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Abstract— Change detection (CD) aims to identify surface
changes from bitemporal images. In recent years, deep learning
(DL)-based methods have made substantial breakthroughs in the
field of CD. However, CD results can be easily affected by external
factors, including illumination, noise, and scale, which leads to
pseudo-changes and noise in the detection map. To deal with these
problems and achieve more accurate results, a deeply super-
vised (DS) attention metric-based network (DSAMNet) is pro-
posed in this article. A metric module is employed in DSAMNet
to learn change maps by means of deep metric learning, in which
convolutional block attention modules (CBAM) are integrated
to provide more discriminative features. As an auxiliary, a DS
module is introduced to enhance the feature extractor’s learning
ability and generate more useful features. Moreover, another
challenge encountered by data-driven DL algorithms is posed by
the limitations in change detection datasets (CDDs). Therefore,
we create a CD dataset, Sun Yat-Sen University (SYSU)-CD,
for bitemporal image CD, which contains a total of 20 000 aerial
image pairs of size 256 × 256. Experiments are conducted on both
the CDD and the SYSU-CD dataset. Compared to other state-
of-the-art methods, our network achieves the highest accuracy
on both datasets, with an F1 of 93.69% on the CDD dataset and
78.18% on the SYSU-CD dataset.

Index Terms— Change detection dataset (CDD), convolutional
block attention module (CBAM), deeply supervised (DS) layers,
metric learning, remote sensing change detection (CD).

I. INTRODUCTION

CHANGE detection (CD) is the process of quantitatively
analyzing surface changes between different phases in
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the same area [1]. This process is of great significance to many
fields, including environmental investigation [2], geological
disaster monitoring [3], land cover surveys, and urban planning
[4], [5]. In recent decades, regular monitoring and analysis of
changes in land cover has become increasingly crucial because
of the deterioration of the ecological environment. Meanwhile,
high-resolution multisource and multitemporal remote sensing
images can be obtained over different areas, which have
been proven to be a key source of primary data for change
detection (CD) because of their wide coverage, high temporal
resolution, and diverse data types [6].

Traditional CD methods mainly detect changes by exploit-
ing spectral information in the remote sensing images, such
as change vector analysis (CVA) [7], principal component
analysis (PCA) [8], multivariate alteration detection (MAD)
[9], and so on. However, methods of this kind often require
optimal threshold selection in the decision phase, which makes
them scene dependent and time consuming. Accordingly,
machine-learning algorithms, which can learn from a part of
labeled samples to get an automated decision model, have
been widely used for remote sensing CD [10], including
support vector machine [11], decision tree [12], and ran-
dom forest [13]. However, such methods rely heavily on
hand-crafted features, which is difficult to effectively cap-
ture high-level features representations, resulting in lower
accuracy.

In recent years, the rapid rise of big data and the popu-
larization of high computational power have promoted myr-
iad developments in deep learning (DL), which has made
remarkable achievements in many fields [14], [15], including
remote sensing image interpretation [16]–[19]. As a powerful
DL structure, convolutional neural networks (CNNs) are able
to automatically extract hierarchical multilevel features with
rich spectral and spatial features from satellite images [20].
Although DL-based models have shown strong feature extrac-
tion ability and achieved great process in CD applications,
some remarkable CD approaches based on the DL framework
have been developed [6], [21]–[23].

The framework for CD methods can be summarized in two
steps: 1) extract features with distinctive change information
and 2) design a decision function to generate a change map
based on the extracted features [24]. The improvements to CD
methods in recent literature are mainly with reference to these
two aspects. On the one hand, more discriminative features are
of great significance to relieve pseudo-changes, which refers
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to false alarms caused by the differences of some external
factors, such as illumination and scale differences between
bitemporal inputs. Therefore, many attempts have been made
to produce more discriminative features to overcome this
problem. Peng et al. [25] developed a UNet++ with dense
skip connections, which aims to learn more effective fea-
tures with multiscale semantic information. Because of their
excellent ability to capture temporal dependencies between
bitemporal images, recurrent neural networks (RNNs) are
employed to obtain features with spatial-temporal information.
Song et al. [26] presented a recurrent 3-D fully convolutional
network (FCN) for hyperspectral images, which combine the
advantages of a 3-D FCN and Long Short-Term Memory
networks (LSTMs). Papadomanolaki et al. [27] proposed
BiDateNet to enhance temporal information between bitem-
poral images by integrating LSTMs into a U-Net structure.

On the other hand, the strategy used to decide the category
of each pixel in order to generate the change map plays a key
role for accurate CD. Of late, deep metric learning [28] has
also made significant progress in the area of CD [29], [30].
Wang et al. [30] proposed a Siamese convolutional network
to detect changes by determining the difference between
extracted features. Compared to common FCN-based methods,
which obtain a change map via classification, metric-based
methods obtain a change map by measuring the distance
between the features. Because the distance between unchanged
features would reduce while that of change features would
move further apart, metric-based methods can further distin-
guish between the “changed” and “unchanged” features in
the decision-making stage, thereby relieving the influence of
pseudo-changes and improving the CD accuracy.

Nevertheless, there are still some problems with the existing
CD methods. First, previous studies mainly focus on using
RNNs to exploit the temporal dependencies between bitem-
poral images for more distinguishable features. However, for
some pseudo-changes caused by objects with very confusing
appearance, it is still difficult to distinguish through the
time information. Thus, more effective techniques should be
exploited to extract more discriminative information from the
features and alleviate the influence of pseudo-changes. Second,
the features generated by hidden layers are less semantically
meaningful [31], which significantly influences the subsequent
prediction and can lead to insufficiency in terms of the bound-
ary and shape of the change area [32]. Therefore, to help the
restoration of the morphology of the changed region, attempts
to capture more semantic information still need to be explored.

In addition, large numbers of samples are required for model
training and testing; this is an unavoidable challenge brought
about by the data-driven nature of DL algorithms. In this case,
large open-source CD datasets are highly important to the
development of CD technology [21]. For one thing, it is highly
labor- and time-consuming for researchers to collect satellite
image pairs with well-labeled change information; for another
thing, a standard dataset can provide a unified benchmark
for different algorithms and models, which is helpful for
improving CD methods. Recently, several CD datasets of dif-
ferent image types have been proposed, including multispectral
images, hyperspectral images and optical images with RGB

bands, and so on [23], [29], [33]–[39]. However, because of
the limited number of datasets available, it is still difficult to
satisfy diversified CD scenarios.

