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Abstract— Sea surface temperature (SST) can be measured
from space using infrared sensors on Earth-observing satellites.
However, the tradeoff between spatial resolution and swath size
(and hence revisit time) means that SST products derived from
remote sensing measurements commonly only have a moderate
resolution (>1 km). In this article, we adapt the design of a
super-resolution neural network architecture [specifically very
deep super-resolution (VDSR)] to enhance the resolution of both
top-of-atmosphere thermal images of sea regions and bottom-
of-atmosphere SST images by a factor of 5. When tested on
an unseen dataset, the trained neural network yields thermal
images that have an RMSE 2 − 3× smaller than interpolation,
with a 6–9 dB improvement in PSNR. A major contribution of
the proposed neural network architecture is that it fuses optical
and thermal images to propagate the high-resolution information
present in the optical image to the restored thermal image.
To illustrate the potential benefits of using super-resolution (SR)
in the context of oceanography, we present super-resolved SST
images of a gyre and an ocean front, revealing details and features
otherwise poorly resolved by moderate resolution satellite images.

Index Terms— Data fusion, deep learning, gyre, Land-
sat 8, ocean front, sea surface temperature (SST), Sentinel 3,
super-resolution (SR), thermal infrared.

I. INTRODUCTION

IMAGES provided by earth-observing satellites are a vital
information source for recording and understanding the

global environment. Satellite sensors that record radiance in
the far-infrared region have proven to be crucial for mon-
itoring long-term changes in oceans [1] and the impact of
human habitation on land regions [2], among many other
applications. For long-timescale, synoptic studies, such as
sea temperature records [3] or meteorology [4], instruments
providing moderate spatial resolution (≈1 km) images with
high revisit time are commonly used, for instance, MODIS on
board satellites Terra and Aqua, and SLSTR on board Sen-
tinel 3. Many oceanographic phenomena, such as fronts [5],
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filaments [6], eddies [7], and meanders [8], can have features
and structures across a broad range of spatial scales, including
scales much smaller than what is resolvable with moder-
ate resolution sensors. A single remote sensing instrument
must tradeoff spatial resolution with coverage (also known as
swath), such that high (low) resolution instruments sample a
small (large) surface area. Larger coverage can be achieved
with constellations of identical satellites, such as the case of
Sentinel 3 of the Copernicus constellation [9], but with the
drawback of increased cost. Consequently, there is ongoing
interest in enhancing the resolution of remote sensing images
as a post-processing step aimed at producing comprehensive
datasets with both high spatial resolution (< 1 km) and high
revisit time, in order to accurately record simultaneously both
large scale and small-scale phenomena [10], [11].

Super-resolution (SR) is the term used to describe the
process of computationally enhancing the resolution of a dig-
ital image. The problem is ill-posed, since multiple different
high resolution (HR) images can be consistent with a single
low resolution (LR) image. Therefore, the task of SR is to
constrain the problem such that a unique mapping can be
found between an LR image and its HR counterpart, in such
a way that the LR image is downscaled with high fidelity
compared to the HR image ground truth. The difference in
spatial resolution between LR and HR image is referred to
here as “scale factor,” which is the term that is used throughout
this article.

Initial work in the area of SR focused on improving the
resolution of purposely degraded natural images. Among early
efforts was the example-based approach for single image
SR of Freeman et al. [12], who used a k-nearest neighbors
method to find closest matching examples from pairs of LR
and HR images. Further improvements in performance were
obtained by using “neighborhood embedding” where the LR
and HR patches are recast as feature vectors, with the SR
patch derived from combining local neighboring vectors [13].
Subsequent developments focused on efficient encapsulation
of the LR–HR mapping function by creating a dictionary
and using sparse coding [14], [15]. In the context of thermal
images from remote sensing, there has been sustained devel-
opment of scene-specific methods, such as thermal-sharpening
(TsHARP), where combinations of HR optical images are
used to downscale LR thermal images acquired over land
regions [16], [17]. Collectively, older approaches to SR that
do not utilize deep learning are referred to as “classical”
methods.

1558-0644 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 21,2022 at 16:29:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4187-6557
https://orcid.org/0000-0001-8106-9891
https://orcid.org/0000-0002-9102-0810
https://orcid.org/0000-0003-3864-7785


5000814 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Starting with the work of Dong et al. [18], methods based
on deep learning are nowadays widely studied for the problem
of SR, owing to their superior performance over “classical”
methods. In the case of Dong et al.’s work, referred to as
SRCNN, a three-layer convolutional network was trained with
sets of LR and HR patch pairs, producing a more accu-
rate downscaling of “unseen” LR patches when compared
to classical methods such as sparse coding. Subsequently,
Kim et al. [19] showed that a deeper network, composed of up
to 20 identical convolution layers exceeded the performance
of SRCNN. Kim et al.’s network architecture is referred to as
very deep super-resolution (VDSR) and uses gradient clipping
with residual learning to reduce the time required to train the
more complex network. This architecture has proved to be
a popular basis for subsequent developments and extensions
beyond SR of natural images [20], [21]. Ledig et al. [22]
adopted a different approach using a generative adversarial
network (GAN) for SR. GANs are composed of two networks:
a generator and a discriminator network. The former acts
to produce new candidate HR patches while the latter acts
as a judge of the generative network output. Subsequent
refinements of the GAN concept focused on modifying the
architecture, the discriminative network, and perceptual loss
in order to reduce the presence of noise and artifacts, and
improve performance [23]. Further improvements in SR can
be obtained with complex network structures, such as that
proposed by Wang et al. [24], which they named Progressive
Super-resolution (ProSr). In this case the scale factor was
increased with depth within the network, yielding high SR per-
formance for large scale factors (×8 in their case). A detailed
review of deep learning for SR can be found elsewhere [25].

Among the first researchers to explore deep-learning and
SR with remote sensing images were Liebel and Körner [26],
who utilized the SRCNN architecture to enhance the resolution
of Sentinel 2 optical images. They showed that training the
network with multiple Sentinel 2 bands simultaneously leads
to improved performance compared to the case of a single
band input. To address the shortcoming of SRCNN, which
offers diminishing benefits over interpolation for large-scale
factors, Lei et al. [27] developed a network architecture com-
posed of multiple forks. This innovation allows activation
maps in the first few layers to be used deeper in the
network, in a method they named local-global combined
network (LGCNET). In doing so, their network captured
representations of remote sensing optical images at multi-
ple length scales simultaneously, improving the accuracy of
downscaling.

