
Technische Universität Berlin

Faculty of Electrical Engineering and Computer Science
Dept. of Computer Engineering and Microelectronics

Remote Sensing Image Analysis Group

An end-to-end framework for processing and analysis of
big data in remote sensing

Master of Science in Computer Science

December, 2019

Viktor Bahr
Matriculation Number: 370681

First Supervisor: Prof. Dr. Begüm Demir

Second Supervisor: Prof. Dr. Tilmann Rabl

Advisor: Gencer Sümbül

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe angefertigt habe. Sämtliche benutzten Informationsquellen sowie das Gedankengut
Dritter wurden im Text als solche kenntlich gemacht und im Literaturverzeichnis angeführt.
Die Arbeit wurde bisher nicht veröffentlicht und keiner Prüfungsbehörde vorgelegt.

Hereby I declare that I wrote this thesis myself with the help of no more than the mentioned
literature and auxiliary means.

Berlin, 10.12.2019

. .

Viktor Bahr

i

Acknowledgements

I would like to thank my first supervisor, Prof. Begüm Demir, for her continued support and en-
couragement along the way. She has introduced me to remote sensing and thus opened up a highly
interesting field of research for me, the further development of which I will follow with great excite-
ment. I also thank my second supervisor, Prof. Tilmann Rabl, who supported me with his extensive
knowledge of Big Data technologies on multiple occasions.

I thank the members of the RSiM group, and especially Gencer Sümbül, whose work I built on
and who was always open to questions. Also, a thank you to Dr. Alireza Rezaei Mahdiraji of DFKI,
who gave me important feedback.

My special thanks to Lutz Friedel of DIMA group for maintaining the computer cluster. You took
your time for my requests even though you were very busy. I appreciate that. Also thank you Dr.
Marcela Charfuelan for showing so much patience when sharing the cluster with me.

In addtition, thanks to all contributors to the numerous open source projects without which this
work would not have been possible. Keep up the great work folks!

Finally my dearest thank you to my partner Annika, my friends and my family for consistently
strengthening my back and dealing with my grumpiness. You mean the most to me, I couldn’t have
done it without you.

ii

Abstract

Many types of remote sensing data have characteristics of big data. Particularly noteworthy are
earth observation programs such as the Copernicus Program of the European Space Agency, which
currently publishes approx. 13 TB of new data each day. At the same time, however, modern big
data technologies are only slowly finding their way into the field, which is partly due to the lack of
support for geodata. We present the implementation of a simple Big Data Framework for remote
sensing data through the creation of a large-scale, multi-label image archive from multispectral satel-
lite data. With Apache Spark, Hadoop, GDAL and PostGIS, we are using a number of popular, open
source software packages. Our approach aims to cover the complete workflow, starting with data
acquisition, through processing to analysis. We demonstrate those capabilities by acquiring 1.4 TB
of satellite data from 39 European countries, processing them into 10.3 million image patches, and
then determining their land cover labels. The insights gained from this work provide an impression
of what needs to be considered when implementing a big data framework for remote sensing tasks
and are thus suitable as a basis for further research.

iii

Zusammenfassung

Viele Arten von Fernerkundungsdaten weisen Merkmale von Big Data auf. Hierbei besonders
hervorzuheben sind Erbeobachtungsprogramme, wie z.B. das Copernicus Program der Europäischen
Raumfahragentur, welches aktuell ca. 13 TB neue Daten pro Tag veröffentlicht. Gleichzeitung finden
moderne Big Data Technologien aber nur langsam Einzug in das Feld, was unter anderem auf die
mangelnde Unterstützung von Geodaten zuzückzuführen ist. Wir präsentieren anhand der Erzeugung
eines umfangreichen, mehrfach annotierten Bilddatenarchivs aus multispektralen Satellitendaten die
Umsetzung eines simplen Big Data Frameworks für Fernerkundungsdaten. Mit Apache Spark,
Hadoop, GDAL und PostGIS greifen wir dabei auf eine Reihe von populären, quelloffenen Soft-
warepaketen zurück. Unser Ansatz zielt darauf ab den kompletten Arbeitsablauf abzubilden, ange-
fangen bei der Datensammlung, über die Verarbeitung bis hin zur Auswertung. Diese Fähigkeiten
demonstrieren wir, indem wir 1.4 TB Satellitendaten aus 39 europäischen Ländern sammeln, sie
zu 10.3 Millionen Bildausschnitten weitererarbeiten und anschließend deren Bodenbedeckung und
Landnutzunsdaten ermitteln. Die im Rahmen dieser Arbeit gewonnen Erkenntnisse liefern einen
Eindruck darüber, was bei der Umsetzung eines Big Data Frameworks für Fernerkundungsdaten zu
beachten ist und eignen sich so als Grundlage für weiterführende Forschung.

iv

Contents

List of Acronyms viii

List of Figures ix

List of Tables x

1. Introduction 1
1.1. Context . 1
1.2. Problems & Strategies . 1

1.2.1. Data Acquisition . 2
1.2.2. Processing & Analysis . 2

1.3. Contribution . 3
1.4. Structure of the Thesis . 3

2. Fundamentals 4
2.1. Sentinel-2 Data . 4

2.1.1. Atmospheric Correction . 4
2.1.2. Sentinel-2 Processing Levels . 4

2.2. Copernicus Open Access Hub . 5
2.2.1. Application Program Interfaces . 5
2.2.2. Collaborative Ground Segments . 6
2.2.3. Clients . 6

2.3. CORINE Land Cover Inventory . 7
2.4. Eurostat NUTS . 7
2.5. Geospatial Data . 7
2.6. Spatial Data Management . 8
2.7. Distributed Computing . 8

2.7.1. Apache Hadoop . 9
2.7.2. Apache Spark . 9

2.8. Hardware Setup . 10

3. System Design 11
3.1. Overview . 11
3.2. Data Acquisition . 11

3.2.1. Requirements . 11
3.2.2. CollGS: Concurrent Access to Multiple Mirrors 12
3.2.3. Selecting an Existing Client for Abstraction 13
3.2.4. Concurrent Mirror Access . 14
3.2.5. Download Scheduling . 15
3.2.6. Custom Filtering & Product Statistics . 16

v

Contents

3.2.7. Metadata Storage . 17
3.2.8. Distributed File System Interface . 17

3.3. Processing . 18
3.3.1. Requirements . 18
3.3.2. PySpark Workflow . 20
3.3.3. Dependency Management . 21
3.3.4. Deployment . 22
3.3.5. Distributed Atmospheric Correction . 23
3.3.6. Distributed Patch Generation . 25
3.3.7. Distributed Data Export . 28

3.4. Analysis . 29
3.4.1. Requirements . 29
3.4.2. Scene Classification Label Annotation . 30
3.4.3. Land Cover & Country Label Annotation 30

4. Implementation 33
4.1. Overview . 33
4.2. Data Acquisition . 33

4.2.1. Package Structure . 34
4.2.2. Installation . 34
4.2.3. Configuration . 35
4.2.4. Command line interface . 36
4.2.5. Utility functions . 37
4.2.6. Unit Tests . 37

4.3. Processing . 37
4.3.1. Build & Submit Utilities . 38
4.3.2. Cluster Configuration . 39
4.3.3. Logging . 40
4.3.4. Distributed Sen2Cor . 41
4.3.5. Patch Generation . 46
4.3.6. Data Export . 51
4.3.7. Unit Tests . 53

4.4. Analysis . 54
4.4.1. Scene Classification Label Annotation . 54
4.4.2. Land Cover & Country Label Annotation 54
4.4.3. Installation & Deployment . 56
4.4.4. Configuration . 56
4.4.5. Metadata Management . 57
4.4.6. Unit Tests . 57

5. Evaluation 58
5.1. Data Acquisition . 58

5.1.1. Product Search . 58
5.1.2. Product Selection . 59
5.1.3. Mirror Ranking . 59
5.1.4. Product Download . 60
5.1.5. HDFS Upload . 61

vi

5.2. Processing & Analysis . 61
5.2.1. Atmospheric Processing . 61
5.2.2. Patch Generation . 62
5.2.3. Data Export . 64

5.3. End-to-End . 65

6. Conclusion and Discussion 66

Bibliography 69

Appendices 74

A. Data Acquisition 76
A.1. Metadata Storage . 76

A.1.1. OpenSearch Response Structure . 76

B. Processing 77
B.1. Atmospheric Correction . 77

B.1.1. Sen2Cor Dependencies . 77

C. Analysis 78
C.1. Land Cover & Country Label Annotation . 78

C.1.1. CLC 18 Covered Countries . 78
C.1.2. CLC 18 Land Cover Classes . 78

D. Evaluation 80
D.1. Data Acquisition . 80

D.1.1. Selection Season Statistics . 80

vii

List of Acronyms

API Application Programming Interface
AWS Amazon Web Services
DAG Directed Acyclical Graph
CNES Centre national d’études spatiales
CESBIO Centre d’Etudes Spatiales de la Biosphère
DL Download
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.
EO Earth Observation
GIS Geo information systems
HDFS Hadoop Distributed File System
JNI Java Native Interface
JVM Java Virtual Machine
JSON JavaScript Object Notation
JVM Java Virtual Machine
L1C Sentinel-2 processing level Level-1C
L2A Sentinel-2 processing level Level-2A
MGRS Military Grid Reference System
PEPS Plateforme d’Exploitation des Produits Sentinel
PDGS Payload Data Ground Segment
RDBMS Relational Database Management System
RS Remote Sensing
SQL Structured Query Language
SRID Spatial Reference Identifier
UDF User Defined Function
UTM Universal Transverse Mercator coordinate system
VCS Version Control System

viii

List of Figures

3.1. System design overview . 11
3.2. Concurrent mirror access architecture . 14
3.3. Download state transition flowchart . 16
3.4. Exemplified PySpark job build and submit workflow 22
3.5. Atmospheric correction architecture . 25
3.6. Patch generation architecture . 27
3.7. Level-2A Scene Classification Values . 30

4.1. SQL query to obtain CORINE land cover label . 56
4.2. SQL query to obtain NUTS country label . 56

5.1. Mirror statistics . 60
5.2. Example image patch . 62

ix

List of Tables

2.1. Listing of Collaborative Ground Segments . 6
2.2. Open-source libraries for acquisition of Copernicus data 7

3.1. Mirror download speed and connection limit . 12
3.2. Parallelization feasability ranking of available API clients 13
3.3. Mirror performance score weights . 15

4.1. DataFrame structure returned by parallel sen2cor 44
4.2. Distributed atmospheric correction job SQL schema 46
4.3. DataFrame structure returned by get band infos 48
4.4. DataFrame structure returned by load patches 49
4.5. Distributed analysis job SQL schema . 57

5.1. Evaluation data selection statistics . 59
5.2. Evaluation data download speed statistics . 61
5.3. Evaluation data atmospheric correction statistics . 62
5.4. Evaluation data patch generation statistics . 63
5.5. Evaluation data export statistics . 64
5.6. Evaluation data patch generation statistics . 65

D.1. Evaluation data selection season statistics . 80

x

1. Introduction

1.1. Context

Today a number of earth observation programs provide open and free access to their data. Among
them is the the European Space Agency’s Copernicus program. Operational since 2014, it is made
up of six dedicated satellite missions (The Sentinels) and around 30 contributing missions and aims
to become the world’s largest single earth observation program. The Sentinel missions include high
-resolution radar and multi-spectral imaging for land, ocean and atmospheric monitoring. Individual
missions are covered by satellite pairs for short revisiting times. While this comparatively high
spatio-temporal resolution significantly increases the programs value for the scientific community it
also aggravates a set of Big Data challenges: According to the Sentinel Data Access Annual Report
2018 [33] each day more than 13 TB of data is uploaded to the Copernicus portals. Even though the
data is heavily standardized, the sheer size, high dimensionality and frequent updates pose additional
challenges in storing, managing, processing, analyzing, visualizing and verifying the quality of data
(Li et al., 2016 [43]). This is particularly true for remote sensing (RS) applications and has been
the subject of multiple reviews (Li et al. 2016 [43], Ma et al. 2015 [45], Chi et al. 2016 [18]).
Even though some efforts have been made to integrate geospatial data formats into existing cloud
computing frameworks (e.g. Yu et al., 2015 [77] and Kini et al., 2014 [41]) much of the current RS
literature is limited to locally computed, small-scale benchmark datasets.

The field of remote sensing (RS) is concerned with obtaining information about objects or areas
from a distance, e.g. from satellites. As an example of the requirements of modern remote sensing
research on a large-scale processing and analysis system, this work will concentrate on the work of
Prof. Demir’s Remote Sensing Image Analysis group at the TU Berlin. Established in 2018, the
group’s main focus has been the development of machine learning based image classification and
retrieval systems for satellite data (e.g. Byju et al. [17], 2019; Sümbül et al., 2019a [65]). Out of
need for large scale training datasets typically required by these specific machine learning techniques,
Sümbül et al. published the BigEarthNet dataset [64] in 2019 - the first of its kind to be based on
data from the multi-spectral Sentinel-2 satellites. Ground truth annotations are obtained by fusing
the satellite data with land cover labels from the CORINE Land Cover (CLC) inventory (Bossard et
al., 2000 [12]). Annotated satellite tiles are processed into smaller image patches and transferred to
the a neural network framework for further analysis. As one limitation to this approach Sümbül et
al. identified it’s failure to scale with regards to the amount of available data. As a result of this,
the current version of the BigEarthNet dataset contains only a subset of the area covered by the CLC
inventory.

1.2. Problems & Strategies

Several aspects of remote sensing data processing and analysis pipelines can be considered as big
data problems: Large volumes of data need to be acquired, processed and stored. Heterogeneous
data sources need to be fused. Training and updating of machine-learning based analysis techniques

1

1. Introduction

require large amounts of verified training data and computation power. Hence, transferal to a big
data processing context is expected to significantly improve performance as well as provide a fast
and flexible foundation for further RS experiments. Over the course of this thesis we will explore
contemporary distributed computing techniques and evaluate how they could help improve perfor-
mance and overall usability for remote sensing processing and analysis workflows such as the one
covered by BigEarthNet. Based on those findings we will implement a system prototype with the
goal of migrating the BigEarthNet workflow to a distributed cloud computing context. This system
will be divided in three parts: Data acquisition, processing and analysis. We will now continue to
elaborate on the problems and opportunities at hand in more detail.

1.2.1. Data Acquisition

As of September 2019 the ESA’s central archive for Copernicus data contains 22,336,732 published
products. Since the start of operations in 2015, a total of 196.43 PB have been served to its 282359
registered users. To ensure open access and acceptable download speeds to its ever increasing user
base, the archive’s operators limit download speeds to 2.5 MB/s and two parallel downloads per user.
Hence, long acquisition times can become an important bottleneck for users that plan to download
large quantities of data. While a number of commercial redistributors offer considerably faster access
to the Copernicus data this also imposes additional costs that might not be available for scientist from
public research institutions.

Through concurrent access to a number of national mirrors (Collaborative Ground Segments) the
data acquisition approach presented in Section 3.2 of this thesis aims to solve the problem of long
acquisition times while maintaining the original acquisition workflow via OpenSearch / OData API
endpoint and without imposing any additional costs. We introduce a number of fault tolerance tech-
niques that attempt to solve problems specific to long-running, unattended acquisition sessions. By
adding a distributed file system interface we try to integrate the data acquisition more strongly into a
big data workflow.

1.2.2. Processing & Analysis

Although modern cluster computing frameworks typically provide a variety of parsers, algorithms,
and data structures for the most common file formats and processing tasks, working with geospatial
data typically requires the deployment of additional, non-native functions. Before those functionali-
ties can be used in a cloud computing context the following requirements need to be met:

• Compatibility with the cloud computing framework of choice

• Compatibility with worker node hardware and operating system requirements

• A common channel for distributing and setting up 3rd-party methods on each of the worker
nodes

To help broaden the scope off possible applications the processing cluster in question should be
built with commonly-used, highly available and mature software packages to allow for an easy setup
and high reproducibility. Furthermore, the effort required to migrate non-distributed processing
workflows to a distributed computing framework should be minimized so that researchers need to
spent as little time as possible on migrating their previously established codebase. One problem
often encountered in remote sensing research is storage and integration of data with different geo-
graphic coordinate systems which will also need to be addressed by our proposed system.

2

1.3. Contribution

In Section 3.3 we propose a system for the distributed generation of large-scale image archives
from Sentinel-2 data. We will identify a distributed processing engine that meets the above re-
quirements and extend it with the capabilities for working with geospatial data. By introducing a
high-level concept for development and deployment of distributed processing jobs we aim to make
the framework more accessible. A distributed storage will be used to store the satellite data as well
as the generated image archive. For the generation of the image archive, different tasks need to be
performed. We will divide them into a distinct processing and analysis jobs. Metadata produced in
these jobs is stored in a common database which allows the jobs to be related to each other. Since
we are mainly working with geospatial data, we choose a database that provides adequate support
for the storage of such data. In Section 3.4 we propose a technique for the large-scale fusion of
data from external sources, such as the CORINE Land Cover inventory, with the generated image
archive. We first review a list of geospatial query engines and then present a design for integrating
such capabilities with the existing framework.