In light of the above-mentioned problems, a deeply
supervised attention metric-based network (DSAMNet) for
bitemporal image CD is proposed in this article. First, multi-
scale features from different levels of bitemporal images are
extracted by means of a Siamese feature extractor. Subse-
quently, the convolutional block attention module (CBAM)
[40] is exploited with the aim of making the features from
different phases more distinguishable in both a channel-wise
and spatial-wise sense. In the next step, a metric module learns
a change map from the distance between pairwise bitem-
poral feature maps in a low-dimensional embedding space.
Furthermore, a deeply supervised (DS) module is introduced
into the feature extractor, with the goal of enhancing the
feature extractor’s learning ability and learning more effective
information. Finally, a hybrid loss is used to combine the
results of the two modules for network-training purposes.

Moreover, with the goal of alleviating the dependence of
DL model on large number of samples and meeting the
demands of CD under different scenarios, we constructed a
new, large-scale, open-source change detection dataset (CDD),
named “Sun Yat-Sen University (SYSU)-CD” (named after
our university). The dataset consists of 20 000 pairs of image
patches with a resolution of 0.5 m taken from 800 pairs
of 1024 × 1024 orthographic aerial images in Hong Kong,
along with corresponding binary change maps for each pixel.
The SYSU-CD dataset provides not only common change
information in urban and suburban areas, but also supple-
ments the annotation of high-density building changes and sea
construction; although these are important for urban decision
makers, they have rarely been seen in previous datasets.

The contributions made by this article to the literature can
be summarized as follows:

1) We provide a new CD network, DSAMNet, which inte-
grates CBAM blocks for more discriminative features
on both spatial-wise and channel-wise and DS layers
for better feature extraction, to achieve fine-grained
bitemporal CD.

2) We propose a new, large-scale, open-source CD dataset,
SYSU-CD, which contains 20 000 pairs of 0.5 m aerial
image patches for remote sensing CD. This dataset
supplements multiple change samples to the existing
datasets for more diversified CD.

3) The proposed DSAMNet achieves state-of-the-art per-
formance, not only on the widely used CDD benchmark
dataset but also on the proposed SYSU-CD dataset, with
a highest F1 of 93.69% and 78.18%, respectively.

The remainder of this article is structured as follows:
Section II provides an overall review of related works, whereas
Section III describes the proposed SYSU-CD dataset in
detail. The proposed network is introduced in Section IV.
The settings and results of all experiments are presented in
Section V. Section VI discusses the sensitivity of the loss in the
DSAMNet and the necessity of the proposed dataset. Finally,
we conclude this article in Section VII.
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II. RELATED WORKS

A. Traditional CD

Simple algebra was applied in early CD methods to obtain
the difference image as features, including image ratioing [41],
image differencing [42], and image regression [43]. Because
algebra-based methods heavily depend on the selection of the
threshold to decide changed pixels and unchanged pixels, some
transform techniques have been introduced into CD. These
transform-based methods emphasize different information on
the derived difference map by means of multiscale decompo-
sition, such as PCA and Tasseled Cap Transformation [44].
As these linear transformation techniques rely heavily on
the statistical property of images, MAD has been proposed
to learn correlations between the two components based
on canonical correlation analysis. The iteratively reweighted
MAD (IR-MAD) method [45] applied different weights to
each pixel on the basis of MAD. Although easy to implement,
it remains difficult for these methods to satisfy large-scale,
fine-grained CD in the context of shallowly extracted features
and repetitive threshold adjustment for change map generation.

B. DL-Based CD

Nowadays, because of their strong feature extraction ability,
the newly developed DL-based CD methods have obtained
excellent results. Although CNNs only output a patch-wise
category rather than pixel-wise prediction in order to gain
a finer-grained change map, attempts have been made to
assign a patch’s output to its central pixel according to the
principle of space proximity [39], [46], [47]. A novel recur-
rent convolutional neural network (ReCNN) was provided by
Mou et al. [46], which is able to learn better feature represen-
tations with joint spectral-spatial-temporal information from
multispectral images for CD using a very small input size
of 5 × 5. general end-to-end 2-D convolutional neural net-
work (GETNET) was proposed for hyperspectral image CD;
this approach employs an effective mixed affinity matrix to
mine the change patterns between two corresponding spectral
vectors [39]. Nevertheless, applying such methods may result
in very low computational efficiency and very high memory
consumption because of the large overlap between adjacent
patches. Moreover, the patch size determines the receptive
field of CNNs, whereas a small receptive field with insufficient
contextual information may lead to limited CD performance.

In light of these problems, a FCN [48] has been proposed
to achieve pixel-wise prediction by replacing the fully con-
nected layer of CNN with a fully convolutional (FC) layer.
Since this time, FCN and its variants have provided another
approach to fine-grained CD [22], [25]–[27], [49]. These
methods can be summarized as classification-based methods
[29], because they obtain the change map by classifying the
extracted features. Daudt et al. [22] discussed three differ-
ent U-Net-based variants, namely, FC-early fusion (EF), FC-
Siam-conc, and FC-Siam-diff, by exploring two image input
methods (EF and Siamese) and two skip connection methods
(concatenation and difference). Although a simple connection
can help the spatial information recovery in the upsampling
stage, it remains difficult to fulfill the needs of multiscale
change objects because of single feature extraction in each

skip connection. Therefore, UNet++ employs dense skip
connections to achieve multiscale feature extraction and reduce
pseudo-changes caused by scale variance [25]. With the aim
of fully exploiting temporal dependence between bitemporal
images, the BiDateNet integrated LSTMs into the skip con-
nection in order to obtain more temporally distinguishable
features [27]. Unlike the above classification-based method,
the spatial-temporal attention-based network (STANet) obtains
the change map by means of metric learning, which uses
a spatial and temporal attention mechanism to obtain more
discriminative spatial and temporal features [29]. However,
because of the limitation of temporal dependence to distin-
guish pseudo-changes that are very confusing on appearance,
the improvement that these methods can achieve is limited.
Moreover, the changed map exhibits poor morphology because
of a lack of semantic information.