The process of training a neural network requires a large
number of LR and HR image patch pairs, with larger training
datasets generally leading to better performance. Commonly,
LR image patches are created by upscaling and blurring
corresponding HR images [28]. However, this process is
sensitive to the exact downscaling process employed and may
omit other factors, such as noise. Alternatively, other studies
have utilized LR images and HR images recorded by the
same satellite, albeit in different bands, creating deep-learning
analogs of pan-sharpening without the need for a specific
panchromatic band [29], [30]. Studies investigating the use

of LR and HR images from different satellite sources are
rarer, due to factors such as sensor calibration differences,
viewing angle, and irregularity of coincidence acquisitions.
Nevertheless, Tan et al. [31] tackled the problem of fusing
data from two satellite sources with their work utilizing
deep-learning for SR of optical images provided by Landsat 8
and MODIS. The authors noted the importance of selecting
high-quality data, opting to use level 3, eight-day average
MODIS products (which can cause issues as oceanographic
features evolve during that time) instead of lower quality,
daily level 2 product that better matched the properties of the
Landsat 8 data.

In order to retrieve information about surface conditions,
e.g., sea surface temperature (SST), atmospheric effects
(i.e., radiation absorption and emission) need to be accounted
for. Before SST retrieval, the satellite products are labeled as
top of atmosphere (TOA); after SST retrieval they are labeled
as the bottom of atmosphere (BOA).

There has recently been growing interest in using
deep-learning to enhance the resolution of environmen-
tal parameters, with notable examples including SST [32],
atmospheric properties [33]–[35] and local chlorophyll con-
tent [36]. Separately, denoising methods based upon convo-
lutional neural networks are emerging as effective tools for
improving the radiometric accuracy of the satellite images
themselves [37], [38]. Previous work shows that there is clear
potential for deep-learning to be utilized for enhancing the
quality and utility of products derived from satellite data.
However, there are very few examples of deep-learning being
used to convert TOA satellite images into BOA environmental
parameters in an end-to-end arrangement. This process has the
potential to streamline and unify remote sensing processing
pipelines, improving the timeliness and accuracy of derived
products.

In this article, we explore the potential of deep learning
to enhance the resolution of both TOA thermal images of sea
regions and (BOA) SST images. To achieve this goal, we mod-
ify an established convolution neural network architecture so
that it can be trained using multiple bands and with image
patches taken from two different satellite sources. We extract
LR patches from images recorded by the SLSTR instrument on
board the Sentinel 3 satellite, while the HR patches come from
images recorded by the TIRS instrument on board Landsat 8.
Our results show that as follows.

1) Deep-learning can be used to downscale the resolution
of Sentinel 3 TOA thermal images by a scale factor
of 5, with far better accuracy than can be achieved with
interpolation.

2) Deep learning can also be used to simultaneously down-
scale and perform SST retrieval on Sentinel 3 images,
again with better accuracy and quality than interpolation.

3) A neural network can be used to extract HR information
from optical bands, which can be fused with the thermal
band inputs to boost the performance of SR of thermal
images.

The trained networks enable the synthesis of thermal image
datasets that simultaneously possess the high revisit time of
Sentinel 3, with the enhanced resolution of super-resolved
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Fig. 1. Diagram depicting the modified VDSR network. Multiple possible
LR input channels are represented by the three images on the left, with
the single HR output channel represented on the right of the figure. The
18 2-D convolution layers common with VDSR are represented by dark green
rectangles. The light green rectangle represents a residual layer, while the pink
rectangle represents a layer added for our work which outputs the mean along
the channel data dimension.

images, making a significant step toward fulfilling the wishes
of SST product users [39].

This article is structured as follows. First, the proposed
very deep convolutional neural network for fusing optical and
thermal data to estimate a high-resolution thermal image is
presented. Then the steps taken to create a training dataset for
the neural network are described. The network performance
after training on different band combinations for generation of
HR brightness temperature and SST images is then reported.
Finally, two case studies, a gyre and an ocean front, are
investigated using super-resolved SST images, to illustrate the
benefits of using SR to assist in the study of oceanographic
phenomena.

II. VERY DEEP SUPER RESOLUTION ARCHITECTURE

This work is inspired by the very deep SR network
first described by Kim et al. [19]. VDSR has the benefit
of being comparatively quick to train, thanks to the use
of residual learning, allowing rapid evaluation of different
input parameters and conditions. Our modified version of
VDSR is shown in Fig. 1. While the core of our network
matches that first described by Kim et al., there is one notable
difference.

Since satellites typically record images in multiple bands
simultaneously, and multiple bands are often combined to
generate specific indices and physical parameters, it is desir-
able for the network to be able to use multiple LR images
as an input. However, owing to the use of residual learn-
ing, the VDSR architecture was originally developed for
single-channel HR and LR images. To extend the applicability
of VDSR to multiple channel inputs, while maintaining a
single channel output, we include an additional layer at the
end of the network which outputs the mean calculated over
the channel dimension of the tensor. The channel mean layer
does not have any programmable parameters and was found to
perform better than the case where an additional, dimension
reducing, convolution layer was used instead. We attribute this
to the common observation that adding more layers to a net-
work does not always lead to improved performance [40], due
to the increased risk of over-fitting. A quantitative comparison

TABLE I

SENTINEL 3 AND LANDSAT 8 THERMAL BANDS SPECTRAL COVERAGE
AND IMAGE RESOLUTION. BAND S7 OF SENTINEL 3 IS OMITTED SINCE

THERE IS NO EQUIVALENT BAND FOR LANDSAT 8

of the two modified, multi-channel network architectures can
be found in Section V.

III. TRAINING DATASET CREATION

The selection, processing, and volume of data used to train
a neural network are just as important as the choices made in
designing the network architecture. In this section, the process
for creating training and testing datasets is described, including
the criteria employed to ensure the dataset is composed of
high-quality image patches. In our case, a training/testing
dataset is not just a set of LR and HR patch pairs, but rather
a set of patches taken from all Sentinel 3 SLSTR bands
with corresponding patches from Landsat 8 bands 10 and 11,
as well as an SST product derived from the two Landsat bands.
In all cases, the Landsat 8 patches match the location and
acquisition time (within approximately 1 h) of the Sentinel 3
patches.

