% for
IRRG Postdam to IRRG Vaihingen, and an mIoU of 26.31%
for IRRG Vaihingen to IRRG Postdam. CaGAN significantly
outperforms the two source-only segmentation methods by
17.65% and 16.54%, respectively. Also, CaGAN outperforms
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Fig. 7. UDA segmentation for the space-to space scene (IRRG Vaihingen→
IRRG Postdam). Legend–blue: buildings, white: impervious surfaces, green:
trees, yellow: cars, cyan: low vegetation. (a) Target image. (b) Before DA
(Source only). (c) After DA (Adapt with multilevel). (d) After DA (CaGAN).
(e) Ground truth.

Fig. 8. UDA segmentation for the spectrum to spectrum scene (IRRG
Postdam → RGB Postdam). Legend–blue: buildings, white: impervious
surfaces, green: trees, yellow: cars, cyan: low vegetation. (a) Target images.
(b) Before DA (Source only). (c) After DA (Adapt with multilevel). (d) After
DA (CaGAN). (e) Ground truth.

the AdasegNet [12] with a multilevel adaptation model by
1.64% for IRRG Postdam to IRRG Vaihingen and 0.79% for
IRRG Vaihingen to IRRG Postdam, which is the second-best
among the benchmark methods. Importantly, although the
transfer tasks on IRRG Postdam to IRRG Vaihingen and IRRG
Vaihingen to IRRG Postdam have the same domain difference,
it has been shown that the different source domain (different
transfer order) can lead to a considerable difference in per-
formance by further comparing the two cross-space domain
adaptation tasks. Specifically, the number of samples (the
spatial features) in the source domain is more sufficient, and
the effect of domain alignment is better. Furthermore, per-class
mIoU is computed to assess the segmentation performance

Fig. 9. UDA segmentation for the spectrum to spectrum scene (First 20-
band PaviaU → Second 20-band PaviaU). Legend–black:Asphalt, maroon:
Meadows, green: Gravel, olive: Trees, navy: Metal sheets, purple: Bare Soil,
teal: Bitumen, gray: Self-blocking bricks, red: Shadows.

Fig. 10. UDA segmentation for the space to space and spectrum to spectrum
scene (RGB Postdam → IRRG Vaihingen). Legend–blue: buildings, white:
impervious surfaces, green: trees, yellow: cars, cyan: low vegetation. (a) Target
images. (b) Before DA (Source only). (c) After DA (Adapt with multilevel).
(d) After DA (CaGAN). (e) Ground truth.

for different objects. As shown in the quantitative results,
CaGAN produces better segmentation results. In terms of
IRRG Postdam to IRRG Vaihingen, cars, impervious surfaces,
and building are better; impervious surfaces and building are
better for IRRG Vaihingen to IRRG Postdam.

We also compare the CaGAN with the adversarial learning
methods proposed for remote sensing images, for example,
in terms of the segmentation adaptation from IRRG Potsdam
to IRRG Vaihingen, Siamese-based GAN [20] achieves an
mIoU of 51.5%, Benjdira et al. [27] achieves a mIoU of 30%
based on traditional GAN, Liu et al. [25] reaches 38.70%
from IRRG Vaihingen to IRRG Postdam based on conditional
GAN. Overall, our CaGAN achieves higher results than these
methods used in space to space remote sensing images.
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Fig. 11. UDA segmentation for the space to space and spectrum to spectrum
scene (IRRG Postdam → synthetic panchromatic Vaihingen). Legend–blue:
buildings, white: impervious surfaces, green: trees, yellow: cars, cyan: low
vegetation. (a) Target images. (b) Before DA (Source only). (c) After DA
(Adapt with multilevel). (d) After DA (CaGAN). (e) Ground truth.

Fig. 12. More results on UDA segmentation for the space to space scene
(IRRG Postdam → IRRG Vaihingen). Legend–white: impervious surfaces,
blue: buildings, cyan: low vegetation, green: trees, yellow: cars. (a) Source
images. (b) Target images. (c) Before DA (Source only). (d) After DA (Adapt
with multilevel). (e) After DA (CaGAN). (f) Ground truth.