1.3. Contribution

The main contribution of this work is the implementation of a big data framework for remote sensing
tasks using a number of popular open-source projects. For each of the three sections of our frame-
work, we review a list of existing approaches and point out ways to utilize them for remote sensing
data. We work out important design decisions and explain how we approached them. In addition, we
identify weak points in the presented approach and discuss ways to solve them. These findings have
the potential to serve as a basis for future research. In contrast to the existing literature, we do not
limit ourselves to a single section, but rather examine the complete end-to-end workflow.

1.4. Structure of the Thesis

The thesis will be structured as follows: We begin by introducing a number of technologies that will
be used in the course of this thesis in chapter 2. In chapter 3 we propose a system design for our
end-to-end framework prototype. In this context, we divide the framework into three subsystems:
acquisition, processing and analysis. Following this structure we elaborate on the details of the
system implementation in chapter 4. In the chapter 5 we evaluate the performance of the individual
systems and the framework as a whole on the basis of data sets of different sizes. Finally, in Chapter
6, we discuss the results of the evaluation and summarize the insights gained during this work.

3

2. Fundamentals

In this chapter we will introduce a number of technologies and services that will be used in the course
of this thesis.

2.1. Sentinel-2 Data

The Sentinel-2 mission is part of the Copernicus Earth Observation program. The twin satellites
Sentinel-2A and B generate multi-spectral data with 13 bands in the visible, near infrared, and short
wave infrared spectrum. Depending on the band type a spatial resolution of 10m, 20m and 60m is
provided. Revisiting time is around 5 days. Images generated by the satellites are stored together
with auxiliary data as products in a standardized folder structure called SAFE.

2.1.1. Atmospheric Correction

The process of atmospheric correction describes the conversion of top-of-atmosphere to bottom-
of-atmosphere reflectance values in satellite data. For Sentinel-2 data, the degree of processing is
indicated with the help of distinct processing levels. The following algorithms provide support for
atmospheric correction of Sentinel-2 data:

• iCor [24]

• MAJA [31]

• ARCSI [14]

• Sen2Cor [44]

2.1.2. Sentinel-2 Processing Levels

In their Sentinel-2 handbook [3], the European Space Agency defines three data processing level:
Level-0, Level-1 and Level-2. The raw sensor data is received by one of the Payload Data Ground
Segments’ (PDGS) X-band core stations and forwarded to the Processing and Archiving Centers for
Level-0 and Level-1 processing. Since December 2018 Level-2 processing are also systematically
generated by the PDGS.

Level-0

Level-0 products consist of compressed image data and related metadata (ephemeris, attitude data,
thermal data etc.). They are not released to users but form the basis of further processing steps.

Level-1

Level-1 processing is divided into three parts: A, B and C. Level-1A processing focuses on de-
compression source data. Level-1B processing includes radiometric corrections like removal of de-
fective pixels, de-convolution and de-noising. Imaged data is organized in multiple 25 km by 23
km granules in JPEG2000 format (Christopoulos et al., 2000 [19]). Level-1C processing includes

4

2.2. Copernicus Open Access Hub

ortho-rectification and spatial registration on a global reference system. Top-Of-Atmosphere (TOA)
radiance values are calculated and cloud, land and water masks generated. Image data is organized
in 100 km by 100 km tiles in UTM WGS84 projection. Level-1C is the lowest processing level
available through the Open Access Hub. The average size of a Level-1C product is 600 MB [3].

Level-2A

Level-2A processing includes a Scene Classification as well as the calculation of bottom-of-athmosphere
radiance values from Level-1C data. Additional outputs include an Aerosol Optical Thickness map
a Water Vapour map and a Scene Classification map together with Quality Indicators for cloud and
snow probabilities. Level-2A processing can also be performed by the users with the Sen2Cor pro-
cessor (Louis et al., 2016 [44]) offered by the ESA. The average size of an Level-2A product is 800
MB [3].

2.2. Copernicus Open Access Hub

The Copernicus Open Access Hub provides free and open access to the data produced by the Sen-
tinel missions. Besides a graphical-user interface, which allows self-registered users to do full-text
searches, select custom areas-of-interest and perform product previews it also offers script-based
product search and download via OpenSearch and OData API endpoints.

2.2.1. Application Program Interfaces

Two separate APIs are used to provide access to the Copernicus data:

• OpenSearch (Solr) for product discovery

• OData for data access

OpenSearch (Solr)

The OpenSearch interface allows searching the Copernicus product
catalog. In addition to simple attribute filters it also supports ge-
ographical search queries (i.e. via Well-known text representation
[39]). It follows the Representational state transfer (REST) archi-
tectural paradigm: Search queries are passed as a GET-request to the /search endpoint. Product
information is returned in standardized JSON payloads. The Copernicus product discovery backend
is powered by the Apache Solr [27] search engine, a popular open source enterprise search platform
that supports distributed indexing.

OData

The OData [66] interface provides access to the Copernicus product
data. While it can also be used as a less complex complement to
the OpenSearch product discovery endpoint it is mainly used for
previewing and downloading satellite data. As the discovery in-
terface it also follows the Representational state transfer (REST)
paradigm: A paginated list of products is returned by the /Products endpoint. Detailed product

5

https://scihub.copernicus.eu/

2. Fundamentals

information can be accessed via the /Products(’Id’) endpoint. Sensor data can be obtained from
/Products(’Id’)/$value.

2.2.2. Collaborative Ground Segments

Collaborative ground segments provide complementary access to Copernicus data and/or to specific
data products or distribution channels. Segments are run by state-actors and international organiza-
tions independent of the Copernicus program. Areas of cooperation range from participation in data
acquisition and production over support for validation/calibration activities and application develop-
ment to redistribution of Sentinel products via local mirror sites [3]. As the official Copernicus mirror
(Copernicus Open Access Hub) limits bandwidth due to high traffic volumes the national mirrors are
especially interesting for speeding up access to the Sentinel data. At the time of writing the following
ground segments were actively mirroring data:

Country
standard
API specs URL

Australia No https://copernicus.nci.org.au/sara.client/#/home

Austria Yes https://data.sentinel.zamg.ac.at/#/home

Finland Yes https://finhub.nsdc.fmi.fi/#/home

France No https://peps.cnes.fr/rocket/#/home

Germany No https://code-de.org/

Greece Yes https://sentinels.space.noa.gr/

Italy No http://collaborative.mt.asi.it/#/home

Norway Yes https://colhub.met.no/#/home

Portugal No https://ipsentinel.ipma.pt/dhus/#/home

UK No http://sedas.satapps.org/#tools

Table 2.1.
Listing of Collaborative Ground Segments

As shown in Table 2.1, the majority of the ground segments (6/10) deviate from the standard
Copernicus API specifications, which excludes them from use with one of the Copernicus API
clients.

2.2.3. Clients

In addition to a graphical user-interface the Copernicus Open Access Hub, as well as many Col-
laborative Ground Segments, provide data access via the OpenSearch and OData protocols. Also,
a number of private companies maintain mirrors of the Copernicus data on Amazon Web Services.
While direct access via a download manager such as GNU wget [73] is possible, a number of open-
source projects aim to provide a more convenient interface by wrapping the employed protocols used
for searching and downloading the data. Table 2.2 lists all actively maintained projects. Due to
external requirements I will limit my subsequent analysis to mirrors not using AWS.

6

https://copernicus.nci.org.au/sara.client/#/home
https://data.sentinel.zamg.ac.at/#/home
https://finhub.nsdc.fmi.fi/#/home
https://peps.cnes.fr/rocket/#/home
https://code-de.org/
https://sentinels.space.noa.gr/
http://collaborative.mt.asi.it/#/home
https://colhub.met.no/#/home
https://ipsentinel.ipma.pt/dhus/#/home
http://sedas.satapps.org/#tools

2.3. CORINE Land Cover Inventory

Project OpenSearch OData AWS Language

sentinelsat [61] Yes Yes No Python
sentinelhub [60] Yes Yes Yes Python
sat-api [59] No No Yes JavaScript
peps download [51] No No No Python
awsdownload [42] No No Yes Java

Table 2.2.
Open-source libraries for acquisition of Copernicus data

2.3. CORINE Land Cover Inventory

First launched in 1985 by the European Commission, the CORINE (Coordination of Information
on the Environment) program aims to compile and standardize information on the state of the envi-
ronment for its member countries. This includes information on the type of environment, land cover
structure and geographical distribution. It is generated in a bottom-up fashion - First, data is collected
on a national level and then integrated into a joint database.

The minimum mapping unit is 25 ha, with a minimum width of 100m and a positional accuracy of
better than 100m. It aims to provide a thematic accuracy of > 85% at an scale of 1:250000 [22].

CLC 2018

The fifth edition of the CORINE Land Cover inventory includes 44 land cover classes and data from
39 member states. A list of land cover classes and covered countries can be found in the Appendix
C.1. It was collected over the one-year period of 2017-2018 and is available in both raster and vector
format from

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

2.4. Eurostat NUTS

The Nomenclature of Territorial Units for Statistics (NUTS) is a standard developed by the European
Statistical Office Eurostat for describing the subdivision of countries. It defines three distinct levels:
NUTS 1 describes ”major socio-economic regions”, NUTS 2 ”basic regions for the application of
regional policies” and NUTS 3 ”small regions for specific diagnoses” [26]. In its latest 2016 version,
the dataset includes the 28 EU member countries, 5 EU candidate countries and 4 EFTA countries.
It is available as vector data from

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

administrative-units-statistical-units/nuts

2.5. Geospatial Data

In geospatial data, data is extended by location information. An illustrative example is provided by
the satellite data used in this work, in which measured reflection values are assigned to the area of the
recording by means of coordinates. A coordinate reference system is used to describe how to relate
a three dimensional location information to a two-dimensional map coordinate.

7

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts

2. Fundamentals

Raster Data

Spatial information represented in a grid of pixels is called raster data. Each pixel has its own
value. Raster data can contain both discrete and continuous information. The accuracy of the data is
dependent on the grid size. Satellite images are an example of raster data.

Vector Data

Spatial information represented as nodes and edges is called vector data. There are three main types
of vector data: points, lines and polygons. A line is created by connecting points, a polygon by
connecting lines to form an enclosed area.

Geospatial Data Abstraction Library

The Geospatial Data Abstraction Library (GDAL) [72] is a software
library for handling a variety of vector and raster data formats. First
published in 2000 by F. Warmerdam it has become the de-facto stan-
dard for working with geospatial data on all major platforms. Writ-
ten in C++, it provides an API for the Python and Java programming
languages and includes a range of command line tools for data trans-
lation and processing.

2.6. Spatial Data Management

Over the course of this thesis we will generate large volumes of geospatial data, mostly associated
with satellite images. In order to manage this information independently of the pixel data, we use a
spatial data management system based on a relational database management system.

PostGIS

PostGIS [56] is an extension to the PostgreSQL (Momjian, 2001
[49]) object-relational database that adds support for geospatial data
types and operators. In addition to storing metadata we will use
its high-performance query planner for fusing geospatial data from
multiple sources.

2.7. Distributed Computing

In distributed computing, a problem is divided into several smaller problems that are solved simul-
taneously on different computers. Those computers, often referred to as nodes, are networked with
one another in clusters and share information by exchanging messages. A number of software frame-
works offer distributed calculation functions. These frameworks can typically be divided into systems
for distributed storage, processing and analysis.

8

2.7. Distributed Computing

2.7.1. Apache Hadoop

The Apache Hadoop Framework [4] is an open-source framework
for distributed storage and processing of large volumes of data based
on the map-reduce paradigm (Dean et al., 2008) written in Java. It
includes the Hadoop Distributed File System (HDFS) for distributed
storage of data, Hadoop YARN (Yet Another Resource Negotiator) for managing cluster resources
and Hadoop MapReduce for defining large-scale distributed processing jobs.

Hadoop follows a master-slave architecture. In HDFS, the master node is called the Name node,
the slaves are called Data nodes. When a file is uploaded to the HDFS, it is divided into multiple
blocks. Fault tolerance is introduced by replicating the blocks on a number of Data nodes. The
Name node keeps track of all blocks stored in the HDFS. For MapReduce, the master is called the
Job tracker and slaves are called Task tracker. MapReduce jobs are divided into tasks which are
delegated to Task trackers along with a reference to the respective blocks.

Access to files stored in the HDFS can be gained through the native Java API, HTTP and the
command line interface. Clients for a variety of other programming languages can be generated with
Thrift (Slee et al., 2007 [63]).

2.7.2. Apache Spark

Apache Spark (Zaharia, 2016 [78]) is an open-source framework for
large-scale distributed processing and analysis. Spark was designed
to address shortcomings of Hadoop MapReduce and adds support
for processing successive jobs in-memory. A number of libraries
implemented on top of the Spark processing engine add support for SQL, machine learning and
stream processing. Spark does not include a cluster resource manager and a distributed file system.
However, a wide range of popular platforms such as the Hadoop ecosystem are supported. Spark is
written Scala. Bindings for the Java, Python and R programming languages are available.

Spark also follows a master-slave architecture. The master daemon launches a driver process
that executes the parallel operations defined by the user. Through the cluster manager, the driver
process first acquires a number of slaves, so called executors, and then divides the user application
into smaller tasks. These tasks are then forwarded to the executors.

All Spark operations are based on the Resilient Distributed Dataset (RDD) data structure, a read-
only multiset of distributed items. RDDs are organized into partitions, which are stored on a dis-
tributed file system. Two types of operations are supported by RDDs, transformations and actions.
A transformation functions translates one RDD into another. An example of such a transformation
function is the map operation, where a user-defined function is applied to a all partitions of an RDD.
Transformations are only executed once an action function is called. An example of an action func-
tion is the writing of transformed RDDs into the distributed file system. Based on the user-defined
RDD operations, the driver process generates an execution plan that is modeled as a directed acyclic
graph with partitions as nodes and transformations as edges.

The SparkSQL library introduces a number of additional, high-level data types as well an op-
timized SQL query engine. A DataFrame is the conceptual equivalent of a table in a relational
database and can either be generated from existing RDDs or external data source. The SparkSQL
query engine supports execution of SQL queries against a data frame. Internally, DataFrames consist
of RDDs, so the RDD API can still be used. While user-defined functions (UDF) applied through the
RDD API are black boxes for Spark’s optimization engine, the SQL algebra is supported by a variety

9

2. Fundamentals

of powerful optimization strategies.

2.8. Hardware Setup

Our cluster consists of 9 nodes: 8 nodes each with 25 AMD Opteron 6238 (2.6 GHz) CPUs and
257947 MB RAM and one node with 50 Type 6238 CPUs and 499867 MB RAM. The latter node
acts as our Spark and Hadoop master. On every node 16 hard drives with 1.8 TB capacity each are
mounted in a HDFS data node. The maximal capacity of the HDFS is 214.8 TB.

10

3. System Design

3.1. Overview

In this chapter we present our design for an end-to-end framework for processing and analysis of big
data in earth observation. Following the challenges described in Section 1, the framework is divided
into three parts:

1. A system for the swift acquisition of
large volumes of open access satellite
data

2. A system for conveniently processing
large volumes of remote sensing data
in a cloud computing cluster

3. An extension to the processing sys-
tem that enables large-scale analysis of
satellite data

Acquisition

Processing

Analysis

Distributed
File System

Metadata
Storage

Figure 3.1.

The three stages are connected through a common data management scheme. Sensor data is stored
on a distributed file system. Metadata is either handled in a flat file database or uploaded to an SQL
database.

We reviewed a number of contemporary big data technologies and adapted them for use in our
design. Special attention was paid to the use of open source software to keep the framework as
accessible as possible. Also, usability and user-centricity were emphasized throughout the design
process. With this in mind we developed a workflow template to simplify the use of cluster processing
technologies for remote sensing research.

We demonstrated the capabilities of the framework by generating a large-scale, multi-label bench-
mark archive from Sentinel-2 data: Large volumes of Sentinel-2 data were acquired. Sentinel-2 data
was split into smaller image patches. Image patches were annotated with land cover, country and
scene classification labels

3.2. Data Acquisition

3.2.1. Requirements

As listed in Section 2.2.3 a number of software packages provide access to the Sentinel data. How-
ever, downloading large amounts of data from all over the European continent, as is required for our

11

3. System Design

specific use-case, creates a unique set of problems addressed by neither of the available packages:
Copernicus data is available from a number of sources (see Section 2.2.2). As all open-access

distributors of Copernicus data limit the available bandwidth and number of connections per user,
users are faced with a fixed upper-bound on download speed which is specific to the respective
service and independent of the locally available connection quality.