Landsat 8 and Sentinel 3 occupy sun-synchronous orbits,
with a local time of descending node of 10:00 AM for both
satellites. This combination of sun-synchronicity and common
local time means that scenes recorded by each satellite can be
treated as being acquired near-simultaneously. Furthermore,
Sentinel 3 and Landsat 8 record thermal infrared images with
near identical spectral coverage, as summarized in Table I.
Thus, with the exception of any differences in sensor cali-
bration and quality, Sentinel 3 and Landsat 8 are expected to
record similar thermal images, with the main difference being
the respective image resolutions, as well as spectral responses
and the zenith angle of the two satellites.

We limited the selection of patches to the region covered
by four adjacent Landsat 8 tiles (rows 34 and 35 from paths
188 and 189), covering the Mediterranean sea adjacent to
Sicily and Malta, and for the time period spanning 1st Janu-
ary 2017– 31st October 2019. Owing to our interest in optical
bands, daytime acquisitions are exclusively used in this study.
The total volume of Landsat 8 and Sentinel 3 SLSTR data,
including all bands, for this limited location and time period,
amount to ≈550 GB of disk space, meaning that storage and
processing of the data are possible on a desktop computer. The
selected tiles had the benefit of each containing a landmass,
therefore higher quality image registration was employed by
USGS compared to tiles where no landmass is present at all.
Patches of size 12 km × 12 km (400 × 400 pixels) were
extracted from randomly selected sea regions. The patches
themselves are allowed to overlap and have a density (patches
per km2) proportional to the fraction of cloud-free, water
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Fig. 2. Patch locations taken from four example Landsat 8 tiles. The 12km×
12km patches are denoted by green squares in the four images. (a) Path 189,
row 34. (b) Path 188, row 34. (c) Path 189, row 35. (d) Path 188, row 35.

pixels present in the scene. An example of candidate patch
locations selected from four representative Landsat 8 tiles
is shown in Fig. 2. For each location, patches from bands
10 and 11 were saved.

The resolution of thermal images produced by Landsat 8
is officially stated as 100 m [41]. However, quantification of
the edge response function from images containing coastlines
has indicated that the true, on-orbit, resolution may be closer
to 180–200 m [42]. As part of the data pre-processing rou-
tine, all Landsat 8 images used in this work are upscaled
from a pixel size of 30 to 200 m using bicubic rescaling.
In this study, both TOA and BOA images are produced
from TOA Sentinel 3 images by different neural networks
trained separately for the two tasks. While the process of
producing gap-free level 4 SST products is complex, involving
the ingestion of multiple sources of remote sensing and in situ
measurements, level 2 SST products are generated from a
single satellite source alone. In the case of Landsat 8, recent
studies have explored using a split window (SW) method
for converting TOA brightness temperatures into BOA SST
fields [43]–[45]. We opt to replicate the approach presented
by Vanhellemont [43] for SST retrieval, who in turn used
coefficients first derived by Du et al. [46]. The method takes
two TOA thermal bands as an input (in the case of Landsat 8,
bands 10 and 11) and produces an SST image as an output.
The column water vapor is an optional input parameter, which
is specified through a choice of coefficient values used in the
SW expression. SW SST retrieval has the benefit of being
simple to implement and reasonably accurate for a variety of
sea conditions.

Prior to application of the SW SST retrieval algorithm,
the Landsat 8 TOA patches for both bands 10 and 11 undergo
a series of pre-processing steps are following.

1) Digital Number to Brightness Temperature Conversion:
The pixel values in the downloaded Landsat 8 products

are converted from digital number to radiance and then
from radiance to brightness temperature, using expres-
sions and coefficient values provided in the Landsat 8
metadata. The expression for converting a digital number
to brightness temperature is as follows:

BT = C4

[
log

(
C3

C1 × DN + C2

)]−1

(1)

where BT is brightness temperature in kelvin, DN is
pixel digital number, and C1−4 are constants supplied in
the Landsat 8 product metadata.

2) Destriping: A customized, oriented, spectral filter
is used to remove stripe noise from the Land-
sat 8 patches [47]. The filter is shaped such as a
super-Gaussian function, allowing strong suppression
of high-frequency stripe noise while leaving genuine,
low-frequency features in the patches unmodified. The
exact method used for destripping is not crucial and
other methods tested on thermal sea images, such as
the total variation minimization approach of Bouali and
Ignatov [48], also suffice.

3) Upscaling: The patches are upscaled using bicubic
rescaling to a pixel size of 200 m.

4) Denoising: The noise of thermal infrared sensors can
be parameterized with the noise equivalent differential
temperature (N E�T ). The pre-launch (N E�T ) for
the Landsat 8 TIRS bands is ≈360 mK [41]. This is
large compared to SLSTR (N E�T ≈ 30 mK [49]).
To address this difference a standard denoising algorithm
based on total-variation is used to denoise the Landsat
8 patches, while preserving the edges in the image.

5) SST Retrieval: The SW method described above is
used to convert the two processed bands into a single
SST image. The processed TOA brightness temperature
images are also retained. The equation used is the
following:

SST = b0 +
(

b1 + b2
1 − �̄

�̄
+ b3

��

�̄2

)
BT10 + BT11

2

+
(

b4 + b5
1 − �̄

�̄
+ b6

��

�̄2

)
BT10 − BT11

2

+ b7(BT10 − BT11)
2 (2)

where BT10 and BT11 are the Landsat 8 B10 and
B11 brightness temperature bands, respectively, �̄ is the
average emissivity of the two bands, �� is the difference
in emissivity between the two bands, and b0-b7 are the
coefficients established by [46] for a broad atmospheric
column water vapor (CWV) range shown in Table II.

The Landsat 8 pre-processing steps are depicted for example
band 10 brightness temperature patch in Fig. 3.

The geo-location and date of acquisition of each Land-
sat 8 patch are used to then extract matching Sentinel 3
patches. Sentinel 3 SLSTR level 1-B products were down-
loaded in bulk from Copernicus Open Access Hub,1 from
which bands S8 and S9 were reprojected to the WGS84 pro-
jection. The grid size was fixed to a size of 1 km × 1 km

1https://scihub.copernicus.eu
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TABLE II

COEFFICIENTS bk (k = 0, 1, 2, . . . , 7) FOR THE BROAD ATMOSPHERIC CWV RANGE USED TO RETRIEVE THE SST

Fig. 3. Landsat 8 pre-processing steps for an example band 10 patch. The
patches correspond to a 12km × 12km region in the Mediterranean sea with
brightness temperature shown in ◦C. (b), (d), (f), and (h) Correspond to the
normalized magnitude of the Fourier transform of (a) patch showing clear
detector striping, (c) patch destripped using an oriented super-Gaussian filter,
(e) destripped patch upscaled by a factor of 5, and (g) destriped, upscaled
patch denoised using a total variation method.

throughout the processing. To ensure that the neural network
is trained on high-quality data, several tests are performed on
the matching patches from the two satellites. This process of
data curation is common in deep learning tasks where data can
be incomplete or vary in quality significantly. The four tests
are as follows.