Consequently, our proposed method introduces CBAM into
the network. This approach learns more discriminative features
in a channel-wise and spatial-wise manner in order to alleviate
the influence of pseudo-changes. In addition, a DS module
is also integrated to supervise the learning of the feature
extractor and supplement more useful information to generate
the change map.

III. SYSU-CD DATASET

Over the last few decades, great efforts have been witnessed
in relation to developing open CDDs. We collected the number
of image pairs, size, resolution, and band number of the images
of these datasets for our proposed dataset in Table I.

Evidently, the majority of these CD datasets are based
on high-resolution images (HRIs); these contain abundant
spatial information and are more favorable for visual inter-
pretation compared to low- and medium-resolution images.
The SZTAKI Air Change Benchmark set [33], which has a
spatial resolution of 1.5 m with 13 pairs of 952 × 640 optical
aerial images, was the earliest and mostly commonly used CD
dataset in early studies. The aerial imagery change detection
(AICD) dataset [34] comprises 1000 pairs of aerial images
with synthetic changes, each with a size of 800 × 600 and
resolution of 0.5 m. By contrast, synthetic images may be
inadequate to reflect real changes. To make full use of the
rich change information contained in high-resolution images,
a CDD [35] was released containing 16 000 image pairs.
The images are 256 × 256 pixels in size with a spatial
resolution of 0.03–1 m, and were collected from seven pairs
of 4725 × 2700 real season-varying remote sensing images.
Recently, a few datasets have been specifically proposed to
monitor changes in buildings, which is one of the most
common and concerned types in CD, including the Wuhan
University (WHU) Building CD [36], AIST Building Change
Detection (ABCD) dataset [37], and the Learning, Vision and
Remote Sensing Laboratory (LEVIR)-CD [29].

Multispectral images, because they have both relatively
high temporal and spatial resolution, rich spectral informa-
tion, and good data accessibility, have always been the main
data source in all kinds of remote sensing applications. The
Onera Satellite Change Detection (OSCD) benchmark [23]
contains 24 pairs of Sentinel-2 images taken between 2015 and
2018. The images in OSCD are taken from urban areas
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TABLE I

INFORMATION OF DIFFERENT CDDS

around the world (including Asia, Brazil, Europe, the Mid-
dle East, and the USA). Hence, the change information is
mainly reflected in urban expansion and renewal but lacks
natural changes. Moreover, multispectral images suffer from
mixed pixel problem. This means that subtle changes, such
as small buildings and alleys, are not noticed and can be
easily ignored at a 10-m resolution. In addition to multi-
spectral images, some hyperspectral image-based CDDs have
also been proposed in recent years, including the hyper-
spectral change detection dataset (HCCD) [38] and “River”
dataset [39].

Although these datasets have addressed the issue of detect-
ing changes between multitemporal remote sensing images,
there are still some improvements that could be made to
achieve large-scale and fine-grained CD. First, considering that
HRIs are able to provide more precise information for CD,
the resolution of some datasets remains insufficient; this is
particularly true with regard to the datasets of hyperspectral
images. Second, the change types of the existing datasets are
not diversified enough to cope with diverse needs in practical
applications. Last but not least, the volumes of some datasets
are slightly too small for data-driven DL methods, which may
result in model over-fitting and poor performance.

The SYSU-CD dataset largely complements existing CD
datasets in terms of image resolution, change types, and dataset
volume and further provides a new benchmark for CD. The
dataset contains 20 000 pairs of 0.5-m aerial images taken
between the years 2007 and 2014 in Hong Kong, which has
long been a prosperous and populous metropolis situated in
the south of China. With a total land area of 1,106.66 square
kilometers and a total population of about 7.2 million by the
end of 2014, Hong Kong was ranked third in the world for
population density, resulting in very high density of high-rise
buildings in urban areas. Moreover, the amount of construc-
tion and maintenance in ports, sea routes, and oceanic and
coastal projects in Hong Kong, as well as the major shipping
hubs in international and Asia-Pacific areas, have increased
rapidly from 2007 to 2014 under the rapid development of
the littoral economy and nautical transport. Accordingly, our
dataset greatly complements change instances of high-rise
buildings, which are very difficult to mark in HRIs because
of the influence of deviation and shadow, as well as change
information related to the port compared to previous datasets.

According to the ratio of 6:2:2, we first divided the original
800 image pairs into training set, verification set, and test
set. Thereafter, to generate a dataset for DL application,
25 sample pairs of 256 × 256 size are randomly collected from
each image pair, where random flip and rotation are applied
for data augmentation. The preprocessing results in a total
of 20 000 pairs of aerial image patches of size 256 × 256.
As shown in Fig. 1, the main types of changes in the dataset
include (a) newly built urban buildings; (b) suburban dilation;
(c) groundwork before construction; (d) change of vegetation;
(e) road expansion; and (f) sea construction. The SYSU-CD
dataset will be made openly available for all research
needs.

IV. METHODOLOGY

In this section, an overview of our proposed network is
first provided, after which each network module will be
described in detail. Finally, the model optimization strategy
is introduced.

A. Overview

The architecture of the proposed network is presented
in Fig. 2. It consists of three parts: a feature extractor, a metric
module, and a DS module. To learn representative features for
CD, the feature extractor automatically extracts multiscale fea-
tures from bitemporal inputs. The metric module then learns a
distance map according to the bitemporal feature pairs; before
this occurs, the CBAM blocks are used to make the features
more discriminative from both channel-wise and spatial-wise
perspective. Moreover, the deep supervision with two DS
layers are applied to assist the hidden layers in capturing more
useful features.

Let IT 1 and IT 2 represent a pair of images in the same
area at different time points T 1 and T 2, respectively, while y
represents the label with change annotations. The flowchart of
DSAMNet can be summed up as follows:

1) First, the images IT 1 and IT 2 are input into the
weight-sharing feature extractor, with each obtain-
ing a group of multiscale feature vectors Fm =
{feat1m, . . . , feat4m}, m = T 1, T 2.