Mirror Avg. DL (MB/s) Conn.
Austria 1.2±0.1 2
ESA (SciHub) 2.8±0.8 2
Finland 2.5±1.1 4
France 10.1±0.6 4
Germany 50±1.7 2
Greece 1.5±0.1 4
Norway 48.5±3.2 1

Table 3.1.
Copernicus mirror average download speed (n = 10)

and maximal number of allowed connections.
Measured 2019-01-15 at TU-Berlin. Mirrors with

technical problems were excluded.

By far the largest1 amount of Copernicus
data is available from at the Open Access
Hub (SciHub), centrally run by the Euro-
pean Space Agency. While half of the na-
tional mirrors outperform the SciHub mir-
ror, the scope of available data is at the
same time typically limited to the borders
of their respective operators’ nation state.
Also, data retention times are often signifi-
cantly reduced for those mirrors.

Users with a demand to maximize both
download speed and area covered by the
products available are thus faced with
a dilemma: Either sacrifice speed over
tempo-spatial coverage or vice versa. The
approach to be designed should therefore
be able to meet both of the aforementioned requirements. Furthermore, it should address a number
of additional requirements that arise from our specific use case:

• Fault-tolerance techniques to prevent failure of long, unsupervised downloads

• Custom product filters (e.g. lowest cloud cover per UTM grid and season)

• Statistics for product selection (e.g. minimal / maximal cloud coverage)

• Storage of product metadata for later use

• Provide convenient access to a distributed file system for further processing

3.2.2. CollGS: Concurrent Access to Multiple Mirrors

In order to satisfy the above requirements we propose abstracting an existing, well-established client
to support parallelized mirror access, thus providing simultaneous access to both high-speed and
high-coverage mirrors while reusing the proven workflow of a non-parallelized client. We named
this proof-of-concept implementation CollGS after the network of Copernicus Collaborative Ground
Segments (see Section 2.2.2) it uses to increase the number of potential data sources.

1In terms of tempo-spatial coverage.

12

https://data.sentinel.zamg.ac.at
https://scihub.copernicus.eu/dhus
https://finhub.nsdc.fmi.fi
https://peps.cnes.fr/rocket
https://code-de.org/dhus
https://sentinels.space.noa.gr/dhus
https://colhub.met.no

3.2. Data Acquisition

To create it we proceeded as follows:

1. From the list of existing clients, we selected the one most suitable for extension to parallel
mirror access

2. While keeping as much of the original client’s workflow intact as possible, we implemented a
fault-tolerant mechanism for accessing multiple mirrors in parallel

3. We developed a scheduling strategy for concurrent downloads to ensures optimal utilization of
the available bandwidth

4. We addressed further use-case specific requirements

3.2.3. Selecting an Existing Client for Abstraction

From the list of existing Copernicus API clients (see Section 2.2.3), we chose the most suitable client
for implementing parallel mirror access based on the following criteria:

• Easily abstractable, provide well encapsulated access to API endpoints

• Actively maintained (number of commits in the last 12 months)

• Popularity, as an indicator for high usability (number of GitHub stars)

• (Optional) High test coverage (coverage percentage)

Rank Project API access Commits Stars Test coverage
1. sentinelsat Yes 75 365 93%
2. sentinelhub-py Yes 132 320 88%
3. sat-api No 239 127 No
4. peps download No 4 51 No
5. awsdownload No 0 17 No

Table 3.2.
Parallelization feasability ranking of available Copernicus API clients.

Both the sentinelsat and sentinelhub-py packages provide well-encapsulated access to stan-
dard Collaborative Ground Segment APIs. While sentinelsat comes with a monolithic SentinelAPI
class as a joint interface to the OpenSearch and OData endpoints, sentinelhub-py is organized in
a more modular structure. Dedicated API interfaces are placed in separate classes alongside a num-
ber of auxiliaries. Both the sat-api and awsdownload packages were organized similarly, but
are limited to data hosted on AWS. The peps download script does not support the standardized
Copernicus API schemata, but only a custom variety provided by the French Sentinel mirror, PEPS.

Judging by the number of commits between June 2018 and April 2019, sentinelsat, sentinelhub-py
and sat-api seem to be actively maintained projects. The same three packages also collected more
than 100 stars each. The currently most popular client on GitHub is sentinelsat with 365 stars,
followed by sentinelhub-py with 320. Both libraries included comprehensive unit tests.

The evaluation of existing clients yielded two candidates that met all our requirements: sentinelsat

13

https://github.com/sentinelsat/sentinelsat
https://github.com/sentinel-hub/sentinelhub-py
https://github.com/sat-utils/sat-api
https://github.com/olivierhagolle/peps_download
https://github.com/kraftek/awsdownload

3. System Design

and sentinelhub-py. While sentinelhub-py included a variety of useful features, its modular
design also made it more complicated to modify, with many core features scattered across the pack-
age index. We thus chose the more concise sentinelsat package for implementing concurrent
mirror access.

3.2.4. Concurrent Mirror Access

The sentinelsat package encapsulates all logic used for interacting with OpenSearch / OpenData
endpoints in a class called SentinelAPI. For the CollGS parallellized acquisition tool we propose a
high-level wrapper class (SentinelAPIManager) which holds an array of SentinelAPI instances,
one for each mirror, and re-implements the methods offered by the SentinelAPI class in a paral-
lelized fashion. By re-using existing methods for interacting with the API endpoints from a well
maintained and tested third party library, the effort required to achieve parallel product search and
acquisition is reduced to introducing and managing concurrency. Although the nature of the changes
required for this varied across methods (i.e. download method requires custom scheduling logic)
they can be generally summarized under the following points:

1. Mirror login data, input parameters are
parsed

2. For each mirror one thread is spawned,
a base class (SentinelAPI) instance
is created and a callable containing
the respective API call is submitted
for asynchronous execution to a thread
pool

3. On completion, threads are joined, re-
sults collected and further processed
(i.e. search results are merged, prod-
ucts decompressed)

Config

Thread
Pool

Sentinel
API

Mirror
Login

Sentinel
API

Sentinel
API

Results

Mirror
Login

Figure 3.2.

In line with the strategy outlined above we parallelized all SentinelAPI class methods offering
access to API endpoints. To protect against typical concurrency issues, such as race conditions,
thread-safe data structures were used. Potential errors, like timeouts and response validation failure,
were addressed by adding a retry mechanism to the threads: Callables that raise an exception are
retried until a user-defined threshold is reached. To avoid failure of subsequent requests the respective
mirror is temporarily excluded from the list of available data sources once this limit is passed. When
a failed call is retried successfully the retry counter is reset.

By introducing fault tolerance to the concurrent API call execution, we made the workflow re-
silient against outage of individual mirrors. Furthermore, failing downloads no longer lead to the
termination of the entire session which is particularly useful when acquiring large quantities of data
in lengthy and unsupervised sessions.

14

3.2. Data Acquisition

3.2.5. Download Scheduling

Concurrent mirror access introduces a number of challenges specific to the scheduling and manage-
ment of product downloads:

• Collaborative ground segment providers impose limits on both the number and the rate of con-
nections; Multiple mirrors should be used in parallel in order to increase aggregate download
speed

• Users might also want to impose a limit on the total number of active downloads to accommo-
date for their local connection properties

• Differences in mirror performance need to be considered in the scheduling process; Better
performing mirrors should be preferred

• The duplication of product downloads must be avoided; The state of a download should be
unambiguous

• Scheduling strategy should be able to adapt dynamically to failing downloads and mirror out-
ages

We selected a finite state machine as the most suitable paradigm for implementing the unam-
biguous download state management. Figure 3.3 depicts the state transition flow. Download state
machine instances, one for each requested product, are registered with a schedule manager dae-
mon. The schedule manager daemon continuously checks the registered instances for state changes,
manages open connection, updates the download schedule and assigns active download jobs to the
thread pool. Once running inside an individual thread the download job autonomously executes the
sequence of transitions defined by the state transition flow. Following the retry strategy outlined in
Section 3.2.4 failed download are rescheduled by the schedule manager daemon until a user-defined
threshold is reached. For each mirror the number of retries is monitored and once a user defined
limit is exceeded the mirror is excluded from the scheduling process. Products that are exclusively
available from the affected server are reverted to the failed state.

Metric Weight

DL Speed 1.5×
Test Products 1×
Total Products 1×
Response Time 0.5×

Table 3.3.
Mirror performance score weights

Before commencing with a download session CollGS users
are asked to compute a performance ranking for the mirrors
they have set up. Based on a list of user-defined MGRS grid
zone identifiers the following parameters are measured: Down-
load speed, request latency, number of products available for
the given test zones and number of all products available at
the respective mirror. According to the weighting defined in
Table 3.3 the measurements are then used to calculate a perfor-
mance score against which the mirrors are ranked. The calcu-
lated score as well as the measured parameters are stored on
disk for later use.

The download schedule defines the order of execution as well as the data source to use. On regis-
tration with the schedule manager daemon each download job is assigned a list of data sources that
offer the respective product. In case performance rankings are available for the given data sources,
scheduled download jobs are ordered by their cumulative mirror performance score. This ensures

15

3. System Design

Done

Un-
scheduled

Yes

No

Down-
loading

Extracting

Scheduledproduct
available?

connection
available?

Yes

No

NoYes Yes

No

No

Failed connection
error?

retry limit
reached?

checksum
error?

Yes

product
exists?

No

Yes

Figure 3.3.
Download state transition flowchart. States are shown as circles, decisions as diamonds.

that highly available products are executed first, thus enlarging the potential bandwidth footprint 2.
Already existing products are immediately moved to the done state. Products that are not available
on any configured mirror are forced to transition to the failed state. After each cycle of state updates
the schedule manager daemon iterates over the list of products and checks their respective sources’
number of open connections. Once a server with free slots is encountered and the cumulative number
of open connections falls below the user-defined limit, the associated download job is submitted to
the thread pool for execution. If, at that time, more than one data source is available the one with
the greater performance score is selected. Products for which no free slot could be found are skipped
until the next update cycle.

When a download is completed successfully the download speed is reported and the zipped product
is forwarded to a dedicated process for decompression. Data integrity is validated by comparing the
checksum of the downloaded file with the one provided by the original API response. Corrupted files
are reported, removed from disk and re-scheduled.

3.2.6. Custom Filtering & Product Statistics

Many collaborative ground segments offer an API endpoint based on the OpenSearch standard for
product discovery (see Section 2.2.1). Request made to and responses received from those endpoints

2High availability increases chances of downloading from multiple sources and hence increasing the number of potential
connections. Furthermore, these additional connections would not be subject to rate limits imposed by servers with
already running downloads.

16

3.2. Data Acquisition

are mutually compatible. At the time of writing, the returned JSON payloads included 32 metadata
fields which, among others, allowed identifying a product’s acquisition date and location, satellite
mission and sensor, as well as file properties. To help users narrow down the scope of available prod-
ucts, discovery endpoints by default support simple filtering queries on these fields. More complex
query operations, like aggregation and sorting, were not supported by the OpenSearch standard and
thus had to be implemented on the client side.

Researchers from the RSIM group for example were interested in selecting tiles with the lowest
cloud cover percentage per UTM zone and season acquired over a specific date range. The following
custom filtering logic was implemented in the CollGS prototype: After filtering all products for the
given time frame using the OpenSearch endpoints the returned JSON responses are collected and
merged by their unique identifier, as multiple mirrors might offer the same product. The list of tile
metadata is then grouped by UTM zone and season. The resulting groups are each sorted by cloud
cover percentage3 and finally the product with the lowest cloud cover percentage is selected.

The JSON responses returned by the discovery endpoints can also be used to calculate client-side
statistics on the selected products. In reference to the above-mentioned custom filter the CollGS
prototype implements the following metrics: Number of selected products, average product size,
cumulative product size, number of UTM zones selected, average number of products per zone,
average cloud cover percentage and number of products per season.

By combining custom filtering and product statistics the presented approach offers a convenient
way to evaluate and adapt the scope of a download session with regards to a number of custom
requirements and before starting the actual data acquisition. Given the sheer size of the Copernicus
archives such techniques can have a profound impact on the time spent with identifying data suitable
for further analysis.

3.2.7. Metadata Storage

Since no special requirements for the data format resulted from the CollGS design specifications,
the exchange of metadata between different subsections of the data acquisition stage (e.g. between
product discovery and product download) was based upon the standardized JSON response object
returned by the OpenSearch endpoints. The same light-weight format was also used to connect
the results of the acquisition stage to all subsequent processing stages. As an alternative approach,
metadata storage in a relational database was evaluated but eventually rejected since the requirements
placed on the storage back-end could also be solved without integrating such complex dependencies.
To accommodate users that still prefer to use a relational database for metadata storage an auxiliary
script for inserting the JSON data into a SQL table was provided. With respect to the additional
information gained during the course of the acquisition process the original schema (see A.1.1) was
extended by two fields: Season of the year and product location on disk. The latter field is optional
and only becomes populated after successful acquisition of the respective product. In order to avoid
redundant and potentially time-consuming queries tile metadata is cached in between acquisition
subtasks. After successfully completing a download session the merged JSON objects are used to
create an index of the obtained products.

3.2.8. Distributed File System Interface

Modern-day big data workflows typically rely on a distributed file system (DFS) to provide fast, fault-
tolerant and transparent access to large amounts of data. One example for such a system is the popular

3Provided by OpenSearch endpoint response.

17

3. System Design

Hadoop Distributed File System (HDFS) (see Section 2.7.1). As the CollGS prototype specifically
targets users that plan to acquire large quantities of satellite data, a distributed file system interface
for the convenient upload of obtained products was implemented. Due to its high prevalence and
explicit support for low-cost commodity hardware the interface was based on the Apache Hadoop
stack. Information regarding the files to be uploaded are either gained by indexing a local directory
or by specifying a JSON file following the structure defined in Section 3.2.7. Similar to the approach
described in Section 3.2.6, a number of filters allow the user to limit the scope of the upload to the
distributed file system. After successfully uploading a batch of products, the respective metadata is
updated with the location of files on the DFS.

3.3. Processing

3.3.1. Requirements

Remote sensing workflows typically require a number of (pre-)processing steps to be applied to the
acquired imagery before further analysis can be conducted. In the case of the large-scale dataset
generation task described in Section 3.1, this includes the following tasks:

1. Conversion of acquired images to Level-2A products

2. Generation of non-overlapping image patches from Level-2A products

3. Export of image patch dataset to file

The nature of the above tasks allows us to design a system based on parallelization. While the
atmospheric correction can be applied to every product individually, image patches can be generated
from separate sensor bands4. File exports can be performed on a per-patch basis. A parallelized
system is particularly useful for addressing problems caused by large volumes of input data: Dis-
tributing the workload reduces the overall read / write overhead and makes it more easy to address
a job’s specific resource requirements. No specialized hardware is needed as even the largest jobs
can be run on appropriately dimensioned clusters of commodity hardware. With the rise of the cloud
computing paradigm scaleable on-demand solutions for obtaining storage and processing resources
have become highly available and widely used in both commercial and research applications.

Although new earth observation data is published with high velocity, images used in the generation
of annotated datasets are typically collected over long time periods (i.e. years). This lack of need for
rapid responsiveness led to the assessment that batch processing rather than stream processing was
the most appropriate processing mode for the given research question.

A number of cloud computing software libraries provide data structures and algorithms suitable
for distributed batch processing. As we wanted to avoid re-implementing a major part of the existing
codebase for manipulating Copernicus data, we narrowed our search to frameworks with support for
the Python programming language. At the time of writing, the following actively maintained open
source projects were available:

4Patches from separate bands need to be merged in a later step.

18

3.3. Processing

• PySpark

A Python interface for Apache Spark [78] (see Section 2.7.2)

• Dask

A flexible parallel computing library for analytics [23]

• mrjob

A Python MapReduce library [37]

After an initial feature comparison mrjobs was removed from the list due to missing in-memory
computation capabilities. Because of the overhead caused by communication between the Python
interpreter and the Java Virtual Machine, we initially expected PySpark to perform worse than Dask.
A search of the existing comparative literature did not confirm this suspicion. In their 2019 per-
formance comparison Dugré et al. [25] found that ”despite slight differences between Spark and
Dask, both engines perform comparably” for data-intensive neuroimaging pipelines. Since version
2.3 Spark includes Apache Arrow [5], a ”cross-language development platform for in-memory data”,
which offers a common memory format for both Python and Java applications and thus helps to fur-
ther reduce the overhead created by PySpark. Initial small-scale tests confirmed that the two APIs
were designed similarly and that both were suitable options for implementing the task at hand. After
consolidating with the administrators of the local server cluster we decided to build on their previous
experience and use Apache Spark in combination with the Hadoop Distributed File System for im-
plementing the processing stage.