1) Cloud Rejection: Cloud masks provided by Landsat 8
and Sentinel 3 are both used to determine if either the
Landsat 8 or Sentinel 3 patches have clouds present.
If clouds are detected the patches are discarded. This
step ensures that the structures and textures in the
training patches are the results of surface features alone.

2) Incomplete Swath Overlap: The Landsat 8 patch location
can sometimes lie partially outside of the Sentinel 3
swath. In this case the patches are discarded.

3) Dissimilarity: Since we wish to treat the Landsat 8 and
Sentinel 3 thermal images as HR and LR representa-
tions of the same object, it is desirable to identify any
patches where the two thermal images are dissimilar and

discard them. To achieve this, we calculate the Pearson
correlation coefficient (PCC) for each remaining pair of
Landsat 8 band 10 and Sentinel 3 band S8 brightness
temperature patches. If the correlation coefficient falls
below 0.8, the pair is judged to be too dissimilar and
patches from this time and location are rejected. There
are multiple reasons for the dissimilarity to vary on
a patch-by-patch basis, including random degradation
in the quality of either sensor, larger than the average
time between Landsat 8 and Sentinel 3 acquisitions,
the patch location falling at the extreme edge of the
swatch for one satellite but not the other—leading to
possible geometric distortions, or imperfect calibration
of one or both sensors for the environmental conditions
present (e.g., solar zenith angle).

4) Low Variance: While there are situations when the
temperature of the sea can have large spatial variability,
it is also fairly commonplace for the sea temperature to
be homogeneous over large regions. In these situations,
there is little value that SR can offer compared to simple
interpolation, due to the lack of temperature variation
at sub-km scales. It is desirable to avoid biasing the
training set with homogeneous, low variance patches,
to ensure that the neural network instead is trained
on patches with genuine features and structures at the
sub-km scale. To achieve this, we use apply a threshold
based on the variance of each remaining Landsat 8 band
10 patch: if the variance is less than 150 mK, patches
from that time and location are rejected.

The net result of applying the four rejection criteria
described above is the reduction of candidate patch locations
from 14 709 to 2076. If higher thresholds for dissimilarity
and variance conditions are used, fewer patches are retained,
leading to a smaller training set and likely poorer performance
of the trained network. The values of 0.8 and 150 mK, for PCC
and variance, respectively, therefore offer a good compromise,
yielding a moderately large dataset whilst maintaining high
quality.

The remaining patches (from all bands and both satellite
sources) then undergo three final pre-processing steps are as
follows.

1) Padding: The combination of a deep network with
convolutional filters can give rise to unrealistic artifacts
at the edges of super-resolved images. In addition to the
zero-padding layers in the standard VDSR architecture,
we opt to pad all patches prior to their use for training.
While this additional padding step is not described
in the original VDSR publication, subsequent studies
have explored image padding as a pre-processing step
for VDSR [20]. In our case, each patch is padded by
duplicating the outermost pixel values 10 times, such
that a 60 × 60 pixel patch is padded to a size of 80 × 80.
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The padding is removed before evaluation using the
testing dataset.

2) Normalization: Level 1 Sentinel 3 thermal images are
provided as brightness temperature whereas optical
images represent measured radiance. It is advisable to
normalize training data to have zero mean and unit
variance, in order to improve the accuracy and reliability
of training. To satisfy this requirement while preserving
the relative absolute differences in bands, we adopt a
normalization scheme that adjusts the input pixel values
from each band to have “close to zero” mean and
“close to unit” variance. This is achieved as follows:
the mean value of all Sentinel 3 band S8 patches is
subtracted from all thermal images (Sentinel 3 bands
S8 and S9, Landsat 8 bands 10, 11, and SST), the ther-
mal images are then divided by the variance of all
Sentinel 3 band S8 patches. This leads to the set of
Sentinel 3 band S8 patches having zero mean and unit
variance, while the other thermal images have “near-
zero” mean and “near-unit” variance. By using the same
values to normalize all bands, any relative difference
between images and bands is preserved (i.e., brightness
temperature patches will still be colder than SST patches
from a given time and place in the new normalized
units as they are before normalization). For the optical
bands investigated the same process is employed but
the mean and variance of Sentinel 3 band S1 are used
instead. The choice of band used for normalization of
thermal and optical images is not important, provided
the normalization is applied consistently, as described
above.

3) Augmentation: Similar to the original VDSR work,
the patches are augmented, creating duplicate patches
that are rotated by 90◦, 180◦, and 270◦ and flipped
horizontally and vertically. This increases the number
of patches by a factor of 6, from 2076 to 12 456.

The 12 456 preprocessed patches were randomly split, with
80% (9959 patches) allocated to the training dataset, while
20% (2485 patches) allocated to a testing dataset.

IV. BAND CORRELATION ANALYSIS

The redesigned VDSR network, described in Section II,
allows an additional user choice over what combinations of
bands can be used as an input for SR. In the case of the
SLSTR instrument, there are 11 different bands covering the
optical and infrared spectral regions, leading to many possible
combinations. One of the hypotheses explored in this work
is whether optical bands can provide complimentary informa-
tion that can be used to improve the SR of thermal bands.
The optical bands on the SLSTR instrument have a higher
resolution (500 m) than the thermal bands (1 km), opening
the possibility of incorporating HR features and structures
in the optical image with LR temperature information in the
infrared image. The strength of deep learning for this task is
that a formal relationship between optical and thermal images
does not need to be found. Rather, the process of training the
network can be used to exploit any beneficial relations between
the two different types of input images.