2) Next, the vectors from the same timestamp are all
merged into one to obtain feature pairs with the same
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Fig. 1. Example samples (256 × 256) from the SYSU-CD dataset. Each column represents different change types: (a) Newly built urban buildings;
(b) Suburban dilation; (c) Groundwork before construction; (d) Change of vegetation; (e) Road expansion; and (f) Sea construction.

dimension, FeatT 1 and FeatT 2, where a CBAM block is
applied to make them more discriminative. The metric
module calculates a distance map D between FeatT 1 and
FeatT 2, whereas a batch contrastive loss (BCL) LBCL

is calculated according to the distance map D and the
label y.

3) In the meantime, the absolute values of the two features
Fabs = {featiT 1 − featiT 2}, i = 1, 2 are input into the DS
layers, yielding two intermediate change maps Cmap1,

Cmap2, after which a dice loss LDice is calculated
according to Cmap1, Cmap2, and the label y.

4) Finally, LBCL and LDice are summed up together to
facilitate a more accurate model training.

B. Feature Extractor

The encoder adopts a Siamese architecture with two
weight-sharing branches to extract features from bitemporal
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Fig. 2. Overview of the proposed DSAMNet. The feature extractor is extended to the Siamese structure to extract features of bitemporal image pairs. Features
of different scales are stacked into the metric module after being resized to the same size, where two CBAMs are adopted to make them more discriminative.
Two DS layers are employed in the DS module to assist the learning of the hidden layer.

image pairs. Many previous studies have demonstrated that
borrowing a CNN feature extractor with pretrained parameters
is conducive to model convergence [29], [50]. We therefore
build our feature extractor based on ResNet [51] and load
parameters from the pretrained ResNet-18 on ImageNet [14].

An increase in the depth of traditional CNNs is often accom-
panied by the problem of gradient disappearance or gradient
explosion, which leads to network degradation. Theoretically,
if deep layers learn an identical mapping, that is, the outputs
are consistent with the inputs, then the network will not
degrade with increasing depth. Therefore, taking an original
block stacked with two layers [Fig. 3(a)] as an example,
the output of the original block is as follows:

F(x) = W2σ(W1(x)) (1)

where W1 and W2 represent the weight of the two lay-
ers, respectively, whereas σ is a rectified liner unit (ReLU)
function.

If our goal is to achieve identity mapping in the original
blocks, the parameters need to be adjusted to implement
F(x) = x . However, it is comparatively more difficult to
learn a nonlinear mapping. ResNet utilizes residual blocks
[Fig. 3(b)], in which an identity shortcut connection is
employed to transfer the input x directly to the output. Thus,
the output of the residual block become:

F(x) + x = W2σ(W1(x)) + x . (2)

In this case, the network needs to adjust its internal parame-
ters to make F(x) + x = x , that is, F(x) = 0, which greatly
simplifies the learning difficulty compared to the original
blocks and thus improves the model performance.

Fig. 3. Structure of different blocks: (a) Original blocks and (b) Residual
blocks.

After removing the global pooling layer as well as the
fully connected layer from the initial ResNet-18, a variant
of ResNet with 18 layers is obtained. Our feature extractor
consists of five stages. First, a convolutional layer with a kernel
size of 7 × 7 is used to extract low-level features from the
input images; next to these are a batch normalization (BN)
layer [52] and a ReLU [14]. To avoid the smoothing effect
of the convolution operation and increase the reception field,
a max-pooling layer with a stride of 2 is utilized to resize the
features to half the size of the input image. Four basic blocks
make up the remaining four stages, each of which consists
of two layers. Basic blocks also take two forms, as Fig. 4
shows: one is to transfer the initial input x , while the formula
is the same as (2). The other utilizes a 1 × 1 convolutional
layer for dimension increase and downsampling purposes.
At this point, the output of the residual block is expressed as
follows:

F(x) + x = W2σ(W1(x)) + Ws x (3)

where Ws denotes the weight of the 1 × 1 layer.
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Fig. 4. Structure of basic blocks in ResNet-18: (a) Simple connection and
(b) Connection with 1 × 1 conv.

Note that the stride of the first two basic blocks is 2; this
means that the feature map would be reduced by half, whereas
that of the last two basic blocks is 1, meaning that the feature
size is consistent with the input size. The depths of the four
basic blocks are 64, 128, 256, and 512 in turn. Except for the
output feature f eat4 at the end of the feature extractor, which
is 1/8 of the original input image size, the three intermediate
feature maps of other basic blocks ( f eat1, f eat2 and f eat3)
are then output for subsequent processing.

C. Metric Module

The metric module learns the change map by comparing
the embedding eigenvectors of bitemporal images. Therefore,
the construction of the bitemporal feature pairs for comparison
is critical for the outcome. To make the best of sufficient
spatial information in low-level features and rich semantic
information in high-level features, a multiscale feature fusion
strategy is exploited to reconstruct the paired features with the
multilevel features from each branch of the feature extractor,
where a 1 × 1 convolutional layer is first applied to unify
the channel of each feature to 96, after which a bilinear
interpolation is applied to resize their sizes to half of the
input image. The features from the same branch are then
sequentially concatenated and fed into a convolutional block,
which consists of two convolutional layers with kernel sizes
of 3 and 1, respectively. This reconstruction results in feature
pairs with a channel size of 64.

As discussed above, feature pairs with inconspicuous rep-
resentations might be difficult for the metric module to dis-
tinguish. Consequently, we introduce the CBAM to further
fuse the multilevel features and make these feature pairs
more distinguishable, which is a very lightweight module that
does not incur excessive memory and computing overhead.
As Fig. 5 shows, CBAM comprises two submodules, a channel
attention submodule [Fig. 5(b)] and a spatial attention sub-
module [Fig. 5(c)], to help strengthen useful information in
the extracted features in different dimensions. The channel
attention submodule aims to capture channel-wise long-range
contextual information through a channel attention map, which
can be calculated using the following formula:

Mc(F) = σ(MLPr (AvgPool(F)) + MLPr (MaxPool(F))).