Capabilities for working with geospatial data in general, and for manipulating Copernicus data in
particular, are neither included in Apache Spark nor in the Python standard library. We thus had to
first identify a suitable third party software, and then organize its deployment the worker nodes. We
identified two types of alternatives: Python libraries and Apache Spark add-ons. Almost all of the
Python interfaces were based on the GDAL (Warmerdam, 2008 [72]) library, which is the corner-
stone for interacting with geospatial data in many programming languages. The same can be said
about the Apache Spark add-ons, which typically implement geospatial Spark data structures on top
of the GDAL Java bindings. We compared the two groups in order to select the alternative most
suitable for implementing our processing tasks:

While the available Spark add-ons provide comprehensive, often optimized, support for geospatial
data types, many of the features are aimed at high-level analysis. Also, it is unclear to what extend
our approach would benefit from these additions, as many of the processing task will be defined as
User Defined Functions which are not subject to optimization by the Spark query processor. Python
interfaces are rarely supported, hence many of the existing processing tools we plan to use are at
risk of having to be re-written in a JVM compatible language. Required third party dependencies,
however, are already included in the add-ons. Also, deployment of add-ons to cluster is typically
well supported by Spark.

Using a low-level Python library on the other hand, would require that we implement our own
geospatial data structures and Spark parallelization logic. While this requires additional planning, it
also gives us full control over the complexity of the implemented approach. In contrast to the Spark
add-ons we could tailor data structures exactly to the requirements of the processing job. However,
we would also need to devise a strategy for deploying the required libraries to the worker nodes.

Similar to the choice of the processing framework, initial tests confirmed that both routes of adding
geospatial capabilities to Spark could be used to implement the processing stage. In an effort to keep

19

3. System Design

it simple stupid5 we chose to implement our own geospatial data structure prototypes using a low-
level Python library. After evaluating the available packages we quickly chose the GDAL Python
bindings which we were already familiar with.

To avoid a time-consuming manual dependency setup, we designed a strategy based on the Hadoop
YARN resource manager for automatic resolution and deployment of dependencies to the worker
nodes on job submission. This strategy was embedded in a concept to simplify usage and devel-
opment of PySpark jobs. The proposed workflow template was designed based on the following
requirements:

• Management and deployment of dependencies should be designed as convenient as possible,
built on existing techniques

• The ability to specify dependencies globally (i.e. for all jobs) and locally (i.e. for single jobs)

• Transparent exposure of job parameters through configuration files

• Modularized code structure, clean encapsulation of business and parallelization logic to allow
for an easy migration of existing code

• Allow easy debugging and unit testing

3.3.2. PySpark Workflow

As no official recommendations regarding the structure of a PySpark workflow are specified by the
developer team, a number of concepts have been proposed by the user community. Inspired by E.
Kampf’s 2017 essay Best Practices Writing Production-Grade PySpark Jobs [40] we defined a big
data workflow to be comprised of:

• Business logic
Describes how to process or analyze the data; SparkSQL or User Defined Function; May
include calls to 3rd party dependencies

• Parallelization logic
Describes how to parallelize the business logic and to what elements it should be applied to;
Spark transformations are typically defined here

• Initialization logic
Describes how to initialize the cluster context, load configuration files, start the parallelization
logic and finally, store results

• Configuration
Variable parameters used to configure a job

• Tests
Unit tests to validate if the workflow works as excepted

• Utilities
Tools for managing the workflow

5Refers to the KISS design principle coined by Lockheed lead engineer Kelly Johnson in 1960 [32]

20

3.3. Processing

Following this definition we propose a modular structure for organizing our PySpark workflow:
Dedicated tasks are arranged in folders called job modules. Job modules are placed inside the work-
flow’s jobs/ directory. The initialization logic forms the base of a module and is placed in a stan-
dardized job.py file at the module’s root. YAML-formatted configuration parameters are placed in
a config.yml file. Business and parallelization logic are put into Python modules and also placed
inside the job folder. Whenever possible, the runtime-optimized SparkSQL algebra should be pre-
ferred over User Defined Function to define the business logic. The parallelization logic interface
exposed to the initialization script should be designed as concise and abstract as possible to allow
for clean encapsulation of logic levels. Third party dependencies are specified in a pip compatible
requirements.txt file. Unit tests are added to the tests/ directory.

Organizing PySpark jobs in standardized modules allows us to design management utilities that
can be applied to every such job. Through the common config.yml channel, job configuration can
be done transparently and without cluttering up the submission call to the cluster manager. By strictly
separating the logic levels we improve readability and enable the convenient transfer of existing
logic fragments to the PySpark ecosystem. Migration of pre-existing business logic, for example,
would not require any changes to the business logic itself but only the creation of the appropriate
initialization and parallelization logic. Existing dependency specifications can be re-used, as we are
implementing standard Python dependency management techniques.

3.3.3. Dependency Management

PySpark job dependency management can be divided into two steps:

1. Local dependency specification

2. Deployment of specified dependencies to the worker nodes

As mentioned above, in standardized PySpark job modules specification of third party dependen-
cies can be done using the requirement file syntax introduced by pip, Python’s de-facto standard
package manager. In addition, all Python modules placed inside a job module are assumed to contain
business or parallelization logic and will also be submitted to the worker nodes. To avoid redundancy,
dependencies that are used by more than one job module can be declared global either by specify-
ing them in a requirements.txt file placed at the root of the workflow directory or by adding
them to the dependecies/ folder, also located at the workflow’s base directory. As for some non-
native libraries pip only provides the respective Python interface but not the required sytem-level
binaries, we added additional support for the conda [36] package manager. This open source pack-
age manager, developed by Anaconda Inc., differs from pip in that it offers packages for multiple
programming languages and typically includes system-level binaries. conda’s environment files are
handled in the same way as pip’s requirement files - They can either be placed inside job modules
or in the workflow’s base directory.

At the time a job is started, its dependencies need to be present on all connected nodes. The PySpark
community has developed a number of strategies to address this, all of which are centered around
bootstrapping isolated Python environments. Spark itself offers a method for adding files from a
distributed file system to the executor’s Spark context. Among others, F. Wilhelm demonstrated the
distribution of PySpark dependencies based on this technique in his 2018 blog post on Managing
isolated Environments with PySpark [74]. A slightly different approach is taken by Hadoop’s YARN
ressource manager: It spawns Spark executors inside virtualized containers and allows users to add

21

3. System Design

files to the container context before launching the job. Spark’s YARN interface allows submitting
compressed Python virtual environments, so called archives, alongside of job scripts. The archives
are uploaded to the HDFS and extracted to all containers created by YARN.

In combination with the package managers introduced above, both presented techniques allow us
to dynamically configure the context a job is executed in. As we were already planning to use YARN
as a cluster manager, we chose the latter option for our workflow. To simplify the generation of job
environments we created the build.sh utility. It accepts job module names as input argument and
installs the respective jobs’ business logic, parallization logic and the specified dependencies into a
conda virtual environment6. The generated environment is then compressed to a tar file and moved
to a dedicated folder (envs/) in the workflow’s base directory. This abstraction of both dependency
discovery and resolution in one build command allows a fast and easy preparation of deployments.

job.py
config

.yml
require-

ments.txt

tests/ ModuleX/

build.sh

submit.sh

Virtual
Env

job.py
config

.yml
require-

ments.txt

YARN

JO
B

JO
B

BUILD

SUBMIT

tests/ ModuleX/

Figure 3.4.
Exemplified PySpark job build and submit workflow

3.3.4. Deployment

PySpark applications are typically deployed via the spark-submit command line interface provided
by Apache Spark. It offers a variety of options for configuring Spark itself, the associated cluster
manager and the respective job. As jobs grow more complex so do the calls to the submission
script. To avoid having to specify long and complicated spark-submit calls on every deployment,
we introduced the submit.sh utility to our workflow. Analog to the build.sh script it accepts

6The choice for conda environments was made, because they are compatible with pip but not vice versa.

22

3.3. Processing

job module names as input argument and submits the jobs’ initialization script, configuration file
and virtual environment to the cluster. Additional spark-submit parameters, like the number of
executors to spawn or which environmental variables to set, are also placed into the utility. Custom
logic for abstracting the most common groups of deployment options are defined using shell script.

After adapting the job layout described in Section 3.3.2, executing PySpark jobs in a cluster is
reduced to three simple steps:

1. Obtain a copy of the job code (e.g. by pulling from a VCS)

2. Call build.sh to generate the virtual environment

3. Call submit.sh to submit the job to the cluster

For changes that only affect the initialization logic or the configuration file, Step 2. can be omitted.
A graphical representation of the build & submit workflow is shown in Figure 3.4. A detailed list of
options specified to the spark-submit tool can be found in Section 4.3.2.

3.3.5. Distributed Atmospheric Correction

Interacting with the earth’s atmosphere changes the property of light that is reflected from the earth
surface to the optical sensors of the Sentinel mission. Before further analysis can be conducted, the
imagery needs to be atmospherically corrected, that is, the true surface reflectance values need to
be computed. As described in Section 2.1.1, a number of processors offer atmospheric correction
of Sentinel-2 products. Besides correction of reflectance values, these processors typically include a
number of additional processing steps, like terrain and cirrus correction and cloud detection. How-
ever, none of the presented options offer native support for distributed processing.

Selecting an Atmospheric Correction Algorithm

Following the workflow concept introduced in Section 3.3.2 we chose to implement distributed at-
mospheric correction as a PySpark job. From the list of existing algorithms we chose the one most
suitable for being included in such a job based on the following criteria:

• Portability

• Compatibility with the PySpark ecosystem

• Configuration overhead

• Quality of documentation

iCOR

Developed by the Belgian remote sensing company VITO, the iCOR [24] processor offers atmo-
spheric correction of both Sentinel-2 and Landsat-8 imagery. A free version of the processor is
distributed as a plugin for ESA’s Sentinel Application Platform (SNAP), a Java-based collection of
toolboxes for working with earth observation data. Configuration is exclusively handled via the
SNAP user interface. No developer documentation is provided with the free version.

Due to the closed-source nature of the plugin and it’s dependency on SNAP, migrating iCOR to a
PySpark job was deemed unfeasible.

23

3. System Design

MAJA

The MACCS ATCOR Joint Algorithm [31], in short MAJA, is an atmospheric processor for LAND-
SAT and Sentinel-2 products developed by the French space agency CNES in collaboration with the
German Aerospace Center, DLR. The main difference to its competitors is the use of time series data
to improve cloud detection performance. Written in C++, it is available for download in the form
of a pre-compiled, Linux-only binary. While some semi-official tutorials document usage of MAJA,
no official documentation is provided. Similar to ARCSI, the default Sentinel-2 SAFE file format is
replaced in favor for the custom MUSCATE format, which is developed by CNES. While processing
parameters were not included in the original package, we were able to obtain working examples from
a third party website.

Albeit MAJA’s usage of multi-temporal data helps improve the cloud detection accuracy, it also
requires processing in time-aligned batches, which would reduce the level of parallelism that files
could be processed at. In combination with the closed-source nature of the distributed package, the
lack of proper documentation and the use of a custom output format we decided against using MAJA
in our distributed atmospheric correction.

ARCSI

The open source Python package for Atmospheric and Radiometric Correction of Satellite Imagery,
ARCSI [14], is developed by P. Bunting at Aberystwyth University, Wales. It supports a number of
sensor types (Sentinel-2, Landsat, Rapideye, SPOT and more) and includes adequate documentation.
Processing parameters for Sentinel-2 products need to be provided by the user. Notably, it is highly
reliant on a range of rather unknown third party formats and libraries. By default, products are
converted to the KEA file format (P. Bunting et al., 2013 [15]), a modification of the popular HDF5
format. The bulk of the processing is done with the help of the remote sensing and GIS software
library RSGISLib (P. Bunting et al., 2014 [16]).

While we assessed ARCSI to be compatible with PySpark, it also seemed to require adapting a
number of specialized technologies, like the KEA file format, that are not compatible with more com-
monly used varieties. As this could potentially restrict all further processing steps to the capabilities
offered by the aforementioned technologies, we chose to eliminate ARCSI from the list of candidate
processors.

Sen2Cor

The Sen2cor package [44] is the official processor used by the European Space Agency for generating
Sentinel-2 Level-2A products (see Section 2.1.2). Including a wide range of features, like scene clas-
sification and cloud detection, it is distributed both as a SNAP plugin and a standalone installer. The
standalone installer generates an isolated Python environment. A comprehensive developer manual
is provided, as well as default configuration files for Sentinel-2 images. While most of the codebase
is open source, the key atmospheric correction stage, developed by the German Aerospace Center, is
patent protected and hence only available as pre-compiled binary.

Job Design

Although somewhat limited by the mode of distribution and the patent protection, the Sen2Cor pro-
cessor was deemed to be a suitable candidate for implementing our distributed atmospheric correc-
tion job. No additional configuration parameters had to be specified - Correction operations could be

24

3.3. Processing

started right after installing. Other than its closest competitor, ARCSI, it does not introduce a special
output format, but reuses the SAFE file format Level1-C images are stored in.

L1C_Path

Sen2Cor

L2A_Path

Figure 3.5.

Also, processing is based on a number of well-known and well-maintained
Python libraries. We devised a number of tools, described in Section 4.3.4,
to isolate the respective Python module from the standalone installer and deal
with the patent protected binaries. Furthermore, we added support for the
Hadoop Distributed File System. This enabled us to use the Sen2Cor processor
for the distributed atmospheric correction job outline below.

Having selected the Sen2Cor processor, we moved on to designing the PyS-
park job: Information about the products to be converted are read from a
CollGS JSON files which is specified in the job’s configuration file. After
obtaining a list of input product paths and their respective UUIDs, the initial-
ization logic starts the Spark driver process, partitions the data and schedules
distribution to the executors. Then, the parallelization logic is invoked. The
modified Sen2Cor processor is applied to all partitions of the input data. To en-
sure fault-tolerance, failed conversions are retried for a user-specified number
of time and then ignored. The path of the final L2A product, returned by the
modified processor, is associated with it’s original L1C product and forwarded
to the parallelization logic. The parallelization logic collects the output from
all partitions and returns them to the initialization logic. There, completed
partitions are written to a user-specified parquet file. As an additional way of storing the output, the
initialization logic allows registering metadata of completed products with a SQL database.

3.3.6. Distributed Patch Generation

One application for big data in remote sensing is the generation of training data for machine learning
models. While the benefits of advanced machine learning techniques, like deep learning, for remote
sensing tasks have been demonstrated in numerous publications over the recent years, relatively
few publicly available datasets are able to satisfy their high demand for training data adequately.
With BigEarthNet [64], Sümbül et al. presented the first large-scale, multi-label dataset derived
from Sentinel-2 data. Following this example, we will demonstrate how to generate an even larger
Sentinel-2 based archive, using a range of big data technologies.

In the the previous section we have demonstrated how to convert a large set of raw satellite images
into analysis-ready data. Before we can continue with obtaining ground-truth annotations, the issue
of product size must be addressed: Analysis-ready Sentinel-2 data (Level-2A) is stored in 100×
100km2 tiles - Way to much information for any model to handle at once. Hence, the Level-2A
products must first be split into smaller image patches.

In this section we will propose a strategy for generating large volumes of image patches from
Level-2A data, using PySpark. As with the above pre-processing stage, this strategy will be based
on the big data workflow concept introduced in Section 3.3.2.

Job Design

We started the design process for the patch generation job with a definition of the desired output data.
The process should create a number of image patches including the following attributes:

• References to the input data (L1C & L2A product), including a 2-dimensional patch index to
indicate a patch’s position in the original L2A tile

25

3. System Design

• A collection of sensor bands, including:

– References to the band name and path

– The sensor band data

– Information about the band’s pixel resolution

• Coordinates to identify the location covered by the patch

• Spatial Reference System Identifier (SRID)

• MRGS grid identifier

Both L1C and L2A products are stored in the SAFE format - A directory structure for organiz-
ing sensor data, or image granules, and additional metadata. Due to the multi-spectral nature of
the Sentinel-2 sensor, a granule is comprised of multiple7 sensor bands, which are stored in the
JPEG2000 format (Christopoulos et al., 2000 [19]). Before we are able to load the actual sensor
data, we first have to identify the relevant band files from a given SAFE path. A list of band types
to be ignored can be provided via the configuration file. While we could, in theory, also discard
references to the input SAFE after identifying the sensor bands, we chose to include it in the patch
data for subsequent quality control and because it allows introducing band-level parallelism to the
generation process:

Parsing large volumes of data is prone to cause large memory footprints. Instead of having to load
all of a tile’s bands at once, which could exceed the available computing capacity and lead to idle
times, we can apply patch generation on each sensor band individually and thus distribute the load
more evenly. The resulting patches can than be grouped by L2A path and patch index. The patch
index is returned bv the generator and indicates the window offset used to extract the patch from the
original image. For very large jobs, however, aggregation operations like this can lead to an excessive
amount of shuffles, i.e. redistribution of data across partitions, which would significantly impact per-
formance. Under such circumstances, product-level parallelism could become viable again. Hence,
we will offer switching between both strategies in the job’s configuration file.