Fig. 4. Mean PCC calculated between TOA images from nine Sentinel 3
SLSTR bands and corresponding Landsat 8 SW SST images. The training
set described in Section III is used for the comparison. For the optical bands,
the SST image is upscaled to a pixel size of 500 m, while for the thermal bands
the upscaling is to a pixel size of 1 km. In both cases, bicubic interpolation
is used to perform the upscaling. The inset shows a histogram of the PCC
values for the case of correlations between Sentinel 3 band S1 and Landsat 8
SST.

As a first step toward exploring such a relationship between
optical and thermal images, we calculate the PCC between
patches from each Sentinel 3 SLSTR band and the cor-
responding Landsat 8 SST patch, with the latter upscaled
to match the resolution of the Sentinel 3 images. For ref-
erence, a large, positive PCC corresponds to high corre-
lation (images have high and low valued pixel values in
the same locations), whereas a large, negative PCC corre-
sponds to a high anti-correlation (where one image has large
values the other has low). A PCC of zero indicates no
correlation is present. The PCC was calculated on patches
taken from the training dataset, described in more detail
in Section III.

In Fig. 4, the mean PCC is plotted for nine Sentinel 3
SLSTR bands. The thermal bands S7–S9 unsurprisingly have
a high correlation with the Landsat 8 SST since TOA bright-
ness temperatures are heavily influenced by the local surface
temperature represented by the Landsat 8 SST patch. In this
work, the task of SR Band S7 from Sentinel-3 is excluded due
to the lower correlation as a result of the different wavelength
compared to Landsat 8 SST. Band S4 has a near-zero corre-
lation coefficient because it has a very poor signal-to-noise
ratio owing to high atmospheric absorption, leading to few
features which correlate with SST. Intriguingly, band S1 and
to a lesser extent S2, have a small, negative PCC indicating
weak anti-correlation between these optical bands and the
SST. A histogram of the PCC between S1 TOA radiance and
Landsat 8 SST images is shown in the inset of Fig. 4. For this
band, of the 9959 patch pairs tested, approximately a third
(3118) have a PCC < −0.3, suggesting that warm sea regions
have a nonnegligible tendency in this data sample to have a
low optical radiance, and vice versa. The exact relationship
between optical radiance and SST does not need to be known
in order for it to be exploited for SR, as demonstrated in the
proceeding sections.
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TABLE III

BRIGHTNESS TEMPERATURE SR RESULTS. THE GROUND-TRUTH IMAGES WERE PROCESSED LANDSAT 8 TOA BRIGHTNESS TEMPERATURE PATCHES
FROM TIRS BAND 10. IN THE FIRST COLUMN, THERMAL BANDS ARE HIGHLIGHTED WITH RED TEXT, WHEREAS OPTICAL BANDS ARE

HIGHLIGHTED IN BLUE TEXT. CNN DENOTES AN SR USING A NEURAL NETWORK TRAINED USING THE IMAGES FROM THE SENTINEL 3
BANDS STATED IN THE LEFTMOST COLUMN. BOLD FACE HIGHLIGHTS THE BEST PERFORMING METHOD FOR THE THREE METRICS

V. SUPER-RESOLUTION RESULTS

A. Performance Metrics

The super-resolved images are compared to matching,
HR “ground truth” Landsat 8 images using three performance
metrics: root mean square error (RMSE), structural SIMilarity
index (SSIM), and peak signal to noise ratio (PSNR). A low
value of RMSE and high values of SSIM and PSNR are
indicative of good performance. The metrics are evaluated on
the testing dataset, described in Section III.

B. Downscaling Brightness Temperature

The VDSR architecture described in Section II is trained
using the training dataset with the aim of producing TOA
brightness temperature images that best match Landsat 8
band 10, using combinations of Sentinel 3 TOA images as
an input. The resultant, downscaled pixel size is 200 m.
For each combination of input bands, the neural network is
trained from a random initialization 5 separate times. The
performance metric values presented in Table III are the mean
results after the 5 training instances, averaged also over all
patches in the testing set. The network hyper-parameters are
fixed throughout, with a learning rate of 0.001 and 80 epochs
of training with a batch size of 64. For this combination of
hyper-parameters the network loss is found to stagnate with
increasing epochs for nearly all cases tested. In addition to
tests using the neural network, interpolation is also investigated
for downscaling Sentinel 3 brightness temperature images.
Two interpolation kernels are assessed: bicubic (over a 4 × 4
pixel neighborhood) and a Lanczos kernel (over an 8 × 8
pixel neighborhood).

Several conclusions can be drawn from the results shown
in Table III. In terms of the three performance metrics,
there is no difference between interpolation using a bicubic
or Lanczos kernel. Also, all of the neural networks tested,
each trained with different band combinations, outperform
interpolation by a significant margin, according to all three
metrics. The results in Table III show that it is preferable
to include multiple bands for SR, over just band S8 alone.
This is likely because additional complementary information is
provided by the additional bands, potentially providing better
resilience to noise while introducing extra constraints useful

for solving the ill-posed SR problem. The results suggest
that the optical bands offer the best complementarity: the
combination of S1 and S8 (optical + thermal) is better than
S8 and S9 (thermal + thermal). In addition, the highest
performing combination overall is S1, S8, and S9. A similar
combination of S2, S8, and S9 performs slightly worse.
In Fig. 4, S2 has a weaker anti-correlation with SST compared
to S1 with SST, suggesting that the PCC may be a good
indicator for assessing complimentary information for SR.
Finally, the combination of S1, S2, S8, and S9 performed
no better than S1, S8, and S9, implying that the full benefit
of using an optical image to enhance thermal image SR is
not improved with the use of additional images from different
optical bands. The explanation for the better performance of
the optical + thermal as opposed to thermal + thermal is the
following: when training a neural network, it is ideal if there is
a correlation between the input and the output, however, if the
input features (bands) are correlated between themselves, this
results in redundancy which does not give an improvement
in performance. On the other hand, adding complementary
information from, e.g., optical bands (even though they are
less correlated with the output than the thermal bands) can
provide an improvement in performance.