(4)

The F denotes an input feature of size C × H × W,
on which an average pooling layer and a max pooling layer are
utilized to generate two aggregated vectors of size C × 1 × 1.
A weight sharing multilayer perception (MLP) module with
a channel reduction ratio r is then applied to each vector
to give weights to each channel. The MLP layer contains
two 1 × 1 convolutional layers; the first of these reduces the
channel of the input feature by r times, whereas the latter
restores the channel number to the same size as the original
input. The two layers are linked by a ReLU layer. The channel
attention map Mc(F) is obtained using the elementwise sum
of the above two vectors and a sigmoid function σ . Finally,
the original features will be multiplied with the channel
attention map to obtain a channel-refined feature F ′.

Similarly, the spatial attention submodule also adopts aver-
age pooling and max pooling for the first-step process in
order to squeeze the input channel-refined feature F ′ to
two 1 × H × W matrixes, which are concatenated together
and forwarded into a convolutional layer with a kernel size
of k. Finally, a sigmoid function is used to obtain the final
spatial attention map Ms (F ′). The formula can be denoted as
follows:

Ms(F ′) = σ( f (k×k)(AvgPool(F ′); MaxPool(F ′))). (5)

A more discriminative feature F ′′ will be obtained the
channel sub-module and spatial sub-module are passed to
CBAM successively. This process can be expressed as follows:

F ′ = Mc(F) ⊗ F (6)

F ′′ = Ms(F ′) ⊗ F ′. (7)

Thereafter, a Euclidean distance map Dist would be cal-
culated based on the refined feature pairs according to the
following formula:

Dist =
√(

F ′′
T 1 − F ′′

T 2

)(
F ′′

T 1 − F ′′
T 2

)T
(8)

where FT 1 and FT 2 denote the CBAM-refined feature map of
T 1 and T 2, respectively.

In the training stage, the distance map Dist would be
compared with the ground truth to obtain the contrastive loss
for optimization, whereas in the prediction stage, a simple
threshold segmentation would be applied on the distance map
to obtain the change map.

D. DS Module

Generally speaking, most traditional end-to-end CNN net-
works only provide supervision at the output layer to train
the entire network. However, because the training of hidden
layers in the middle of the deep convolutional networks
is non-transparent and lacks supervision, the hidden layer
cannot efficiently learn the effective features, especially in a
deep network, which affects the subsequent prediction [31].
Previous works have demonstrated the excellent ability of deep
supervision to improve the effectiveness of hidden layers [32],
[53], [54]; thus, we introduce deeply supervised nets (DSNs)
[31] into our network. Rather than providing oversight only
to the output layer, DSN aims to supply direct supervision
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Fig. 5. Architecture of CBAM block: (a) Overview of CBAM block, (b) channel sub-module, and (c) spatial submodule.

for hidden layers by introducing a companion classifier, along
with a companion objective, as a soft constraint for hidden
layers during the training process, with the goal of aiding
the learning of hidden layers and obtaining more robust and
discriminative features.

More specifically, for a normal deep convolutional network
with a total of M layers, we can denote the weights of all
layers as W = {W (1), . . . , W (M−1)}, and the weight of the
output layer as w(out). The objective function of the present
network is as follows:

P(W ) = L(W, w(out)) (9)

where L(W, w(out)) is the overall loss directly decided by
w(out), which depends on the weight of all layers W .

We now apply M−1 classifiers to all hidden layers to obtain
additional outputs for deep supervision, then write the weights
of the classifiers as w = {w(1), . . . , w(M−1)}. The companion
objective function of the hidden layers is thus

Q(W ) =
M−1∑
m=1

αm�(W, w(m)) (10)

where m marks the hidden layers, �(W, w(m)) denotes the
companion loss of the mth hidden layer, to which αm provides
a weight.

Different from the overall loss, each companion loss
�(W, w(m)), w(m) depends on the mth hidden layer as well
as the previous hidden layers. Finally, the objective function
of the DS network can be defined as follows:

F(W ) = P(W ) + Q(W ). (11)

As there is no decoder with an upsampling structure in our
metric-based network, the DS network is integrated into the
hidden layers of the feature extractor to conduct supervision.
Considering that the supervision of all hidden layers will
reduce the computational efficiency of the model, only two DS
layers are added on the second- and the third-layer features
of the feature extractor (referred as feat1 and feat2 in Fig. 2).
In view of the properties of hierarchical features, these two

intermediate features with both rich spatial and semantic
information are more suitable to be selected for supervision.
Each DS layer contains two 3 × 3 deconvolutional layers to
upsample the feature maps to the size of the input image, along
with a sigmoid layer to obtain the probability distribution
of each pixel’s category. To screen more effective change
information for supervision and learning during the training
process, the absolute differences between the selected features
at the same level from each branch are forwarded into the DS
layers. The outputs of these supervised layers were used to
supervise parameter optimization along with the output of the
metric model, which leads to the hidden layers having a better
feature learning ability.

E. Loss Function

Given a set of training image pairs Xn = {(x t1
n , x t2

n ), n =
1, . . . , N} and the ground truth Yn = {yt1

n , n = 1, . . . , N},
our goal is to optimize the objective function for an accurate
CD network. Note that a batch of distance maps and a batch
of DS maps are obtained through our network, to which two
different loss functions are applied.