2) UDA Cases of Spectrum to Spectrum Scenes: The same
objects with different spectra in different remote sensing
images can also lead to huge domain differences. To verify
the effectiveness of our proposed CaGAN in cross-spectrum
scenes, we conduct a 3-band domain adaptation task from
IRRG Postdam to RGB Postdam (small domain shift) and a
20-band domain adaptation task from first 20-band PaviaU
to second 20-band PaviaU (large domain shift).

a) Small domain shift from IRRG Postdam to RGB Post-
dam: Table V presents the comparison of our proposed
CaGAN and other state-of-the-art methods from IRRG Post-

Fig. 13. More results on UDA segmentation for the space to space scene
(IRRG Vaihingen → IRRG Postdam). Legend–white: impervious surfaces,
blue: buildings,cyan: low vegetation, green: trees, yellow: cars. (a) Source
images. (b) Target images. (c) Before DA (Source only). (d) After DA (Adapt
with multilevel). (e) After DA (CaGAN). (f) Ground truth.

Fig. 14. More results on UDA segmentation for the spectrum to spec-
trum scene (IRRG Postdam → RGB Postdam). Legend—white: impervious
surfaces, blue: buildings,cyan: low vegetation, green: trees, yellow: cars.
(a) Source images. (b) Target images. (c) Before DA (Source only). (d) After
DA (Adapt with multilevel). (e) After DA (CaGAN). (f) Ground truth.

dam to RGB Postdam, which focused on the cross-spectrum
scenes with a small number of bands. As shown in Table V,
the mIoU and OA for our CaGAN are higher than those
competitive methods. In terms of mIoU, CaGAN outperforms
the baseline model (source-only) by 8.3%, and state-of-the-art
method (AdasegNet [12] with a multilevel adaptation model)
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Fig. 15. More results on UDA segmentation for the spectrum to spectrum
scene (First 20-band PaviaU → Second 20-band PaviaU). Legend—black:
Asphalt, maroon: Meadows, green: Gravel, olive: Trees, navy: Metal sheets,
purple: Bare Soil, teal: Bitumen, gray: Self-Blocking Bricks, red: Gravel.
(a) Target images. (b) Before DA (Source only). (c) After DA (Adapt with
multilevel). (d) After DA (CaGAN). (e) Ground truth.

by 0.3%. Specifically, it has been shown that CaGAN improves
the IoU performance in each category by more than 7%
(between 7% and 10%) compared with the source-only model
and it has more advantages in building and low vegetation
compared with other methods. Furthermore, it is worth noting
that the performance of the methods after applying domain
adaptation is better than that of a fully supervised model
(target-only) for the same space scenes with small spectral
domain differences, especially for our proposed CaGAN.
This phenomenon indicates that the domain adaptive methods
can increase the distinguishability of features by adversarial
training. In addition, domain adaptive methods can also learn
more complete context features in remote sensing images by
adding the adversarial loss, which is similar to the inpainting
tasks from context information [52].

b) Large domain shift from first 20-band PaviaU to sec-
ond 20-band PaviaU: Table VI provides the compara-
tive results on the Hyperspectral data sets, first 20-band
PaviaU → second 20-band PaviaU, which focused on the
cross-spectrum scenes with a large number of bands. To
facilitate the direct use of Deeplab-V2, HSIs are converted into
three-channel images by principal components analysis (PCA)
[53]. As Table VI shows, equipped with ResNet-101 backbone,
CaGAN outperforms the source-only segmentation model by
16.11%. Besides, CaGAN also outperforms state-of-the-art
methods by over 1% compared with AdasegNet [12] and
AdveNet [51] with multilevel adaptation model. However,

Fig. 16. More results on UDA segmentation for the space to space and
spectrum to spectrum scene (RGB Postdam → IRRG Vaihingen). Legend—
white: impervious surfaces, blue: buildings, cyan: low vegetation, green:
trees, yellow: cars. (a) Source images. (b) Target images. (c) Before DA
(Source only). (d) After DA (Adapt with multilevel). (e) After DA (CaGAN).
(f) Ground truth.