An example Landsat 8 B10 brightness temperature patch
from the testing set is shown in Fig. 5(e) along with the
corresponding Sentinel 3 band S8 patch interpolated to a pixel
size of 200 m in Fig. 5(g). The native resolution Sentinel-3
band S8 and Landsat 8 B10 brightness temperature patches
are shown in Fig. 5(a) and (c). In Fig. 5(h) the histograms of
the two patches are compared, demonstrating a small offset
in brightness temperature between the two. Super-resolved
patches produced by a selection of four of the neural networks
are also shown in Fig. 5. It can be seen that when an optical
band is included the result more closely qualitatively resembles
the ground-truth image [see Fig. 5(m)], compared to the case
where just a single thermal band was used [see Fig 5(i)]. With
respect to the histograms of the super-resolved patches, when
a single Sentinel 3 thermal band (i.e., band S8) is used to
train the network, a difference in the distribution between
super-resolved and ground-truth histograms is observed [see
Fig. 5(j)]. The addition of an optical band improves the
histogram similarity, as shown for the cases of bands S1 and S8
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Fig. 5. Example brightness temperature patches and histograms of brightness temperature, for (a) and (b) Sentinel-3 BT data (S8), (c) and (d) Landsat 8
BT data (B10), (e) and (f) upscaled Landsat 8 B10 ground truth used to train the VDSR network, (g) and (h) bicubic interpolation, (i) and (j) neural network
trained with Sentinel 3 band S8, (k) and (l) trained with Sentinel 3 bands S1 and S8, and (m) and (n) bands S1, S8, and S9, or (o) and (p) finally bands S1,
S2, S8, and S9. (f) Pink histograms correspond to the ground-truth patch.

[see Fig. 5(l)]; S1, S8, and S9 [see Fig. 5(n)]; and to a lesser
extent S1, S2, S8, and S9 [see Fig. 5(p)]. Together this suggests
that the optical band not only introduces higher resolution
features to the network but also assists in ensuring the correct
brightness temperature values are reconstructed.

It should be noted that a similar experiment can be carried
out for the case where images from Landsat 8 band 11 are
used as ground truth, however, these results are not shown
here for the sake of brevity.

C. Super-Resolved SST

The same VDSR architecture used for super-resolving
brightness temperature can be re-purposed to investigate the
possibility of mapping LR Sentinel 3 TOA bands to HR SST.
In this situation, the network performs two functions simul-
taneously: downscaling (via SR) and SST retrieval (specifi-
cally, accounting for surface emissivity and the effect of the
atmosphere). For network training, the same hyper-parameters
are used as before. By way of comparison, HR SST patches
are also produced by first interpolating (separately) images

from Sentinel 3 bands S8 and S9, then using the SW method
to obtain an SST patch. While the SW SST retrieval was
developed for use with Landsat 8, the close spectral similarity
between Landsat 8 and Sentinel 3 thermal bands means that
it is appropriate for use with Sentinel 3 bands S8 and S9 as
well.

The results of these tests are summarized in Table IV.
Again, the performance metric values represent the mean
value, averaged over 5 random initiations of the network
weights. The same combination of Sentinel 3 bands used in
the brightness temperature downscaling experiments is also
employed here. In absolute terms, overall performance is
worse compared to brightness temperature SR, due to the
more complex process being modeled by the neural network.
There is again no performance difference comparing the two
interpolation kernels, however, interpolation is not the worst
performing overall. Using just Sentinel 3 band S8 as an input
yields poorer performance than interpolation, possibly reflect-
ing that SW methods are generally better than single-channel
methods for SST retrieval [50], in part because multiple
bands can enable better estimation of radiation transfer in
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TABLE IV

SST SR RESULTS. IN THE FIRST COLUMN, THERMAL BANDS ARE HIGHLIGHTED WITH RED TEXT, WHEREAS OPTICAL BANDS ARE HIGHLIGHTED
IN BLUE TEXT. CNN STANDS FOR RESULTS OBTAINED BY TRAINING THE VDSR CONVOLUTIONAL NEURAL NETWORK WITH THE S3 INPUT

BANDS SPECIFIED. SW STANDS FOR SW, INDICATING THE TWO DOWNSCALED BRIGHTNESS TEMPERATURE BANDS

WAS CONVERTED TO SST USING THE SW EXPRESSION

the atmosphere. In support of this, the results obtained when
two thermal bands are used (i.e., S8 and S9) are significantly
better than all cases where only one thermal band is used for
training. Similar to the brightness temperature downscaling
results, the highest performing combination comes from using
optical and thermal together; bands S1, S8, and S9 is also
the best combination for simultaneous downscaling and SST
retrieval. This suggests that the benefits to brightness temper-
ature SR enjoyed by this band combination are transferred
to the task of producing HR SST images. The comparatively
poor performance of the combination S1, S2, and S8 indicates
that in this instance two thermal bands are necessary for
accurate SST estimation. Similar to the brightness temperature
downscaling tests, swapping bands S1 with S2, leads to a fall
in performance, and the combination S1, S2, S8, and S9 offers
no benefits compared to S1, S8, and S9.

One additional comparison is offered in Table IV. The
results corresponding to “CNN + SW” are produced by
training two separate networks: one to produce HR TOA
brightness temperatures matching Landsat 8 band 10, and the
other network to produce patches with the same specification
but matching band 11. For each network, the same input bands
are used: S1, S8, and S9. The two downscaled brightness
temperature patches that this process produces are then con-
verted to SST using the SW method. While this approach is
better than using interpolation, it is inferior to using the same
architecture to convert TOA brightness temperature to SST,
demonstrating that the end-to-end process of transforming LR
TOA input images to HR SST images achieved by the neural
network better encapsulates the task than splitting SR and SST
retrieval into separate processes.

In Fig. 6, an example SST patch from the testing set
is shown. The ground-truth image and histogram of SST
values are shown in Fig. 6(e) and (f), respectively. The patch
downscaled using bicubic interpolation is shown in Fig. 6(g),
displaying uneven texture typical of interpolated images. The
native resolution Sentinel-3 band S8 and Landsat 8 B10 bright-
ness temperature patches are shown in Fig. 6(a) and (c). With
respect to using a neural network for simultaneous downscal-
ing and SST retrieval, three cases, each corresponding to a
different combination of input bands, are shown. When the
network was trained on just band S8 alone [see Fig. 6(k)],
the output has similar texture to the case where interpolation

was used, and there is a difference when the retrieved SST
values are compared to the ground truth [see Fig. 6(l)]. The
situation is slightly improved with the addition of band S9 to
the input [see Fig. 6(m)], especially with respect to the SST
values [see Fig. 6(n)]. The best performing band combination
is S1, S8, and S9. The network output for this combina-
tion is shown in Fig. 6(o), displaying a similar texture and
structure compared to the ground truth, with equally similar
SST values, as seen in the comparison of histograms shown
in Fig. 6(p). The SST patch recovered by first downscaling
bands S8 and S9 brightness temperature images, separately
with different networks, and then applying SW SST retrieval
is shown in fig. 6(i), displaying good similarity to the ground
truth. The histograms plotted in Fig. 6(j) show that the SST
values retrieved this way are similar as well. However, as high-
lighted earlier, the quantitative performance of this particular
method averaged over the whole testing dataset is poorer than
when a network is trained to retrieve HR SST patches directly,
with bands S1, S8, and S9 used as inputs.