Contrastive loss [55] is employed in the metric module to
measure the similarity between the distance map and ground
truth, which is commonly applied to paired data in the Siamese
network. The BCL in the metric module can be expressed as
follows:

LBCL(Xn, Yn) =
M∑

i, j=0

1

2

[
(1 − yi, j)d

2
i, j + yi, j max(di, j − m)2

]

(12)

where di, j represents the value of the distance map at point
(i, j); here, yi, j represents the value of the label map at point
(i, j), whereas M is the size of the distance map. Moreover,
0 denotes unchanged while 1 denotes changed, and m is the
margin to filter out pixel pairs with a distance greater than this
value.
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Algorithm 1 Flowchart of DSAMNet
Input:

A set of image pairs of the nth batch {x t1
n , x t2

n } and
corresponding ground truth yn;
Parameters of learning rate lr , number of training epochs
N , batch size batch, reduction rate in CBAM r , and kernel
size in CBAM k

Output:
a distance map Distn ; two change maps Cmap1

n, Cmap2
n

for each m ∈ [1, N] do
extract multiscale features f eat t1

n from x t1
n ;

extract multiscale features f eat t2
n from x t2

n ;

obtain refined feature map F ′′
t1n and F ′′

t2n by (4)–(7);

calculate a distance map Distn by (8);
calculate the contrastive loss L BCL−n by (12);

obtain two intermediate CD maps, Cmap1
n, Cmap2

n
calculate the dice loss L Dice−n by (13);

propagate back the overall loss L calculated by (14)
end for

According to this formula, the loss of the unchanged pixel
pairs (y = 0) depends on the distance between the pixel
pairs di, j . A large di, j will result in a large loss at (i, j),
which will help to reduce the distance between unchanged
samples. A similar strategy is used for changed pixel pairs
(y = 1) to increase the distance between change samples. The
contrastive loss can therefore well express the matching degree
of paired samples, which is greatly helpful for achieving
accurate change extraction.

Under the influence of class imbalance in CD, the model’s
training direction will be dominated by the majority of
“unchanged” pixels, neglecting the minority “change” infor-
mation and thus leading to a less-efficient model. The dice
loss is adopted in the supervision module to overcome class
imbalance; this approach uses a dice coefficient to measure
the degree of similarity between the prediction map and the
ground truth and ranges between 0 and 1. The objective
function in the deep supervision module can be denoted as
follows:

LDice(Xn, Yn) = 1 − 1

m

m∑
j=1

2
∑N

i=1 ŷi, j yi, j∑N
i=1 ŷi, j + ∑N

i=1 yi, j

(13)

where ŷ and y represents prediction map and target label,
respectively.

Finally, the objective function of the network is as follows:
L(Xn, Yn) = LBCL(Xn, Yn) + λLDice(Xn, Yn) (14)

where λ is a factor used to regulate the influence of the DS
module.

The Algorithm 1 outlines the optimization process of
DSAMNet.

V. EXPERIMENTAL AND RESULTS

In this section, the datasets and comparison algorithms
employed in the following experiments are first illustrated.
We then provide a brief description of the implementation
details and evaluation metrics. Finally, the experimental results
are analyzed in detail.

A. Datasets

Two groups of experiments were designed to verify the
effectiveness of our proposed DSAMNet. The first group of
experiments was conducted on the CDD dataset, which is a
widely used CD dataset, to evaluate the validity of DSAMNet.
All baselines were then compared on the SYSU-CD dataset
to verify the validity of our dataset and to further validate our
model. The details of the two datasets are as follows:

1) CDD Dataset: The CDD dataset [34] consists
of 16 000 pairs of real season-varying remote sensing
images, each with an image size of 256 × 256 and a spatial
resolution of 0.03–1 m, with 10 000 and 3000 pairs used for
training and validation, respectively, whereas the remaining
3000 pairs are used for testing. The main types of changes in
CDD are summarized and shown in Fig. 6.

2) SYSU-CD Dataset: As discussed in Section III,
the SYSU-CD dataset contains 20 000 pairs of orthographic
aerial image patches with a size of 256 × 256 and resolution
of 0.5 m. In our experiments, the ratio of samples used for
the training, validation, and test sets is set to 6:2:2. Multiple
changes types in relatively complex scenarios are provided in
this dataset as shown in Fig. 1.

B. Comparative Methods

To demonstrate the superiority of DSAMNet, the following
five state-of-the-art CD methods are selected for comparison
purposes and introduced in brief:

1) Fully Convolutional-Early Fusion (FC-EF): FC-EF [22]
is proposed based on U-Net architecture, in which the bitem-
poral images are cascaded as a multiband image for input. Skip
connections are used to progressively transport the multiscale
features from the encoder to the decoder to recover spatial
information.

2) Fully Convolutional-Siamese-Concatenation (FC-Siam-
conc): As a variation of the FC-EF model, FC-Siam-conc [22]
extracts the features of bitemporal images with a Siamese
encoder rather than EF. The features at the same level from
the encoder are then concatenated to the decoder.

3) Fully Convolutional-Siamese-Difference (FC-Siam-diff):
Different from FC-Siam-conc, the skip connections of
FC-Siam-diff [22], which is another variety of FC-EF model,
transport the absolute difference between bitemporal features.

4) BiDateNet: BiDateNet [27] is a FCN with a U-Net
structure for CD, which introduces Long Short-Term Mem-
ory (LSTM) convolutional blocks into the skip connection for
improved temporal pattern investigation between the bitempo-
ral images.
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Fig. 6. Example samples (256 × 256) from CDD. Each column represents different types of change: (a) Car change; (b) tank change; (c) land change;
(d) building change; and (e) road change.

5) Spatial-Temporal Attention-Based Network (STANet):
STANet [28] is a metric-based CD method, which learns the
change map based on the distances between the features.
A spatial-temporal attention module is utilized to learn the
spatial-temporal relationships between the bitemporal images
to generate more discriminative features.

In summary, four U-Net-based methods and two
metric-based methods (including DSAMNet) would be
compared in the experiment to compare two different
ways of obtaining change maps: up-sampling and metric
learning. Additionally, the effectiveness of different attention
mechanisms on CD can also be tested from the three
attention-integrated methods, including BiDateNet, STANet,
and DSAMNet.

C. Implementation Details

We use the PyTorch library for all experiments. The para-
meters used in comparison methods are as consistent as
possible with the original literatures. However, because of
memory limitations, the batch size of STANet is set to 4 in
our experiment. As for the DSAMNet, the Adam optimizer
was adopted with an initial learning rate of 0.0001 on CDD
dataset and that of 0.0005 on SYSU-CD dataset. A batch
size of 8 sample pairs was utilized to facilitate faster model
convergence. The reduction ratio r and kernel size k in the
CBAM blocks were 8 and 7, respectively. The margin m in
the BCL took a value of 2, and the threshold to segment
the distance map was set to 1. All of our experiments are
conducted on the GeForce RTX 2080ti to accelerate model
training.