Following the structure of the SAFE file, an image patch contains multiple sensor bands. Refer-
ences to the original sensor band file are stored to ensures that every patch can be traced back to it’s
original input. The band name helps to identify the type of data. Besides an atmospherically cor-
rected versions of the bands, originally included in the L1C file (B01 - B12), our patches will contain
a copy of the scene classification band (SCL) generated by Sen2Cor. All other bands will be ignored
in order to limit the size of the dataset. As multi-dimensional array types are not well supported by
Apache Spark, the band data has to be stored in a one-dimensional vector.

Sensor bands are recorded at three different resolutions: 10m, 20m or 60m per pixel. As the orig-
inal BigEarthNet dataset, we will use fixed-size, non-overlapping sliding window for generating the
patches. The pixel resolution determines the patch size: For 10m bands 120×120pixel are extracted,
for 20m 60×60pixel and for 60m bands 20×20pixel. Capabilities for reading the JPEG2000 format
are added to PySpark by including the GDAL (Warmerdam, 2008 [72]) library in the job’s require-
ments file.

Together with a Spatial Reference System Identifier, patch coordinates give an unambiguous de-
scription of the patch’s location. This will in the following sections be used to integrate additional

7While Level-1C products include 13 original sensor bands, Sen2Cor adds additional Scene Classification, Aerosol Opti-
cal Thickness, Water Vapour and Quality Indicator bands to the Level-2A products. Also, existing bands are resampled
at different resolutions, resulting in 40 bands per L2A tile.

26

3.3. Processing

data with the patches. While the SRID can be copied from the original tile, the patch coordinates
need to be re-calculated. The MGRS grid identifier, extracted from the sensor band metadata, assigns
the patch to a 100×100km2 grid zone and is mainly used for grouping spatially related patches.

Having defined our desired output data, we can continue designing the PySpark job. As Spark’s
data structures are immutable, we will need to define a series of transformations in order to create
the output structure. We propose grouping them in a common Sentinel2PatchGenerator class,
with parallelization logic as class methods that calls the business logic. This allows accessing the
transformations individually, e.g. for debugging, as well as exposing a single interface, which con-
nects all transitions, to the initialization logic. The job is kept concise and every level of logic is
focused on it’s intended purpose.

The following transformations were defined:

1. From the input data, Level-2A product
paths, relevant sensor bands are iden-
tified. Output: Band information with
associated L2A path.

2. From each sensor band, patches are
generated. Sensor bands are read into
memory and split, patch coordinates
are calculated and remaining patch
metadata is copied. Output: Patches
with data from one (band-level par-
allelism) or more (product-level par-
allelism) bands, including associated
L2A path and patch coordinates.

3. Sensor band patches are aggregated by
patch index and L2A path. This is not
required when bands were loaded at
once (product-level parallelism). Out-
put: Final patch objects with data from
multiple bands.

Band 2 Band NBand 1

L2A Path

Figure 3.6.

The initialization logic parses the configuration parameters and schedules loading of the input
data. On starting the above transformations, partitions with L2A product paths are distributed to the
worker nodes. Completed partitions are passed from one transformation to another. Before the final
aggregation stage can be started, all partitions are required to complete the patch generation stage.
After the final transformation, the generated patches can either be passed on to the subsequent analy-
sis stages (see Section 3.4) or written to a user-defined parquet file. Patch metadata can be uploaded
to an SQL database. A comprehensive summary of the patch generation job implementation, along
with an example SQL schema, can be found in Section 4.3.5.

27

3. System Design

3.3.7. Distributed Data Export

To demonstrate the capabilities of our end-to-end framework, we chose to generate a large-scale
image dataset from Sentinel-2 data. Up until now, this dataset is stored in a columnar PySpark data
structure, called DataFrame. However, by distributing the data in this Spark native we risk excluding
many potential users. The Spark ecosystem provides a variety of connectors to export DataFrames
into more commonly used formats, like Parquet, JSON, or SQL tables. But without additional mod-
ifications, none of the available options were able to meet our requirements for publishable remote
sensing datasets:

• Patches are available as image files

• The image format of choice is widely supported and allows storage of geospatial metata, such
as map projection and coordinate system

• Additional metadata is stored in a common data-interchange file format, close to the image

In order to meet those requirements, we designed a PySpark job for distributed export of the image
patch dataset: First, we selected an image format that is both widely supported and allows us to store
georeferencing information alongside the sensor data. While many common image formats, like
JPEG (Wallace, 1992 [71]), support adding geo-coordinates in the form of geo tags, they typically
limit functionality to GPS coordinates with World Geodetic System (WGS84) reference coordinate
system. More comprehensive support for geospatial metadata is only available from specialized
formats.

GeoTIFF (Ritter & Ruth, 1997 [58]) is one such format. It allows embedding a range of geospatial
information inside a TIFF file and is widely used among the remote sensing community. TIFF (ISO
12639:2004 [29]), short for Tagged Image File Format, is a popular format for storing raster graphics.
Libraries to access TIFF files are available in many major programming languages. Although access
to the geospatial data tags still requires a specialized parser, GeoTIFF pixel values can also be read
with standard TIFF parser. In summary, GeoTIFF represents the best compromise between accessi-
bility and specialization and was thus chosen as the output format for our image patches. Capabilities
for writing GeoTIFF files are added to PySpark by including the GDAL (Warmerdam, 2008 [72])
library in the job’s requirements file.

As the data-interchange format for storing non-geospatial metadata we chose the JavaScript Object
Notation (Bray, 2014 [13]), JSON for short. While more readable and lightweight alternatives exist,
e.g. YAML (Ben-Kiki et al., 2005 [10]) or TOML [67], they typically require deploying an additional
library for reading the data programmatically. For JSON, however, native support is offered by most
major programming languages, including Python.

Before we could continue designing the export logic, one last technical problem had to be ad-
dressed: HDFS is not designed to handle large amounts of small files efficiently. As every object is
kept in memory by the Hadoop namenode, a high number of objects, smaller than the HDFS block
size of 64MB, can cause excessive memory consumption and thus degrade the namenode’s perfor-
mance. To avoid this issue, known as the ”Small Files Problem” [8], we do not export patch files to
the HDFS directly, but aggregate them into archive files before uploading.

With all technical questions resolved, we can move on to designing the export logic: We will start
with a PySpark DataFrame containing images patches, similar to the structure defined in Section
3.3.6. Depending on the level of processing, additional columns might be present, for example land
cover labels added in Section 3.4.3. We will need to account for this when exporting the patch

28

3.4. Analysis

metadata. On submission to the cluster manager, the initialization logic parses the job configuration
and schedules loading of the input data. Then, the parallelization logic is invoked and applies a UDF
to all partitions of the DataFrame. The band data is reshaped from a Spark vector back to a matrix,
and combined with the geospatial metadata. Following the structure of the original BigEarthNet
dataset (Sumbul et al., 2019 [64]), single band GeoTIFF files are written to patch directories. Patch
directory names are generated by combining the first three elements8 of the L2A SAFE name with
the patch index. GeoTIFF file names are built by adding the name of the respective band to the patch
directory name. Available patch metadata is written to a JSON file and placed along the images.
Patch directories are organized by MGRS grid zones. Once all elements of a partition have been
exported, they are added to a zip file archive. The name of the archive is generated from the partition
index. Completed zip files are moved to the HDFS, while local copies of the patch directories are
removed.

HDFS zip file paths are collected by the parallelization and returned to the initalization logic.
In case a local directory for unpacking the archives is specified, the Spark driver process spawns
a number of threads and starts concurrently downloading and decompressing the archives into the
specified directory. Once extracted, the acquired zip files are removed by the driver node.

More information regarding the implementation of the distributed data export job can be found in
Section 4.3.6.

3.4. Analysis

3.4.1. Requirements

In the previous sections we have designed a system for acquiring and processing large volumes of
satellite data into a dataset of image patches. In order to increase the value of the dataset, we will
now proceed with analyzing the patch data.

Similar to the processing, the nature of the analysis tasks allows us to design a parallelized system.
Analysis can be conducted on every image patch individually, independent of the other patches. We
will thus base our design on the PySpark workflow introduced in Section 3.3.2. To perform the tasks
described below, we will use both capabilities offered natively by Apache Spark, and those provided
by third party libraries.
Generally speaking, additional insights about the data can be gained from two types of sources:

1. Internal
Information that is already contained in the patch data can be further analyzed

2. External
Information from external datasets can be integrated with the patch data

Accordingly, we designed two distinct example tasks: To demonstrate the utilization of internal
data, we extracted the distinct label values from the scene classification band (SCL), converted them
into readable strings and added them to patch attributes. Also, they were used to filter out patches
that contained unwanted scene labels. For demonstrating integration of external data, we obtained
patch land cover labels and country information, using the associated georeferencing information.
As support for such geospatial queries is not included in Apache Spark, we first had to select a viable
alternative processor and then incorporate it into to the PySpark logic.

8Sentinel mission type, processing level and original acquisition date

29

3. System Design

As processing and analysis are typically performed together, the above tasks were integrated into
the Sentinel2PatchGenerator class, proposed in Section 3.3.6. To enable further analysis of
patch metadata independently of the pixel data, support for uploading it to an SQL table is provided.

3.4.2. Scene Classification Label Annotation

On a closer look, both processing and analysis is performed in the distributed atmospheric correction
job described in Section 3.3.5:

Figure 3.7.
Level-2A Scene Classification Values [2]

When converting Level-1C into Level-2A
products, the Sen2Cor processor not only per-
forms an atmospheric correction, but also a
scene classification of the satellite data. Com-
bined thresholds are applied to the sensor bands
and a classification mask, containing one of 12
distinct scene labels for each pixel, is gener-
ated. The mask is then exported as a JPEG2000
file and stored together with the other bands.
Pixel resolution of the classification map is set
to 60m. The available scene labels are depicted
in Figure 3.7.

In the patch generation, the scene classifica-
tion mask is imported along with the other bands
and split into patches. Hence, scene classifica-
tion data is available for every patch at the end
of this stage. In order to obtain scene class la-
bels, a distinct set of patch scene class values is
computed and converted to label string using the
mapping defined in Figure 3.7. The resulting la-
bels are added to the respective patch. If desired by the user, all patches containing the NO DATA

label9 are filtered out. The resulting DataFrame is either passed on to the next analysis stage or
returned to the initialization logic.

3.4.3. Land Cover & Country Label Annotation

The geospatial metadata associated with the patches provides an excellent foundation for the inte-
gration of external data sources. In this section, we will propose a design for fusing data from two
external sources with the patch data, using the patch geolocation. Since geospatial queries are not
supported by Apache Spark natively we first identified a number of open-source systems that provide
this feature. The resulting list can be split into two categories: Systems that extends Apache Spark
and standalone processors.

Geospatial Apache Spark Extensions

The following open-source packages add support for processing and querying geospatial data to
Apache Spark v2.4:

9An indicator for missing sensor data.

30

3.4. Analysis

• GeoSpark
The GeoSpark package (Yu et al., 2015 [77]) extends Spark’s default distributed data structure
RDD with georeferencing information to form Spatial RDDs (SRDD). Based on SRDDs, a number
of query optimized geospatial operations are implemented. Supports both vector and raster
data. Java, Scala, R and Python interfaces are available.

• GeoTrellis
Written is Scala, the GeoTrellis (Kini & Emanuele, 2014 [41]) package provides various data
structures and algorithms for processing large geospatial raster datasets in Apache Spark.
Database connectors add support for storing raster data on various distributed database sys-
tems. Python bindings are available under the name GeoPySpark.

Standalone Geospatial Query Engines

The following actively maintained query engines provide support for geospatial data:

• GeoMesa
Written in Scala, the GeoMesa software suite (Hughes et al. 2015 [35]) aims to enable large-
scale geospatial querying and analytics on a number of popular distributed database systems,
like Accumulo, HBase and Cassandra. Spark bindings for analyzing data stored in GeoMesa
are also available. Support for raster data is deprecated.

• MongoDB
The document-oriented NoSQL database MongoDB (Banker, 2011 [9]) database includes na-
tive support for geospatial queries on data stored in the GeoJSON format.

• PostGIS
An extension to the PostgreSQL (Momjian, 2001 [49]) object-oriented RDBMS, PostGIS
(Ramsey, 2005 [56]) adds extensive support for spatial objects and query operations to the
SQL language.

Selecting a Geospatial Processor

The listed alternatives were then assessed for their suitability with regard to their use in our analysis.
Particular emphasis was placed on the performance of spatial join operations, as this was expected to
be the most heavily used type of operation for integrating additional data with our patches. However,
several factors made the evaluation difficult for us:

There is little comparative literature on the subject. To our knowledge, none of the relevant publi-
cations covers all of the systems mentioned above. Also it was not possible for us to carry out tests
in advance due to the limited timeframe of this thesis. Therefore, our results can only be regarded as
preliminary. The detailed comparison of contemporary geospatial processing systems is a topic for
future work. In their 2018 paper, Mauri et al. [47] performed benchmarks on Magellan10, GeoSpark,
GeoTrellis and PostGIS. Investigating the performance of spatial join operations, the authors con-
clude that ”there was no intersection query where Apache Spark libraries outperformed PostGIS”.
When comparing the performance of PostGIS and MongoDB for spatial-temporal data, Makris et al.
[46] found that ”PostgreSQL outperforms MongoDB in all cases and queries”. Also, ”the dataset
size occupied in the system db, reduced 4x in case of PostgreSQL”. In his 2016 thesis, M. Toups

10We disregarded Magellan, as it did not support the latest versions of Apache Spark.

31

3. System Design

[68] compared PostGIS with GeoMesa and a flat-file architecture called Vector Cluster. He found
that ”GeoMesa query times [...] are very certainly significantly worse than the Vector Cluster and
PostGIS times”. And, ”One surprising result was the very fast performance of PostGIS/PostgreSQL,
which easily out-performed Vector Cluster on all queries except the few with the largest payloads”.

Based on those findings, we decided to use PostGIS for integrating external data sources with our
patch dataset.

External Data Sources

We have selected two different types of information for integration with our patch data: Land cover
and country labels.

Land cover information is obtained from the CORINE Land Cover inventory (Bossard et al., 2000
[12]). In it’s latest version, CLC 2018, 44 classes document land cover properties in 39 participating
countries at better than 100m positional accuracy. Included attributes are: Shape polygons, shape
statistics (length of the shape, area covered) and land cover labels. The data is available in both raster
and vector formats. A detailed list of land cover classes can be found in the Appendix C.1.2.

Information about which country a patch is located in is obtained from the NUTS dataset (Eurostat,
1995 [26]). Developed by the European Union, the Nomenclature of Territorial Units for Statistics
is comprised of three distinct levels: NUTS 1 describes ”major socio-economic regions”, NUTS
2 ”basic regions for the application of regional policies” and NUTS 3 ”small regions for specific
diagnoses”. The latest 2016 version of the dataset includes the 28 EU member countries, 5 EU
candidate countries and 4 EFTA countries. All regions covered by CORINE, with the exception of
Kosovo, are also covered by NUTS. We will use shape polygons from NUTS 1 to obtain the English
country names for our image patches.

Job Design

Before we can start annotation process, we first have to obtain a copy of the CORINE and NUTS
datasets and upload it into the PostGIS database.

Once executed, the job’s parallelization logic added three empty columns to the image patch
DataFrame: One for the country labels, one for the Land cover label and one for the CORINE
object IDs, used as a reference to the associated CORINE shapes. Then, a UDF is applied to every
partition of the DataFrame. For every partition, one SQL connection is acquired. Spatial intersec-
tion queries are executed sequentially for each partition element against the CORINE and NUTS
tables. The results are first added to the empty columns and then collected by the parallelization
logic. Patches for which no labels were found were excluded. Fully annotated patches were then
written to a user-specified parquet file. A mechanism for inserting the patch metadata into an SQL
table was also provided.

Once the annotation in complete, further analysis, e.g. modification of patches with a specific land
cover class, can be performed using PySpark’s query processor. To avoid unnecessary I/O overhead,
we strongly recommend to use the SQL backend for analysis tasks that do not require access to the
sensor data.

32

4. Implementation

4.1. Overview

In this chapter we describe how we implemented our prototype for an end-to-end framework for
processing and analysis of big data in earth observation. Following the design specified in Chapter
3, the implementation is divided into three parts: Data acquisition, processing and analysis.

The first section covers the CollGS parallel download tool. We describe the structure of the imple-
mentation, what software was used to implement it and how to install, configure and deploy it. The
implementation of our PySpark workflow concept is the topic of the second section. We describe in
detail what steps were taken in building the distributed atmospheric correction, patch generation and
data export jobs. Also, we explain job configuration, installation and deployment to the processing
cluster. In addition to this, we describe the processing cluster configuration, job unit testing and
how executor log files were aggregated. The third section focuses on analysis of the generated image
patch dataset. Building on the strategies introduced in the previous section, we describe how we used
both internal and external data sources to obtain scene classification, land cover and country labels
for the patches.