D. Data Fusion Layer Performance

In Section II, it was claimed that adding a channel mean
layer to the standard VDSR network architecture provides
superior performance compared to the case where an addi-
tional convolution layer is used instead. Here, the perfor-
mances of the two network architectures are compared.
To achieve a reduction in the number of channels the con-
volution layer must have one filter with a kernel size equal
to the number of input channels. The same hyper-parameters
used in Section V were also used here for both networks since
no significant difference was observed in the behavior of the
loss function for the network with the additional convolution
layer.

In Table V, we show results comparing the two cases
evaluated on the testing training set. The channel mean layer
outperforms the convolution layer according to all three met-
rics, justifying the use of the channel mean layer in the rest
of this study.

VI. SUPER-RESOLVED SST STRUCTURES

One potential application of super-resolved thermal images
is for the study of sea surface features and phenomena in
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Fig. 6. Example SST patches and histograms of surface temperature, for (a) and (b) Sentinel-3 SST data; (c) and (d) Landsat 8 SST data computed using the
SW technique at original resolution; (e) and (f) upscaled Landsat 8 ground truth used to train the VDSR network; (g) and (h) bicubic interpolation; (i) and
(j) two separate networks trained to downscale brightness temperature followed by separate SW SST retrieval; (k) and (l) trained with Sentinel 3 band S8);
and (m) and (n) bands S8 and S9; or (o) and (p) bands S1, S8, and S9. (f) Pink histograms correspond to the ground-truth patch.

TABLE V

COMPARING A MEAN LAYER WITH A CONVOLUTION LAYER FOR

CHANNEL REDUCTION IN A VDSR NETWORK ARCHITECTURE.
PERFORMANCE IS COMPARED ON THE SAME TRAINING

DATASET USED THROUGHOUT THIS WORK

greater detail than currently possible. Here, we consider two
test cases, an ocean gyre and an ocean front, from two different
geographical regions, and use a neural network to produce HR
SST images from LR Sentinel 3 input data.

A. Ocean Gyre

The Malta Channel is the marine area between the
islands of Sicily and Malta, linking the Eastern and Western

Mediterranean basins. The area is known for variable sea con-
ditions, with influences including the complex local bathym-
etry [51] and the Mediterranean overturning circulation [52].
The Malta-Sicily Gyre (MSG) is an anticyclonic surface
feature that occurs in the Malta channel [53], which has
previously been identified using ground-based high-frequency
radar in combination with satellite-based altimetry and SST
products with 4.6-km resolution. In this section, we present
SST images of a gyre-type surface structure in the Malta
channel at a much higher resolution than previously examined.

Fig. 7(a) shows a Landsat 8 SW SST image of sea location
in the Malta channel taken on July 20, 2018, correspond-
ing to a surface area of 30km × 30km. The contributing
Landsat 8 bands were first destripped and denoised before
the SW SST retrieval was applied. The SST structure at the
center of the image resembles a gyre. A histogram of the
temperatures is shown in Fig. 7(b), displaying a bimodal
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Fig. 7. SST images and histograms of a possible gyre in the Malta
channel, recorded on July 20, 2018 for (a) and (b) Landsat 8 SW SST
(100–200-m resolution); (c) and (d) Sentinel 3 SW SST (1-km resolution);
(e) and (f) S3 SW SST, downscaled using bicubic interpolation (200-m pixel
size); and (g) and (h) Super-resolved SST (200-m pixel size), for the case
where Sentinel 3 TOA images from bands S1, S8, and S9 are used as input.
(b) Pink histograms correspond to the ground-truth patch.

distribution consistent with the presence of a gyre. Fig. 7(c)
shows an SST image derived using Sentinel 3 bands 8 and 9
and the SW retrieval method. The pixel size corresponds to
1 km. The same data, but with an interpolated pixel size of
200 m is shown in Fig. 7(e). Note the “staircasing” effect
in the boundary between warm and cold regions typical of
interpolation. Histograms of the Sentinel 3 SST patches are
shown in Fig. 7(d) and (f), for native resolution and interpo-
lated images, respectively. A small temperature offset between
the Sentinel 3 and Landsat 8 SST images is apparent. Finally,
the super-resolved SST image derived from Sentinel 3 bands
S1, S8, and S9 is shown in Fig. 7(g). The texture of the image
is smoother than the interpolated image and more in common
with the Landsat 8 SST image. Similarly, the histogram of the
super-resolved SST values closely resembles the Landsat 8
SST histogram, as shown in Fig. 7(h). It should be noted that
owing to the time and location of the data presented in Fig. 7,
patches used to train the network may overlap partially with
the area in question.

As highlighted by Reyes Suarez et al. [53] in their work,
the MSG is not a widely studied phenomenon and has
sometimes been confused with similar features of the central
Mediterranean, such as the Malta Channel Crest and Ionian
Shelf Break Vortex. The ability to generate accurate, daily,
high-resolution SST images of the Malta channel would allow
further study of the MSG and similar phenomena.

Fig. 8. SST images of a possible ocean front in the South China Sea
recorded on March 18, 2020. (a) Landsat 8 SW SST (100–200-m resolution).
(b) Histogram of the temperatures shown in (a). (c) SST gradient of the image
shown in (a). (d) Sentinel 3 SW SST (1-km resolution). (e) Histogram of
the temperatures shown in (d). (f) SST gradient of the image shown in (d).
(g) S3 SW SST downscaled using bicubic interpolation (200-m resolution).
(h) Histogram of the temperatures shown in (g). (i) SST gradient of the
image shown in (h). (j) Super-resolved SST (200-m resolution), for the case
where Sentinel 3 TOA images from bands S1, S8, and S9 are used as input.
(k) Histogram of the temperatures shown in (j). (l) SST gradient of the image
shown in (j).