To evaluate the performance of the proposed methods,
we utilize four typical metrics: namely, precision, recall,
F1-score, and IoU. More specifically, precision reflects the
false alarm rate, recall reflects the miss alarm rate of the model,
whereas F1 takes both indices into account; therefore, a larger
F1 score indicates a better model. IoU represents the overlap
rate of the change class on the detection map and the ground
truth. In general, an IoU larger than 0.5 denotes a good result.

These four metrics can be calculated as follows:
precision = TP

TP + FP
(15)

recall = TP

TP + FN
(16)

F1 = 2presicion · recall

presicion + recall
(17)

IoU = DetectionResult ∩ GroundTruth

DetectionResult ∪ GroundTruth
(18)

where TP, FP, TN, and FN refer to true positives, false
positives, true negatives, and false negatives, respectively.

D. Comparisons on CDD Dataset

The quantitative results for the precision, recall, F1, and IoU
of all methods are summarized in Table II. As Table II shows,
FC-EF obtains the lowest F1 and IoU of 78.65% and 64.81%
among the compared methods, which is followed by FC-Siam-
diff, which obtains an F1 of 82.93% and an IoU of 70.84%.
This shows that the Siamese encoder can slightly improve the
model accuracy here. The FC-Siam-conc scores 85.90% in
terms of F1 and 75.28% on IoU, which denotes that more
useful information can be maintained through concatenation
than difference and transferred to the decoder. The BiDateNet
obtains the highest precision of 95.98%, as well as an F1 and
an IoU of 90.01% and 81.83%, respectively; this demonstrates
that LSTM blocks are well able to capture the temporal
change pattern and improve the accuracy. The STANet based
on metric learning obtains an F1 of up to 91.44% and an
IoU of up to 84.23%, higher than the scores obtained by the
above UNet-based methods. Our method achieved the highest
F1 of 93.69% and an IoU of 88.13% among all the compared
methods; these figures are 2.25% and 3.90% higher than those
obtained by STANet.

Fig. 7 provides a more intuitive picture of each method’s
performance on the CDD datasets. Generally speaking, FC-EF
and its two variants, FC-Siam-conc and FC-Siam-Diff, can
identify relatively obvious changes; however, many small
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Fig. 7. Visual comparisons on the CDD dataset: (a) Image at time1; (b) Image at time2; (c) Ground truth; (d) FC-EF; (e) FC-Siam-diff; (f) FC-Siam-conc;
(g) BiDateNet; and (h) STANet. (i) DSAMNet.

TABLE II

EXPERIMENTAL RESULTS ON CDD DATASET

changes, such as cars and alleys, are missed in the change
map, leading to the low recall rate of these three meth-
ods. Among the UNet-based methods, the BiDateNet has
the best performance in the extraction of cars and alleys;
this indicates that LSTM blocks can help to capture small
changes. The metric-based STANet can successfully extract
changes at different scales, including cars, roads, and build-
ings. However, because of the degradation of spatial context
information during feature extraction, the STANet are hard
to keep precise boundaries of these small objects, which are
relatively rough and supersaturated compared to the ground
truth. According to Fig. 7, our proposed method is able
to recognize scale-variance changes with finer boundaries.
This demonstrates that the integration of DS module can
help to restore the spatial information and improve the CD
accuracy.

E. Comparisons on SYSU-CD Dataset

As can be seen from Table III, the proposed method also
outperforms all baselines on the SYSU-CD dataset, achieving
the highest F1 and IoU scores of 78.18% and 64.18%, respec-
tively. The second-ranked STANet obtains an F1 of 77.37%
and an IoU of 63.09%, which further proves the advancement
of metric learning for CD. The BiDateNet achieves best
performance among the UNet baselines with an F1 of 76.94%
and an IoU of 62.52%, which are 0.59% and 0.77% higher
than those of the FC-Siam-conc. Meanwhile, different from
the results on the CDD dataset, FC-EF performs better than
FC-Siam-diff on the SYSU-CD dataset, which obtains an F1 of
75.07% and an IoU of 60.09%. Despite achieving the highest
precision of 89.13%, the FC-Siam-diff has the lowest F1 and
IoU; this may attribute to that in relatively complex scenarios
of SYSU-CD dataset, feature difference can lead to excessive
filtering of useful change information and missed alarms.

Fig. 8 further demonstrates the behavior of different meth-
ods on the SYSU-CD dataset. As can be seen from Row 1 of
Fig. 8, the FC-EF has a deficiency in identifying newly built
urban buildings compared with other methods. According to
the ground truth, there are many omissions in the result of
FC-Siam-diff, which is consistent with its high precision and
low recall in Table II. The FC-Siam-conc and the BiDateNet
are able to extract major changes but show relatively poor
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Fig. 8. Visualization comparisons on SYSU-CD dataset: (a) Image at time1, (b) Image at time2, (c) Ground truth, (d) FC-EF, (e) FC-Siam-diff,
(f) FC-Siam-conc, (g) BiDateNet, (h) STANet, and (i) DSAMNet.

TABLE III

EXPERIMENTAL RESULTS ON SYSU-CD DATASET

performance in some complex scenarios. The STANet and
the DSAMNet can capture more complete change areas in
most cases, including village and road dilation (Row 5 of
Fig. 8). Moreover, they also work well at recognizing changes
with less disparate appearance, such as the newly built urban
buildings (Row 1 of Fig. 8) and the groundwork before
construction (Row 3 of Fig. 8). Similar to the results of
CDD datasets, the DSAMNet does a best job of maintaining
boundary information of changes among all the baselines.

F. Ablation Study of DSAMNet

On the basis of metric learning, the DSAMNet integrates
both CBAM blocks and DS module for accurate CD. We there-
fore design ablation experiments on DSAMNet to verify
both the validity of CBAM and DS layers. In the following

TABLE IV

ABLATION STUDY ON DSAMNET

experiment, the “Base” baseline denotes the basic model
without CBAM and deep supervision. The “Base + DS”
model is adopted as the second baseline by introducing DS
module into the “Base” model, whereas the “Base + CBAM”
represents model with CBAM integration.