Fig. 17. More results on UDA segmentation for the space to space
and spectrum to spectrum scene (IRRG Postdam → synthetic panchromatic
Vaihingen). Legend—white: impervious surfaces, blue: buildings, cyan: low
vegetation, green: trees, yellow: cars. (a) Source images. (b) Target images.
(c) Before DA (Source only). (d) After DA (Adapt with multilevel). (e) After
DA (CaGAN). (f) Ground truth.

compared to the stronger baseline, we observe a significant
drop in class “Bare Soil” and “Bitumen.” Note that it is
due to the large layout gaps in the hyperspectral data sets,
where the hyperspectral objects have fewer pixels and more
background pixels, and the sample pixel distributions are
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extremely unbalanced. Thus, early stopping has been taken
during the model training to prevent target data over-fitting.

3) UDA Cases of Space to Space and Spectrum to Spectrum
Scenes: To further verify the effectiveness of CaGAN in the
remote sensing data sets of more complex and larger domain
shift (both spatial domain and spectral domain differences are
considered), we construct two space to space and spectrum to
spectrum domain adaptation tasks, including RGB Postdam to
IRGB Vaihingen and IRRG Postdam to synthetic panchromatic
Vaihingen.

Table VII presents comparative results of CaGAN and three
leading models on task RGB Postdam → IRRG Vaihingen.
It has been demonstrated that CaGAN is competitive in the
domain adaptation semantic segmentation of cross-space and
cross-spectrum remote sensing images by comparing with
these results. Specifically, our proposed CaGAN has increased
mIoU from 31.37% of the baseline (source-only) to 47.52%.
CaGAN outperforms the strong model (AdasegNet [12] with a
multilevel adaptation model) by 1.84%. Notably, the IoU of a
car is only 8.29% in AdasegNet, whose performance degrades
compared to source-only. This phenomenon is caused by the
limitation of global distribution alignment, which leads to
“deterioration of inter-class performance.” In contrast, CaGAN
can avoid this deterioration, achieving a car IoU of 31.86%.

Table VIII shows the results on task IRRG Postdam →
synthetic panchromatic Vaihingen. We compare our model
with the best baseline AdasegNet with a multilevel adaptation
model [12] in the first task. Without domain adaptation,
the model trained only on the source domain achieves a mIoU
of 25.48%. Our model achieves 15.02% and 2.09% improve-
ments compared to source-only and AdasegNet, respectively.

E. Qualitative Results

Qualitative UDA segmentation results of space to space,
spectrum to spectrum, and both space to space and spectrum to
spectrum are presented in Figs. 6–11, respectively. The second
column demonstrates the results before DA based source only.
The segmentation results of different classes in cross-space
domains (including space to space scenes, both space to space
and spectrum to spectrum scenes) are poor while relatively bet-
ter in spectrum to spectrum scenes. We argue that it is due to
the fact that spectrum to spectrum scenes perform less domain
shift and more spatial features are originally aligned between
the same targets with different bands in remote sensing data.
The third and fourth columns demonstrate the results after
DA based AdasegNet with a multilevel adaption model [12]
and CaGAN model, respectively. The comparison between
the third and fourth columns show that our model provides
relatively accurate predictions on target images (especially in
both space to space and spectrum to spectrum scenes). Fur-
thermore, CaGAN can effectively capture the small objects in
the remote sensing images and obtain more precise boundaries
of objects for UDA in the multisource remote sensing images.
To make the experimental results more solid and convincing,
more qualitative results are given in Figs. 12–17.

IV. CONCLUSION

In this article, we propose CaGAN to strengthen the
GDA and explicitly model the intra-class and the inter-class

discrepancies in the UDA semantic segmentation. CaGAN
is trained in an end-to-end asymptotic training manner.
Experimental results on domain adaptation of space to space,
spectrum to spectrum, both space to space and spectrum to
spectrum data sets demonstrate that CaGAN outperforms the
state-of-the-art remote sensing UDA semantic segmentation
methods. Ablation studies show that GDA encourages the
generator to capture the domain-invariant aspect of pixels,
as a result of reducing the intra-class dispersion, while CDA
further models the intraclass compactness and the interclass
separability. However, the proposed CaGAN framework lacks
prior knowledge of remote sensing images (such as the
spectral curve features, geospatial information, and the spatial
distribution of objects in remote sensing images). In future
works, this will be investigated.
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