B. Ocean Front

The South China Sea is a widely studied and monitored
region [54], [55], owing in part to the presence of numerous
commercial shipping lanes. A combination of monsoon winds
and coastal dynamics, among other factors, lead to the creation
of ocean fronts in this region. A front is a common oceano-
graphic phenomenon found at the boundary of two different
water masses, characterized by abnormally large horizontal
gradients in surface quantities such as temperature and salinity.
Recently, the seasonal variation of ocean fronts in the South
China Sea was the topic of study by Wang et al. [28]. Satellite
observations made by the MODIS instrument on-board the
Aqua satellite were used to detect ocean fronts using an
improved, gradient method [56]. The resolution of the data
products used was 4.5 km.

In Fig. 8, satellite-derived SST images are shown of a likely
ocean front identified in the South China Sea on March 18,
2020, corresponding to a region 28.5km × 28.5km in size.
The SST derived using the SW method is shown for data from
Landsat 8 [see Fig. 8(a)] and Sentinel 3 [see Fig. 8(d)]. For
the Landsat 8 SST image, corresponding patches from bands
10 and 11 were first destripped and denoised before the SW
SST retrieval was applied. In Fig. 8(g) the SST produced by
first interpolating Sentinel 3 bands S8 and S9 and then using
the SW SST retrieval is shown. In Fig. 8(j) the super-resolved
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SST derived using a network trained with bands S1, S8 and
S9 from Sentinel 3 is shown. Qualitatively, the super-resolved
image more faithfully replicates the uniformity of the front
feature, as well as the overall texture of the Landsat 8
SST patch. Turning to the histograms of patch temperatures,
the super-resolved image histogram [see Fig. 8(k)] is a close
match to the Landsat 8 SST histogram.

It should be noted that the neural network used to produce
the SST patch shown in Fig. 8(g) is the same as that used
to produce the best performing results shown in Table IV.
Even though the network was trained on patches taken from
the central Mediterranean sea, the example shown in Fig. 8(g)
demonstrates that the network is able to successfully generate
an HR SST patch in a geographic region far from where the
training data were selected. This suggests that the network has
generalized well and is not over-fit with respect to the training
dataset.

Evaluating the performance of ocean front detection algo-
rithms on super-resolved images is beyond the scope of this
article. However, a qualitative appraisal of the possibility of
using super-resolved SST images for enhanced ocean front
detection can be made by considering the SST image gra-
dients. In Fig. 8(c) the gradient of the Landsat 8 SW SST
image is shown. The gradient was calculated numerically using
the Laplacian operator. The ocean front is clearly evident in
the gradient image against the otherwise smooth background.
The front is not as apparent for the native resolution and
interpolated Sentinel 3 SW SST gradient images, shown
in Fig. 8(f) and (i) respectively. In Fig. 8(l), the SST gradient
is shown for the super-resolved SST image. While the absolute
value of the gradient is marginally smaller than the case
of interpolated Sentinel 3 data, the ocean front location is
more apparent and better defined in the case of super-resolved
image. The possibility of producing “cleaner” SST gradients
offered by SR of thermal images could improve the accu-
racy of front detection and benefit studies similar to that of
Wang et al. [28]. In a similar context, SR has been shown to
be valuable for object detection in HR optical images [57],
it is, therefore, reasonable to expect similar benefits for object
detection in the context of thermal sea images as well.

VII. DISCUSSION

The SR results presented in this article represent a proof-
of-principle study into what is possible with modest modi-
fication to existing neural network architecture and sensible
curation of remote sensing data. The Python implementation of
our model is available at [58]. The overall high performance of
the trained networks on the “unseen” testing dataset, alongside
the qualitative results presented in Section VI-B suggests
that the network has generalized well and is not over-fit.
Nevertheless, it is worth highlighting the potential avenues
that could lead to further improvements in the accuracy of the
super-resolved images. The inclusion of training data patches
from more varied locations, including deep ocean and polar
regions, may further improve the performance and generaliza-
tion. Equally, while the flexibility of the VDSR architecture
was important for our work, especially for the investigation of
optical bands for thermal image SR, the possibility remains

that a more complex network architecture, that is proven to
be superior to VDSR for natural image SR (e.g., ProSR [24]),
may yield better performance.

The agreement between super-resolved SST values and
in situ measurements can only be as accurate as the agree-
ment between the HR SST training patches and in situ
measurements. While the use of analytic SW expressions with
Landsat 8 bands has previously been shown to be reasonably
well-matched to in situ data, there are some outstanding
concerns about the size of an SST bias temperature [43]
and accuracy under different satellite zenith angles [44], [45].
It should be noted, however, that if there are subsequent
improvements in the accuracy and quality of HR SST images,
then these new images could be used to improve the agreement
between super-resolved SST images and in situ measurements.
This could be achieved either via transfer learning or through
retraining of the same network from scratch with the new data.

Our demonstration that higher resolution optical bands can
be used to improve the resolution of lower resolution thermal
images is consistent with the results of prior work utilizing
optical indices for sharpening thermal land scenes [16], [17].
Our focus on sea scenes and the use of a neural network to
explore and exploit the correlation between thermal and optical
bands sets our work apart from prior efforts. Indeed, the results
presented in our work further support the decision to install
both optical and far-infrared instruments on future remote
sensing satellite missions [59]. What is more, the method-
ology described here can be extended to any earth-observing
satellites with sun-synchronous orbits and similar local times,
enabling the investigation of hitherto hidden relationships
between optical; near-, mid-, and far-infrared; and even radar
bands.

VIII. CONCLUSION

The results presented in this article show that SR of thermal
infrared images is a viable route for producing datasets of
both brightness temperature and SST images with HR. Such
datasets are desired by the user community but are not
currently available from extant remote sensing sources. Indeed,
until large improvements in infrared detectors and instrument
design are made, or the launch of large constellations of
satellites carrying HR infrared instruments, the only route
toward producing surface temperature products with daily
revisit time and high spatial resolution is via processing of
existing remote sensing data. Deep learning offers a flexible
and efficient way to extract new and useful information from
current datasets. This process is clearly evidenced in our work
through the demonstration enhancing thermal image SR with
complimentary images from optical bands.

Overall, the tools of deep learning are well-matched to the
data produced by earth-observing satellites and our results
stand alongside a growing body of work exploring the pos-
sibility of enhancing environment datasets using artificial
intelligence. With further study and careful in situ valida-
tion, super-resolved SST images could be an invaluable data
source for ingestion into new HR SST products, enabling
environmental and oceanographic studies with unprecedented
detail.
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