As can be seen from Table IV, the incorporation of both DS
layers and CBAM blocks can improve the model performance
on both datasets. More specifically, the F1 and IoU can be
improved by 0.16% and 0.28% on the CDD dataset and by
0.76% and 0.98% on the SYSU-CD dataset after adding DS
layers. It shows that deep supervision on the hidden layers do
enhance the ability of the model. Besides, the CBAM blocks
can improve the F1 and IoU of the CDD dataset by 0.34%
and 0.59% and those of the SYSU-CD dataset by 1.60%
and 2.07%, respectively; this indicates that CBAM blocks
can contribute substantially to the subsequent metric learning
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Fig. 9. Examples of the ablation experiment on the proposed method. The first two rows present the samples from CDD dataset, whereas the last two rows
are from the SYSU-CD dataset: (a) Image at time1; (b) Image at time2; (c) Ground truth; (d) Base; (e) Base + DS; (f) Base + CBAM; and (g) DSAMNet.

by making the feature pairs more distinguishable from each
other. Notably, compared to the “Base” model, the F1 and
IoU of the DSAMNet with both DS layer and CBAM blocks
integrated are increased by 0.95% and 1.67% on CDD dataset,
and 3.16% and 4.15% on SYSU-CD dataset, respectively. The
great improvement of the DSAMNet not only further proves
the effectiveness of CBAM blocks and DS layers, but also
proves the gain effect of their combination.

Fig. 9 presents the ablation result on the two datasets.
Compared with the Base model, both the second and third
baselines can reduce the missed and false alarms in the change
maps. Therefore, with both the DS layers and CBAM blocks,
the DSAMNet can largely improve the completeness and
accuracy of the change results; this further verifies that through
the DS layers to improve the feature extraction ability of
hidden layers, and combined with CBAM blocks to further
enhance the expression of effective information, the DSAMNet
can effectively extract more accurate change maps.

VI. DISCUSSION

In this section, a group of sensitivity experiment is designed
for parameter settings on the hybrid loss function and a
discussion on the CDD and SYSU-CD datasets is conducted
at the end.

A. Sensitivity Experiments on the Hybrid Loss

The loss function is adopted to evaluate the degree to
which the prediction differs from the ground truth; this metric
plays a decisive role in ensuring that the model converges
fast and stably during the training process, which has a
highly significant influence on the final model performance.
As described in Section IV, we employ a hybrid loss, which
combines the contrastive loss and the dice loss, for the training

TABLE V

SENSITIVITY EXPERIMENTS ON LOSS FUNCTION

of our proposed network; in this approach, a parameter is
introduced to balance the effect of the dice loss. To explore
the influence of different values on the training of DSAMNet,
we conduct comparative experiments on the two datasets by
setting different λ values. In the training process, the deeply
supervised module is adopted as an auxiliary module to
improve the feature extraction ability of the model through
the supervision of the hidden layer, so as to help the metric
module to extract more accurate changes. Therefore, we set
the value of λ between (0, 1) to distinguish the different role of
the DS module and the metric module in the model training.
These results are collected and presented in Table V. Note
that when λ is set to 0, the network is equivalent to the third
baseline “Base + CBAM” in Section V-F.

On the CDD dataset, the accuracies of all models with
the DS module are improved to a certain extent. Therefore,
the proposed network achieves the highest F1 and IoU when
λ = 0.1, which are 0.61% and 1.08% higher than those when
λ = 0. Then, when λ continues to increase, the gain of the DS
module to the model gradually decreases. To be more specific,
when λ = 0.7, the gain on the F1 and IoU are reduced
to 0.17% and 0.31% compared to those of λ = 0. On the
SYSU-CD dataset, the highest F1 and IoU are achieved when
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λ = 0.3, representing an improvement of 1.19% and 1.69%
compared to when λ = 0. Similarly, as λ continues to increase,
the accuracy of the model is only slightly improved or even
decreased a bit; this indicates that the influences of the λ value
on different datasets are not the same because of the nature
of the dataset itself, and the SYSU-CD dataset may be more
sensitive to the λ value in the hybrid loss.

B. Discussion on the SYSU-CD Dataset

The experiments on the SYSU-CD dataset have proven the
validity of SYSU-CD by means of a comprehensive compar-
ison that takes both quantitative and visual form. However,
we also note that the best F1 performance by DSAMNet
on SYSU-CD is about 15.51% lower than that of the CDD
dataset. In this regard, we analyze the reasons for this as
follows:

1) Challenges brought about by complex scenes in the
SYSU-CD dataset. One highlight of the SYSU-CD
dataset is that the images contain many high-rises and
dense buildings, which are insufficient in many existing
datasets. In this case, the CD accuracy is to a certain
extent limited by the complex environments.

2) Difficulties brought about by multiple change types in
the SYSU-CD dataset. It goes without saying that CDD
is an excellent CD dataset. For its part, the SYSU-CD
dataset contains more complex and confusing types of
change, as mentioned above, which also contributes to
the relatively lower detection rate of SYSU-CD.

In summary, despite complicated detection scenes and mul-
tiple change types, we also achieved relatively good CD results
on the SYSU-CD dataset. Moreover, there is also an urgent
need to detect changes under such complex scenarios (such as
megacities in China); for these situations, the SYSU-CD can
provide an effective benchmark.

VII. CONCLUSION

In this article, a new DL-based method called DSAMNet
is proposed for bitemporal remote sensing CD. We also
provide a new benchmark dataset, SYSU-CD, which largely
complements existing CD datasets in terms of image resolu-
tion, change type, and dataset volume. DSAMNet contains
a CBAM-integrated metric module to learn a change map
directly from features obtained using the feature extractor,
as well as an auxiliary deep supervision module used to
generate change maps with more spatial information. A hybrid
loss is adopted to combine these two modules in the training
process. Experimental results demonstrate that the proposed
DSAMNet outperforms other state-of-the-art methods on both
the CDD and SYSU-CD datasets. The CBAM blocks in
the metric module can effectively make features more dis-
criminative, thereby assisting with the learning of the metric
module. Moreover, the DS module can make good use of the
information contained in intermediate features, thereby further
improving the change maps learned by the metric module.
In the future, we will explore CDDs with semantic change
information and develop effective semantic CD algorithms that
can meet the needs of more diversified scenarios.
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