4.2. Data Acquisition

The CollGS prototype is written in the Python programming language (Van Rossum et al., 1995 [69])
and compatible to Python v3.6 and upwards. It is licensed under the GNU General Public License
Version 3 and available for download under

https://gitlab.tu-berlin.de:rsim/CollGS.git

Incremental versioning is done following PEP 440 (Coghlan & Stufft, 2013 [20]). Where ever possi-
ble the use of packages from the Python standard library was preferred over those from third parties.
In its latest version, 0.1.4, the following third party packages are required:

• sentinelsat [61]
Interface to Copernicus OpenSearch / OpenData API endpoints

• PyYAML [76]
For read / write access to a YAML configuration file

• pytest [55]
For convenient unit testing

• pyarrow [54]
For interfacing with Hadoop Distributed File System

Optionally, CollGS API documentation can be generated using the pdoc [52] package.

33

https://gitlab.tu-berlin.de:rsim/CollGS.git

4. Implementation

4.2.1. Package Structure

Following the de facto standard for organizing Python packages described in K. Reitz’s essay Repos-
itory Structure and Python [57], the CollGS prototype is structured as follows:

• collgs/

Python module containing business logic

– init .py

Marks this folder as a Python module

– cli.py

Code for a command line interface

– manager.py

Code for the SentinelAPIManager class; Concurrent mirror access, download schedul-
ing etc.

– utils.py

Utility functions used in the two other files

• docs/

Contains automatically generated documentation

• tests/

Contains all Unit tests

• config.yaml

Configuration file template

• LICENSE

A copy of the GNU General Public License Version 3

• README.md

A markdown formatted Readme file

• requirements.txt

A list of required Python dependencies, following PEP 508 [21] directives

• setup.py

For convenient installation of the package, including references to all dependencies

4.2.2. Installation

The Python programming language’s standard library provides extensive support for building and
installing modules through the setuptools package. Package metadata, including the name of the
package, its current version, its author(s) and the employed license are specified in the setup.py

file located in the package’s root directory. For the CollGS package, a list of package dependencies,
additional file includes and details for a line entry point were also added.

Leveraging the setuptools workflow results in the following user experience: After obtaining
the CollGS source code from the version control system users execute the setup.py file to install
the package to an existing Python installation. Dependency resolution is automatically performed
on installation by the pip package management system. Moreover, the setup.py file allows users

34

4.2. Data Acquisition

to create binary packages as well as execute unit tests. The command line entrypoint created by
setuptools allows users to invoke the CollGS command line interface just like any other binary on
the system path.

In combination with Python’s virtual environment feature, which help users to avoid installing
Python packages globally, the chosen approach allows a convenient installation of the package with
minimal requirements and access rights.

4.2.3. Configuration

Configuration parameters can be passed to the SentinelAPIManager class constructor either via
keyword arguments or by passing the path of a configuration file. Both methods are allowed to be
used simultaneously, covering a variety of usage scenarios. Parameters passed to the command line
interface are routed to the constructor as keyword arguments. YAML was chosen as the data seri-
alization language of choice due to it’s minimal syntax and high readability. Configuration files are
parsed into a key-value mapping in the class constructor. Python’s dict type is also used to represent
keyword arguments. Before being assigned as attributes to the class instance the provided config-
uration parameters are first merged into a single dict object and then validated for correctness.
Missing key-value pairs are replaced by default arguments on parameter validation. As keyword
arguments offer a slightly more dynamic configuration approach than static configuration files pa-
rameters passed via keyword arguments overwrite those read from a configuration file, allowing for
ad-hoc changes to existing configurations read from file. In the following I will list the configuration
parameters currently supported by SentinelAPIManager:

• base

Path were downloaded files are stored

• cloud

Max. allowed cloud cover percentage
[0.0,1.0]

• connections

Max. allowed connections per server

• date

Products must be acquired in the specified
range

– from

Exclude products acquired before
this date (YYYY-MM-DD)

– to

Exclude products acquired after this
date (YYYY-MM-DD)

• hdfs

HDFS master node details

– host

Master node URL

– port

Master node port

– user

Master node user name

– base

HDFS base directory

• mirrors

OpenSearch/OData API endpoint details

– url

Endpoint URL

– user

Endpoint user name

– password

Endpoint user password

• parallel

Max. allowed total connections

35

4. Implementation

• retry

Max. allowed number of retries per mirror

• test

List of UTM zones the performance score

is calculated from

• timeout

Connection read / connection timeout lim-
its (seconds)

4.2.4. Command line interface

Two routes are offered to invoke the SentinelAPIManager class: Either directly, by calling the object
constructor or indirectly, by using the command line interface.

Following the example of the sentinelsat package, the CollGS prototype emphasizes the role
of the command line as the preferred interface for remote sensing workflows. Albeit both routes have
feature parity, the command line interface, which is based on the Python standard library argparse,
has the additional benefit of providing even inexperienced users with fast and easy access to a number
of common usage patterns through so called subcommands. These subcommands, specified as the
second argument of a call, abstract the most commonly used sequences of SentinelAPIManager
and auxiliary function calls. Furthermore, they allow exposing a number of subcommand-specific
configuration parameters to the command line. The command line interface can thus be understood
as a third logical layer, based on SentinelAPI and SentinelAPIManager, that focuses on the end
user. The following subcommands are available in CollGS v0.1.4:

• collgs search

Acquire metadata for an area of interest

• collgs select

Select product with lowest cloud cover per
MGRS zone and season

• collgs describe

Calculate product statistics

• collgs preview

Download preview images

• collgs get

Download and decompress products

• collgs list

List existing files

• collgs mirror

Interact with configured mirrors

– list

List all configured mirrors

– rank

Calculate mirror performance score

• collgs hdfs

Interact with Hadoop Distributed File Sys-
tem

– list

List products on HDFS

– upload

Upload products to HDFS

– download

Download products from HDFS

All of the above commands require a target to be specified as the first argument. Supported inputs
are: MGRS tile ids (comma separated string or CSV file) and GeoJSON footprints as well as JSON
files following the structure defined in Section 3.2.7 (i.e. result of previous collgs search or
collgs select operations).

With the exception of multiple login details (see mirror in Section 4.2.3) and UTM testing zones
(see test in Section 4.2.3) all configuration parameters available in the configuration file can also
be specified to the command line interface (using the -- prefix). If both are present, options passed
to the command line interface will overwrite those specified in the configuration file. The following

36

4.3. Processing

subcommand-independent configuration parameters can be specified to the collgs command line
interface:

• --user

Endpoint user name

• --url

Endpoint URL

• --password

Endpoint user password

• --timout

Connection read / connection timeout lim-
its (seconds)

• --retry

Max. allowed number of retries

• --parallel

Max. allowed total connections

• --sentinel

Filter by Sentinel mission number [1,2,3]

• --producttype

Filter by Sentinel product type

• --base

Path were files are stored

• --config

Path to configuration file (default:
config.yaml)

• --verbose

Activate verbose logging

Further information regarding usage of the collgs toolchain is shown on specification of the
--help option.

4.2.5. Utility functions

The utils.py includes a number of custom Python functions that are used by, but not part of the
SentinelAPIManager implementation. Among those are functions for

• Reading and writing specific file formats (JSON, YAML, CSV, ZIP)

• Detecting and validating data formats (UTM zone identifier, SAFE file format)

• Extracting information from data returned by SentinelAPIManager (Season of acquisition,
product UUIDs, product UTM zone ids)

4.2.6. Unit Tests

Python Unit tests are implemented with the pytest framework, which provides a variety of powerful
concepts for testing Python source code. Separate tests for all three parts of the collgs module
(cli.py, manager.py and utils.py) are provided in the tests/ folder. Integration into the open-
source DevOps solution GitLab (Hethey, 2013 [34]) allowed us to continuously test new versions of
the CollGS toolchain on deployment to the Version Control System. Commits with failing tests were
rejected.

4.3. Processing

The processing stage of our end-to-end framework prototype is comprised of three jobs:

1. Generation of Level-2A products from Level-1C products (Section 4.3.4)

37

4. Implementation

2. Generation of fixed-size patches from Level-2A images (Section 4.3.5)

3. After successful analysis, export of annotated patches (Section 4.3.6)

All processing jobs presented here were implemented in Python v2.71, using PySpark v2.4.2 bind-
ings. The job code is included in our exemplary processing and analysis workflow, which can be
obtained from

https://gitlab.tubit.tu-berlin.de/rsim/BigEarthNet2

As for the CollGS downloader, the workflow is licensed under the GNU General Public License
Version 3. Incremental versioning is done following PEP 440 (Coghlan & Stufft, 2013 [20]). The
workflow is structured according to the layout proposed in Section 3.3.2.

Before we move on to describe the job implementation in more detail, we first elaborate on more
general additions made to the processing system.

4.3.1. Build & Submit Utilities

The build and submit utilities, defined in Section 3.3.3 and 3.3.4, were implemented in bash script.
Both utilities are essentially collections of command line calls, modularized to work with all jobs
organized according to the layout introduced in Section 3.3.2. While the build script utilizes the
conda command line interface to generate the virtual environment, the job submit script is built on
spark-submit. We tested our framework with conda v4.6.* and spark-submit v2.4.*.

Both tools follow the same approach: First, they use a user-specified job name to identify the job
directory. Then, the associated files are identified. Finally, the respective calls are executed. To
distinguish different job versions from each other, the version number can be specified in the header
of the scripts.

Build Script

The build script creates a new Python v2.7 conda environment, named after the job name and version.
In case an environment with the same name already exists, no new environment is created, but the
existing one updated. Once this is done, it locates conda env.yml and pip requirements.txt re-
quirements files. Both locally, in the job directory and globally, in the scripts working directory. The
requirements are installed using the respective package manager. Global requirements are installed
first. Any Python module located inside the job folder is then copied to the the environment’s Python
module container, .../lib/python2.7/site-packages/. They same is done for the content of
the dependencies/ folder, in case one is located in the script working directory. Finally, conda
pack is used to create a environment .tar.gz file in the envs/ folder. Existing tarballs with same
job name / version combination are overwritten.

Submit Script

The submit script identifies four types of files to be submitted to the cluster: The job.py job script,
the environment tarball, the config.yml configuration file and any JAR file placed in a jars/

1We chose this soon to be deprecated version of the Python interpreter as it was required by the employed atmospheric
processor, Sen2Cor. Without access to the patent protected parts of it’s codebase, we were unable to to conduct a
migration to the latest version of the Python interpreter ourselves. To ensure compatibility of processing jobs among
each other, Python v2.7 was used for all of them.

38

https://gitlab.tubit.tu-berlin.de/rsim/BigEarthNet2

4.3. Processing

folder located either in the job folder or the script working directory. The first two are mandatory for
the submission of a new job. Using the obtained information, the spark-submit call is built and
executed.

In addition to the identified files, a number of cluster manager settings, defined in the header of the
script, are passed to spark-submit. In the following, all options used in the submit script are listed:

• --master

What cluster manager to use, default yarn

• --deploy-mode

Whether to start the driver process on a worker node (cluster) or locally (client), default
client

• --archive

Archives to be extracted to the YARN container root, used for deploying virtual environment
with dependencies

• --files

Files to be distributed to the executors, used for distributing the config.yml file

• --jars

Jar files to be distributed and added to the executors Java path, used for deploying PostgreSQL
JDBC bindings

• --num-executors

The number of executors to be spawned by the cluster manager, default 69

• --executor-cores

The number of cores per executor, default 3

• --executor-memory

The amount of RAM per executor, default 28 GB

• --config

Additional Spark options

– spark.yarn.appMasterEnv.PYSPARK PYTHON

Set the PYSPARK PYTHON environmental variable on the YARN Application Manager,
point it to the Python binary provided by the virtual environment

– spark.executorEnv.GDAL DATA

Set the executors’ GDAL DATA environmental variable, point it to the path of the GDAL
library inside the virtual environment

The master and deploy-mode parameter can also be specified as second and third argument to
the submit.sh, which will overwrite the default value.

4.3.2. Cluster Configuration

The two systems employed by us to realize the processing jobs, Apache Spark and Hadoop, both
accept a range of configuration parameters. In the previous section, we have documented what
options were specified to Apache Spark on job submission. Here, we will further elaborate on what
default values were used in our test setup, and why we chose them.

39

4. Implementation

Executor Resources

Based on the hardware specifications of our test cluster, described in Section 2.8, the default values
for the Spark executor resource configuration were calculated as follows:

• Based on previous experiences with the cluster hardware, we chose 3 cores per executor, to
allow for optimal I/O throughput

• With 3 out of the 24 CPUs on each node reserved for system processes, 21 CPUs are available
per node

• This means 7 executors per node

• We have 9 connected worker nodes, hence 69 executors in total

• Leaving 50 GB of the 250 GB RAM per worker for system processes, 200 GB of RAM are
available per node

• Divided by 7 executors per node, a bit more than 28 GB of RAM are available per executor

YARN

Aside from our personal resource manager configuration the following options where specified to the
Hadoop YARN configuration:

• yarn.log-aggregation-enable = true

Activates aggregation of executor log files.

• yarn.nodemanager.vmem-pmem-ratio = 5.1

Ratio between virtual and physical memory for container allocation. Increased to allow sub-
mitting large environment tarballs.

• yarn.nodemanager.resource.memory-mb = 204800

Physical memory per node that can be allocated for containers. Adjusted for our hardware
setup.

• yarn.scheduler.maximum-allocation-mb = 204800

Maximum memory to be allocated per container. Adjusted for our hardware setup.

• yarn.nodemanager.resource.cpu-vcores = 22

Maximum number of CPUs to be allocated per container. Adjusted for our hardware setup.

4.3.3. Logging

Log files are a vital tool for gathering run-time information of processing jobs. Error logs help
identify problems with the job logic, while the standard output can be used to report internal debug
and performance information. However, aggregating log files from distributed PySpark jobs can be
cumbersome for a number of reasons: Although there is a central logging interface, Spark provides
no reference to the original context to the executors, so executor logs can not be forwarded to the
main logger. To further complicate things, cluster managers, like YARN, spawn the executors inside
of virtual containers, which are immediately destroyed after job completion. Without modifying the

40

4.3. Processing

respective cluster manager, copying container log files or re-routing the executors’ stdout / stderr
streams is close to impossible.

Fortunately, the YARN cluster manager provides a feature for aggregating executor logs on the
HDFS. To activate it, we have to modify both the YARN and Spark configuration: First, we need
to set the yarn.log-aggregation-enable parameter in the yarn-site.xml file to true. Then,
we specify the default log file directory, we used a folder inside the /tmp directory, to the Spark
configuration parameter spark.yarn.app.container.log.dir. Once this is done, we configure
the Python logging module to write the executor logs to a custom log file inside this folder. The
logfiles can then easily be accessed via the Hadoop Web interface or the yarn logs command line
interface.

A convenience method for obtaining the executor logger object was added to the global workflow
dependencies.

4.3.4. Distributed Sen2Cor

The atmospheric correction job was based on Sen2Cor v2.8, which is available for download under

http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-8/

As described in Section 3.3.5, a number of problems prevent us from including an unmodified
version of Sen2Cor in a PySpark job:

1. The package is distributed as a standalone installer.

2. Package dependencies are largely unknown.

3. A number of additional files need to be distributed.

4. Parts of the code are only available as pre-compiled binaries, dynamically linked against li-
braries provided in the installer.

Extracting the Source Code

The first challenge was addressed by writing a small shell script for extracting the Sen2Cor Python
module from the standalone installer. On execution of the installer a self-contained Python 2 envi-
ronment is extracted to disk. Similar to the virtual environments discussed above, this environment
contains all files required to run Sen2Cor, including a copy of the Python interpreter. In theory,
this environment could already be used in a PySpark job. We decided against this option, as it
would mean deploying nested environments while surrendering control over the dependencies. Also,
adding modifications to the code would be considerably harder. Instead, we chose to further isolate
the Sen2Cor processor from the environment it is shipped in.

As with any other Python distribution, installed modules can be found in the site-packages

directory. To extract the Sen2Cor source code, it was copied from this directory.
A detailed listing of the Sen2Cor package structure can be found in the Software User Manual

[30] on page 11.

41

http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-8/

4. Implementation

Discovery of Dependencies

Two dependencies are explicitly named in the Sen2Cor user manual [30]: GDAL and PyTables.
However, to successfully start the processor, more dependencies were required. In order to identify
them, an initial list of candidate dependencies was compiled from the names of the modules that were
present in the site-packages folder. It was merged with a list of modules that are imported in the
readable source files. For every candidate, the official Python Package Index (PyPI) was searched for
similar or matching package names. After deduplication, the resulting list of packages formed the
initial requirement file for the isolated Sen2Cor module. The respective dependency versions were
determined with the following approach:

1. Beginning with the latest version of the package

2. It was tried to install and run the package (using Python’s setuptools)

3. In case the above step failed, the error logs were searched for the package(s) that caused the
error and the respective version number decreased

4. If no errors were encountered, the process was stopped

With the help of the above strategy we were able to identify 29 dependencies required for running
Sen2Cor outside of the environment provided by the installer. A detailed list of package names and
versions can be found in the Appendix B.1.1.

Distribution of Additional Files

After detecting the dependencies we focused on the third problem: Distributing auxiliary files re-
quired by Sen2Cor. By default, Python’s setuptools includes only Python source files when build-
ing a package. However, for the Sen2Cor processor to work correctly, some auxiliary files also need
to be included. After consulting the manual we identified four sources of such files:

1. aux data/

Containing a global snow map (1 File, 24 MB)

2. cfg/

Containing a number processor configurations and file specifications (440 Files, 15 MB)

3. lib S2A/

Containing Sentinel-2A specific Look-up-Tables for radiative transfer calculations used in the
atmospheric correction (240 files, 49 MB)

4. lib S2B/

Containing Sentinel-2B specific Look-up-Tables for radiative transfer calculations used in the
atmospheric correction (242 files, 49 MB)

The above sources were included in the isolated Python package by adding them to a Manifest.in
file, setuptools default way for modifying the include path. By specifying a recursive load instruc-
tion, we made sure all files inside the source directories were included.

42

4.3. Processing

Handling Binarized Executables

As described above, Sen2Cor’s atmospheric correction stage, contributed by the German Aerospace
Center, is copyright protected and provided as a binary. To be included in our isolated Sen2Cor
package, it had to be specified in the MANIFEST.in file. To further complicate things, the respec-
tive binary was dynamically linked against a version of the musl libc, an implementation of the
C standard library, which was located in a different folder of the environment provided by the in-
staller. Removing the binary from it’s original path also meant breaking the link. Simply copying
the particular library to our package did not solve this problem either, as the library path was hard-
coded in the ELF header. Recompiling the source was out of the question. A manual configuration
of the LD LIBRARY PATH on every worker node seemed overly complicated. We thus chose to add
a run-time search path, called rpath in ELF terminology, to the binary header. To do so, we used
the patchelf [50] utility provided by the NixOS Linux distribution. Using the rpath allowed us
to specify a custom location for the musl libc and hence solved the issue of handling binarized
executables in our isolated Sen2Cor package. Finally, a copy of the musl libc was added to the
package using the Manifest.in file.

Modifying Sen2Cor

The isolated, original version of Sen2Cor was further modified to allow processing of files located
on the HDFS. We initially tried to use the JNI-based HDFS interfaces, like the one provided by the
pyarrow [54] library used in CollGS, but were unable to correctly set it up on the executors. Al-
ternative WebHDFS endpoints were not available at our setup. As Hadoop binaries were by default
installed to any worker node connected to the YARN cluster manager, we then devised a simple
Python interface for abstracting calls to hdfs command line interface. Products located on the dis-
tributed filesystem were first copied to a temporary directory on the executors’ file system before
applying the atmospheric processor. Successfully converted Level-2A products were then moved
back to the HDFS and the remote path returned.

Even though licensed under the Open Source Apache 2 license, public redistribution of Sen2Cor
source by a third party is explicitly forbidden (see Page 43, Sen2Cor User Manual [30]). Hence, we
will not provide a link to our modified packages here, but attach them to the code submitted alongside
this thesis.

For further usage in the PySpark job, the modified processor module is compiled into a Python
wheel, a package format that allows direct installation via the pip package manager.

Job Implementation

After successfully extracting and modifying the Sen2Cor processor, we move on to implementing the
PySpark job. Following the layout introduced in Section 3.3.2, the distributed atmospheric correction
job is structured as follows:

• atcor/

The PySpark job container

– config.yml

A YAML file containing the job’s configuration parameters

– sen2cor-hdfs.whl

A Python package (”wheel”) containing the modified Sen2Cor processor

43

4. Implementation

– job.py

The job’s initialization logic tasked with loading input data, validating config parameters
and storing results

– requirements.txt

Contains the job’s requirements. For this job, only a reference to the Sen2Cor wheel is
specified

– S2AtCor/

Module containing parallelization logic

∗ init .py

Indicates that this folder is a Python module

∗ atcor.py

Contains the parallelization logic, invoked by job.py, calls the Sen2Cor processor

The job.py script contains three functions: One mainmethod, one for validating the configuration
parameters and one for uploading the result data to a SQL database. On submission to the cluster
manager, the main method starts the Spark context, loads the config.yml file and validates the
passed parameters. Missing values are replaced and wrong ones reported. Then, the input data is
read from a JSON file and converted to a PySpark DataFrame, using a custom json to sql utility
functions which is located in the workflow’s dependency module. The imported dataset of Level-1C
product paths and respective product UUIDs is passed to the parallel sen2cor method defined in
S2AtCor.atcor. Here, a sen2cor wrapper UDF, the job’s business logic, is mapped against all
partitions of the input data. We chose partitions to be the subject of the map algebra (mapPartitions
in PySpark RDD API) and not individual partition elements (map) in order to reduce the overhead
caused by initialization of the dependencies. The UDF iterates over all elements of the partition, calls
the L2A Process.main method of the modified Sen2Cor processor and yields a new Row object
containing the path to the converted Level-2A product, a new, ISO11578 [38] compliant UUID and
a reference to the original L1C product.

Column Type
l1c uuid str

l1c path str

l2a uuid str

l2a path str

Table 4.1.
DataFrame structure

returned by
parallel sen2cor

Failed products are retried for a user-specified number of times. If
the retry limit is exceeded, a row with empty Level-2A product path
and UUID is returned. On completion of the mapPartitions trans-
formation, the parallel sen2cor methods returns a DataFrame

of Row objects to the job.py script. Using the output file path set
in the configuration file, the DataFrame is written to disk. In case
PostgreSQL login details were specified, the initialization logic tries
to upload the result data to an SQL table. Job duration and number
of succeeded / failed conversion are logged before the initialization
logic terminates the PySpark context.

Installation & Deployment

The build & submit utilities, introduced in Section 3.3.3 and 3.3.4,
allow convenient generation of the dependency archive and submission to the cluster manager.

On calling

./build.sh atcor

44

4.3. Processing

the modified Sen2Cor processor and the S2AtCor module, containing the PySpark parallelization
logic, are first installed to a conda environment and then compressed to a tarball. The Sen2Cor
wheel, specified in the requirements file, is installed by the pip package manager. On detecting the
init .py file, the build script copies the S2AtCor module to the environment’s site-packages

folder.

To start the job, the initialization logic must be submitted to the cluster manager. On calling

./submit.sh atcor

the job.py, alongside the config.yml, the environment tarball and a number of cluster settings,
are passed to the spark-submit script. Depending on the specified cluster options, spark-submit
either directly spawns the Spark driver process (deploy mode client) or returns the result of the job
submission (deploy modecluster).

Configuration

A number of configuration parameters for the distributed atmospheric correction job are exposed in
the config.yml file:

• input

Information about the input data

– mode : string

Where to load the L1C data from,
currently only json is supported

– file : string

Location of the JSON file, if mode is
json

• output

Information about the output data

– file : string

Where to store the output DataFrame

– partitions : integer

How many partitions the output data
should have

• postgres

PostgreSQL database login details, op-
tional

– host : string

Host name

– port : integer

Host port

– user : string

User name

– password : string

User password

– database : string

Database name

Metadata Management

The above schema was registered with a PostgreSQL database. Before starting the atmospheric
correction job we used our custom json to sql utility function to insert the Level-1C product in-
formation from the CollGS JSON file into the SQL database. Once the processing in completed, the
initialization logic tries updating the l2a products table. An SQL command to create the above
tables is included in sql/create tables.sql.

45

4. Implementation

l1c products

Attribute Type Note
uuid UUID primary key
path TEXT L1C path
info JSONB OpenSearch JSON

l2a products

Attribute Type Note
uuid UUID primary key
path TEXT L2A path

l1c product UUID Foreign key

Table 4.2.
SQL schema for storing metadata from the distributed atmospheric correction job.

4.3.5. Patch Generation

Following the design specifications described in Section 3.3.6, we divide the patch generation process
into three distinct transformations which we implemented as methods of a
Sentinel2PatchGenerator class:

1. get band infos

Extract sensor band file infos from Level2A SAFE paths

2. load patches

Load sensor data and generate image patches

3. merge patches

Aggregate single-band patches into multi-band ones

To simplify usage of the Sentinel2PatchGenerator, a forth generate patches method com-
bines all calls required to a generate a complete patch dataset into one.

Internally, the class methods were all structured similarly: First, we define the business logic as a
nested function. While it is generally recommenced to use the runtime-optimized SparkSQL algebra
to do this, none of the tasks at hand could be fully described with its limited feature set. Instead, we
resorted to non-optimized UDFs. By declaring them as nested functions we make sure that only the
respective UDF, and not the whole class instance, is copied to the executors2. Also, this structure
allows us to use the arguments passed to the Sentinel2PatchGenerator inside of the business
logic UDFs, as if they were declared as global variables. Once defined, we use the PySpark map
algebra to apply the UDF to the specified input DataFrame. The transformed DataFrame is then
returned to the initialization logic.

The Sentine2PatchGenerator class attributes are used to store information used by more than
one of its methods, e.g. a reference to the PySpark logging object.

In order to be recognized by the build.sh as a job dependency, the Sentine2PatchGenerator
class is placed in a Python module that we’ve called S2PatchGen.

2When defining UDFs as class methods, PySpark tries to serialize and copy the whole class instance to the executors.
Depending on the structure of the class, this could create unwanted overhead.

46

4.3. Processing

Initialization logic and configuration file are added, resulting in the following job structure:

• patchgen/

The PySpark job container

– config.yml

A YAML file containing the job’s configuration parameters

– job.py

The job’s initialization logic tasked with loading input data, validating config parameters
and storing results

– requirements.txt

Contains the job’s requirements. For this job, references to the NumPy, pytest and GDAL
packages are specified

– S2PatchGen/

Module containing parallelization logic

∗ init .py

Indicates that this folder is a Python module

∗ generator.py

Parallization and business logic are defined here, inside the Sentine2PatchGenerator
class. Invoked by job.py.

The following dependencies are defined in the requirements file: All access to geospatial data is
provided by v2.3.3 of the GDAL library (Warmerdam, 2008 [72]). For unit testing we used pytest
v4.6.5 [55] and mock v3.0.5.

We will now describe the steps taken to generate the image patches in more detail.

Retrieving Sensor Band Information

Before we can load the sensor data, we first have to identify the location of the sensor band files
inside the L2A SAFE directory. This is achieved in the get band infos method by applying a
user-defined function to every element of the input DataFrame.

Using the L2A product paths generated by the distributed atmospheric correction job, we first
locate the so-called image granules - Standardized directories inside the Sentinel-2 products con-
taining the sensor data. To simplify testing and debugging of the transformation, both HDFS and
non-distributed file system paths are supported. After locating the image granules, the relevant sen-
sor band files are identified. We define two criteria on the basis of which we classify files as relevant
for further processing:

1. The name of the band is not included in a user-specified list of band names to be excluded
from processing.

2. The band resolution is the same as in the original Level-1C product, thus excluding bands
resampled by Sen2Cor.

Using a regular expression the band name, band resolution and MGRS zone identifier are extracted
from the selected band file paths. The combined band information is returned as an array of Row
types.

47

4. Implementation

The arrangement of the retrieved band information is of decisive importance for the following
transformation, the loading of the sensor data. As all bands of a returned Row object are read at once,
the more bands a Row contains, the more resources are required by the respective Spark executor to
load them. Depending on the dimensioning of the executors, the resource requirements may exceed
the supply, leading to idle times and degraded system performance.

Column Type
l1c uuid str

l2a uuid str

l2a path str

bands array

bands.band name str

bands.band path str

bands.resolution int

bands.utm str

Table 4.3.
DataFrame structure returned by

get band infos

To accommodate for this we offer two modes for
retrieving the band information: wide, which will
return one band per Row and narrow, which will in-
clude all bands selected from a product per Row. The
mode argument is specified to the get band infos

method. While the first option helps us to avoid ex-
cessive resource consumption when loading the sen-
sor data, it also has a disadvantage: We want our final
image patches to match the multi-spectral nature of
the input products and hence contain data from multi-
ple bands. This requires grouping the data read from
single bands somewhere along the processing chain.
Aggregation operations like this can however lead to
an excessive amount of shuffles, i.e. redistribution
of data across partitions, which is bound by the Disk
and Network I/O and hence a costly operation. Under such circumstances, using the narrow mode
can become viable.

Regardless of the chosen mode, the returned Row objects are joined with the input data to form the
output DataFrame described in Table 4.3.

Loading the Sensor Bands & Generating Patches

Loading of the sensor data from the retrieved band information as well as the generation of image
patches is handled by the load patches method. Because of the large amounts of data handled in
this transformation, we had to take particular care to maintain a small memory footprint. In addition
to the arrangement of the input data, discussed in the previous subsection, this goal is achieved mainly
through the use of two particular programming techniques:

1. Instead of loading the entire content of a band to memory before passing it to the patch genera-
tion mechanism, we only load a reference to the band data. The patch generator then selectively
loads only that data which is required for the respective patch from the reference.

2. By using the lazily evaluated Python generator functions the patch generation strategy returns
patches on demand. Only when there is capacity to load new patches, they are generated. The
memory footprint is significantly smaller as there is not need to store all results in memory
before returning them.

In the load patches method, the gdal load and split business logic UDF is applied via a
flatMap operation to each Row of the input data, a DataFrame with band information generated
by the get band infos method. In comparison to Spark’s one-to-one map operation, a flatMap

can yield zero, one or more elements. This follows the ratio that from one tile, we will create many
patches.

48

4.3. Processing

Inside the UDF, all band files associated with the respective Row are copied from the distributed
file system to the local executor context. Then, GDAL is used to create a reference to the band data
(Dataset.GetRasterBand) and extract the band size (Dataset.Raster*Size), bounding coordi-
nates (Dataset.GetGeoTransform) and spatial reference system identifier (Dataset.GetProjection).
The combined data is passed to the make patches generator, where in a two-dimensional for-loop a
non-overlapping sliding window is applied to each band. What we will later refer to as patch index
are the number of window shifts in X and Y direction.

Column Type
uuid str

l1c uuid str

l2a uuid str

lrx float

lry float

ulx float

uly float

epsg int

utm str

xidx int

yidx int

bands map

bands.band name str

bands.band path str

bands.data Vector

bands.width int

bands.height int

bands.min float

bands.max float

bands.mean int

bands.xres int

bands.yres int

Table 4.4.
DataFrame structure returned by

load patches

The window size is determined by the pixel res-
olution: For 10m accuracy 120 × 120pixel are ex-
tracted, for 20m 60 × 60pixel and for 60m 20 ×
20pixel. Whatever portion of the band not cov-
ered by a full window size is ignored. The
pixel values are selectively read from the band
data reference into a numpy array using GDAL’s
Dataset.ReadAsArray method. With the original
band coordinates, new patch bounding-box coordi-
nates (upper-left and lower-right corner) are calcu-
lated. Then, we prepare the final image patch struc-
ture:

For each band name, path, resolution, size, band
data and pixel value statistics (minimum, maximum,
mean) are added to a Row. As, at the time of writ-
ing, Apache Spark did not support multi-dimensional
arrays, the patch data has to be flattened into a one-
dimensional PySpark Vector first before it can be
added. The resulting Row objects are added to a
Python dictionary, whichs maps the band name to the
respective band data Row. This band mapping is then
added to another Row object were all patch-related
data is collected. Besides the band data this includes:
Patch coordinates, patch index, patch UUID, spa-
tial reference system identifier, MGRS zone identifier
and references to the original L1C and L2A prod-
ucts. The final patch Row objects are then returned
by the make patches generator and collected by the
gdal load and split UDF. Before they are regis-
tered with the transformed DataFrame, the references to the band files are closed and the files re-
moved from the local executor context. Also, the duration and the number of generated patches is
logged.

Merging Image Patches

When the wide mode option was used to retrieve the band information, the above patch generation
stage is applied to single bands only. The resulting band map therefore only has one entry. In
the merge patches transformation, such single-band patches are merged into multi-band ones. To
achieve this, we apply the PySpark aggregation function combineByKey to the patch dataset. First,
each Row of the input DataFrame is transformed into a key-value pair. The key is generated by

49

4. Implementation

combining the L2A UUID and the patch index. The value is the input Row. On this key-value data,
we apply the aggregation operation.
combineByKey requires three input arguments: A function that defines how combiner objects are

created, a function that defines how new rows are merged with combiner objects and a function that
defines how to merge combiner objects with each other. What we refer to as combiner objects are the
data structures that will be used for aggregation - In our case, the patch Row structure created in the
previous transformation. For all partitions, Spark will generate as many combiner objects as there
are distinct keys present in the partition. Whenever a matching combiner objects is found in their
respective partition, the remaining partition elements are merged with those combiner objects. In
our case, we update the combiner band mapping with the data obtained from the single-band patch.
Finally, all of a partition’s combiner object keys are broadcasted to the other partitions. Combiner
objects with the same key are merged according to the instructions specified in the third function
passed to combineByKey. Again, we simply merged one combiner band map into another here.

Once all patches are aggregated, we reverse the key-value structure and return the multi-band
patches in a DataFrame. Depending on the structure of the job script, the data is then either passed
on to further analysis or written to a user-defined parquet file.

Job Implementation

The job.py script contains two functions: One main function and one for validating the configura-
tion parameters. On submission to the cluster manager, the main method starts the Spark context,
loads the config.yml file and validates the passed parameters. Missing values are replaced and
wrong ones reported. Then, the input data, which is expected to be structured like the output of the
atmospheric correction job, is read from a parquet file specified in the job configuration. An instance
of the Sentinel2PatchGenerator class is created and it’s generate patches method called to
start the patch generation process. Along with this call a number of parameters, read from the con-
figuration file, are passed to generate patches, which assigns them to their respective transforma-
tions. Also, user can control the number of partitions between transformations. Once completed, the
DataFrame containing the generated patches is written to a user specified parquet file.

Installation & Deployment

We will again make use of the job management capabilities provided by the build and submit work-
flow. On calling

./build.sh patchgen

the S2PatchGen module, along with the libraries specified in the requirements file, are installed
to a conda environment and compressed to a tarball.

To start the job, the initialization logic must be submitted to the cluster manager. On calling

./submit.sh patchgen

the job.py, alongside the config.yml and the environment tarball are passed to the spark-submit
script. Depending on the options specified to the submit script, spark-submit interface either di-
rectly spawns the Spark driver process (deploy mode client) or returns the result of the job submis-
sion (deploy modecluster).

50

4.3. Processing

Note: Since workflow version 1.0 the generate patches method includes additional calls to the
analyis methods described below. In order to generate unlabeled patches only, references to these
methods must be removed.

Configuration

The configuration file for the patch generation job exposes the following options:

• input

Information about the input data

– mode : string

Where to load the L1C data from,
currently, only parquet is supported

– file : string

Location of the parquet file

– partitions : integer

How many partitions the input data
should have

• output : string

Path to the output file

• generator

Configuration for the patch generator

– mode : string

How band information are organized,
wide or narrow

– exclude : array

What band names to exclude from
processing

– partitions : int

How many partitions the patch data
should be organized in

Metadata Management

The metadata from the generated patch DataFrame can easily be uploaded to an SQL database using
JDBC. After setting up the appropriate login details calling

df.drop("bands").write.jdbc(url=jdbc url, table="patches",

properties=jdbc props)

will write all patch metadata to a patches table. Except for the missing band information, the
structure of the created table will be equivalent to Table 4.4.

4.3.6. Data Export

In addition to the tools provided by the build & submit workflow, the distributed generation of a
GeoTIFF archive will mainly be based on GDAL v2.3.3 (Warmerdam, 2008 [72]). A Python imple-
mentation of the JSON (Bray, 2014 [13]) file format is used to write metadata files. For compressing
the partition data we use the ZIP format (Katz, 1989 [53]), which is provided by the Python standard
library zipfile.

Similar to the atmospheric correction job, the parallelization logic is organized in a single function,
export geotiff. When invoked, it applies the dump zipfile UDF via a
mapPartitionsWithIndex transformation to all partitions of the patch data. Again, we make use
of Python generator functions in order to minimize the memory footprint. As indicated by the name,
the mapPartitionsWithIndex transformation forwards an additional partition index to the UDF,
which will be used in naming the ZIP files.

51

4. Implementation

The dump zipfile UDF first acquires a GeoTIFF driver from GDAL
(GetDriverByName("GTiff")), which in the following will be used to create the images. It then
opens the ZIP file that the partition data that will be used to compress the partition data. As the
compression backend we choose the default zlib (Gally & Adler, 2017 [28]).

Once all the prerequisites are set up, the export process is started. For all partition elements
the patch directory names are generated according to the design specification described in Sec-
tion 3.3.7. A regular expression is used to extract the satellite mission, acquisition date and time
from the band path. The remaining information are obtained from the patch Row. Then, the patch
directory is created in the executor working directory and the metadata exported to a JSON file.
Missing scene, land cover and country labels are ignored. For all bands of the partition elements
the GeoTIFF driver is used to create a new file (Dataset.Create). The geocoordinates are set
(Dataset.SetGeoTransform) and the coordinate reference system is configured (Dataset.SetProjection).
Finally the band data, reshaped back into a two-dimensional NumPy matrix, is added (Dataset.Raster.WriteArray).

The generated files are then copied to the ZIP file. Once all partition elements have been exported,
the non-compressed data is deleted from the executors. The ZIP file is then moved to the HDFS
and a Row, containing the new HDFS path, is returned to the parallelization logic. export geotiff

converts the returned objects into a DataFrame and returns them to the job script.

Structure

The distributed data export job is structured as follows:

• export/

The PySpark job container

– config.yml

A YAML file containing the job’s configuration parameters

– job.py

The job’s initialization logic tasked with loading input data, validating config parameters
and decompressing the dataset

– requirements.txt

Contains the job’s requirements. For this job, references to the NumPy, pytest and GDAL
packages are specified

– S2PatchX/

Module containing parallelization logic

∗ init .py

Indicates that this folder is a Python module

∗ exporter.py

Parallization and business logic are defined here. Invoked by job.py.

The following dependencies are defined in the requirements file: GDAL v2.3.3, NumPy 1.16.5
and pytest v4.6.5.

The job script contains four functions: In addition to the ones used in the other jobs, main and
validate config, we defined a method that obtains compressed partitions from the HDFS and
decompresses them to a local directory. Also, we added a Python context manager to facilitate multi-
threaded decompression with the help of Python’s multiprocessing module. On submission to the

52

4.3. Processing

cluster manager, the main method starts the Spark context, loads the config.yml file and validates
the passed parameters. Then, loading of the patch data from a user-specified parquet file is scheduled
and the export geotiff transformation executed. The results are collected by the Spark driver
process in a Python list. Using the context manager, we spawn a thread pool with as many threads
as the driver node has CPUs. For every ZIP file contained in the results, a thread downloads and
decompresses the data to a user-specified directory. Once completed, the local ZIP files are removed
and the number of decompressed files, as well as the duration, are reported.

Installation & Deployment

Installation and deployment of the distributed data export job is handled by the build and submit
workflow. On calling

./build.sh export

the S2PatchX module, along with the libraries specified in the requirements file, are installed to a
conda environment and compressed to a tarball.

To start the job, the initialization logic must be submitted to the cluster manager. On calling

./submit.sh export

the job.py, alongside the config.yml and the environment tarball are passed to the spark-submit
script. Depending on the options specified to the submit script, spark-submit interface either di-
rectly spawns the Spark driver process (deploy mode client) or returns the result of the job submis-
sion (deploy modecluster).

Configuration

The following configuration parameters are exposed in config.yml file:

• input : string

Path to the input parquet file

• output

Information about the output

– zips : string

Driver node directory were ZIP files are downloaded to

– extract : string

Driver node directory were ZIP files are decompressed to

• keep zips : boolean

If True, do not delete ZIP files from the driver node

4.3.7. Unit Tests

Both the patch generation and export stage are covered with pytest [55] unit tests. A Spark instance
is started locally to allow testing without connecting to a remote cluster. With the help of an example
band file, the structure and content of the data returned by the PySpark transformations is verified.

53

4. Implementation

Sentinel2PatchGenerator methods are tested one after the other. Successfully tested methods
are used as input for the next ones to test. Due to the nested design of the transformations, utility
methods defined inside the business logic had to be re-implemented in the test script. Calls to the
HDFS are mocked to simulate a working distributed file system.

No tests for the distributed atmospheric correction stage are included, because reaching an ade-
quate level of test coverage for the Sen2Cor module would have exceeded our limited time frame.
The Sen2Cor authors were asked about this topic, but until the end of this thesis we did not receive
an answer.

Similar to the test setup for CollGS, we enabled continuous testing of the processing code through
GitLab (Hethey, 2013 [34]). Commits that cause tests to fail are not merged into the remote reposi-
tory.

4.4. Analysis

The analysis stage of our end-to-end framework is implemented on top of the processing stage. All
modifications made to the patch generation mechanism are included in our exemplary processing and
analysis workflow, which can be obtained from

https://gitlab.tubit.tu-berlin.de/rsim/BigEarthNet2

Two methods were added to the Sentinel2PatchGenerator class:

• scene label patches

Annotate patches with scene classification labels

• corine label patches

Annotate patches with land cover and country label information

In the following, we will describe the additions to the patch generator in more detail.

4.4.1. Scene Classification Label Annotation

In the scene label patches method, scene class labels are extracted from the scene classification
map band created by Sen2Cor. The extraction logic is defined in the find scene labels UDF.
We apply the UDF to the patch data via the PySpark withColumn transformation, which also cre-
ates a new DataFrame column from the results. Inside the UDF, a mapping of scene mask pixel
values (integer) to label string, based on the values presented in Figure 3.7, is stored. Using this
mapping, a distinct set of scene class values is extracted from the patch’s SCL band and converted
into the corresponding strings. The resulting array of strings is returned to the parallelization logic
and automatically added to the new scene label column.

In case the drop nodata option is specified to the transformation, all patches containing a 0, the
value for the NO DATA class, in their SCL bands are filtered from the DataFrame before generating
the scene labels.

4.4.2. Land Cover & Country Label Annotation

In the corine label patches method, land cover and country labels are integrated with the patch
dataset by using the PostGIS spatial database. Spark executors are connected with PostGIS using

54

https://gitlab.tubit.tu-berlin.de/rsim/BigEarthNet2

4.4. Analysis

pyscopg2 (Varrazzo, 2019 [70]) a PostgreSQL client for Python. Before we can start the process we
first have to set up at least one database instance and insert the CORINE and NUTS datasets.

In our test setup, we chose to install the database on the largest node available to us, a machine
with 50 cores and 500 GB RAM. PostgreSQL v10.10 was obtained from the Ubuntu APT package
repository. Version 2.5.3 of PostGIS was built from source, acquired from

https://download.osgeo.org/postgis/source/postgis-2.5.3.tar.gz

An ESRI Geodatabase formated (.gdb) copy of the 2018 version of the CORINE dataset, CLC
2018, was downloaded from

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

The NUTS 2016 dataset, again in ESRI Geodatabase (.gdb) format, was fetched from

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

administrative-units-statistical-units/nuts

The GDB files were then inserted to the PostGIS instance using GDAL’s ogr2ogr feature conver-
sion tool. The following call was used to insert the NUTS table:

ogr2ogr -f "PostgreSQL" PG:"host=$host port=$port dbname=$db user=$user

password=$password" ref-nuts-2016-01m.gdb -overwrite -progress --config

PG USE COPY YES

The same command can be used to insert the CORINE data, only the name of the input file has
to be changed. As the original CLC 18 data does not include human readable land cover labels, but
only a label code, we had to insert an additional table, mapping the codes to readable label strings.
An SQL dump of that table is provided as sql/labels.sql with our example workflow.

When all tables are inserted, the corine label patches transformation can be started. First,
three new array-type columns (corine labels, corine objectids, country) are added to the
patch DataFrame. Following this, the corine label partitionsUDF is applied via the mapPartitionsWithIndex
operation. In the UDF we try to establish a connection to the PostGIS instance. If this fails we retry
for a user-defined number of times. Once a connection is established we iterate over all partition
elements and execute the SQL queries against the PostGIS instance. The request to the CORINE
table (see Figure 4.1) is executed first.

The PostGIS ST MakeEnvelope function is used to generate a geometry type from the patch
bounding-box coordinates. With the ST Transform command the geometry is transformed to the
ETRS89 coordinates reference system used by the CLC shapes (SRID number: 3035). Then, the
ST Intersects command is used to find spatial intersection between the CORINE objects and the
respective patch. The results are joined with the labels table to obtain readable class labels. Finally,
the distinct set of CORINE object IDs and land cover labels is returned to the UDF. There, the values
are added to the newly created DataFrame columns. Patches for which no data was found are filtered
out from the dataset.

After fetching the land cover labels, the query to obtain the country label is executed (see Figure
4.2).

An analysis of the PostgreSQL query plan confirmed that dynamically generating the patch geome-
try with ST MakeEnvelope and ST Transform significantly outperforms referencing pre-computed

55

https://download.osgeo.org/postgis/source/postgis-2.5.3.tar.gz
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts

4. Implementation

1 SELECT DISTINCT clc.objectid , labels.label

2 FROM clc2018_clc2018_v2018_20 clc , labels

3 WHERE ST_Intersects(clc.shape , /* compute intersection */

4 ST_Transform(/* transform to CLC SRID */

5 ST_MakeEnvelope(/* make patch bounding box */

6 $ulx , $uly , $lrx , $lry , $epsg

7),

8 3035)

9) AND clc.code_18 = labels.code;

Figure 4.1.
SQL query to obtain CORINE land cover label

1 SELECT DISTINCT name_engl

2 FROM nuts_rg_01m_2016_3035 nuts

3 WHERE ST_Intersects(nuts.shape , /* compute intersection */

4 ST_Transform(/* transform to NUTS SRID */

5 ST_MakeEnvelope(/* make patch bounding box */

6 $ulx , $uly , $lrx , $lry , $epsg

7),

8 3035)

Figure 4.2.
SQL query to obtain NUTS country label

geometries, hence we again use this approach in the NUTS query to generate the patch bounding
box. Like the CLC dataset, NUTS uses the ETRS89 coordinates reference system. Spatial inter-
section with the NUTS shapes are computed with the ST Intersects function. A distinct set of
English country names is return to the UDF and added to the respective patch Row. This time patches
for which no country labels were found are included in the dataset3.

After obtaining labels for all elements of a partition the PostGIS connection is closed. Dura-
tion and number of successfully labeled patches are logged and the updated partition returned to
corine label patches.

4.4.3. Installation & Deployment

The analysis was implemented as part of the Sentinel2PatchGenerator class. With workflow
version 1.0 we updated the generate patches wrapper function to include calls the analyis meth-
ods. Therefore, the installation and deployment process of the analysis stage is equivalent to that
described in Section 4.3.5.

4.4.4. Configuration

The configuration file of the patchgen job was extended with the following parameter:

3To accommodate for the fact that Kosovo is not included in NUTS and that parts of the ocean will not be associated with
any country.

56

4.4. Analysis

• filter

Information about what patches to exclude
from the annotated dataset

– drop nodata : boolean

Whether or not to exclude patches
with NO DATA scene labels

• postgis

PostGIS database login details

– host : string

Host name

– port : integer

Host port

– user : string

User name

– password : string

User password

– database : string

Database name

4.4.5. Metadata Management

patches

Attribute Type Note
uuid UUID primary key

l2a product UUID foreign key
bbox GEOMETRY bounding box

corine labels TEXT[] land cover
corine objectids INT4[] foreign keys

country TEXT[] country
scene labels TEXT[] scene classes

Table 4.5.
SQL schema for storing metadata from the distributed analysis job.

Building on the technique described in Section 4.3.5 the insertion of annotated patch metadata
was implemented in the Sentinel2PatchGenerator.update database method. Using the Post-
greSQL JDBC connector the patch DataFrame (without band data) is inserted to a temporary table.
The content of the temporary table is then converted to the layout described in Table 4.5. Spatial
reference information are converted into a PostGIS geometry types. An SQL command to create
the above table is included in sql/create tables.sql.

4.4.6. Unit Tests

As in the processing stage the analysis code is covered with pytest unit tests. Tests for the Sentinel2PatchGenerator
class were extended with test for the scene label patches and corine label patches transfor-
mations. Additionally, a number of tests for PostGIS were added: Transformations between coor-
dinate reference systems were tested for a loss of accuracy. Intersection queries for the NUTS and
CORINE tables were tested against a list of ground-truth values.

57

5. Evaluation

In this section we evaluate the performance of our end-to-end framework. We examine each stage of
our implementation, data acquisition, processing and analysis at three different scales:

1. Small-scale: With three images from the Berlin area (0.9 GB)

2. Medium-scale: With 352 images from Germany (171 GB)

3. Large-scale: With 2824 images from 38 European countries (1.4 TB)

For the small-scale test case we selected images from one particular grid zone - The Berlin area
(MGRS: 33UUU), home of TU Berlin. We ran it on a single worker node of our cluster to create an
initial performance baseline measurement.

For the medium-scale test case we used a GeoJSON representation of the German border to pro-
grammatically identify 84 MGRS zones that contain data for this area. From the one-year period of
July 2017-2018 we then selected 352 Sentinel-2 L1C products with zero percent cloud coverage, one
for each season, so up to 4 for each grid zone1. Note: Since the data for this test was downloaded a
few months before the others, some of the selected parameters differ.

For the large-scale test case the Sentinel-2 tiling grid [1] was used to identify 866 MGRS grid
zones from 38 states participating in the latest CORINE Land Cover inventory - 28 EU member
countries, 5 EU member candidates, 4 EFTA states and Kosovo. From the one-year period of July
2018-2019 we selected 2824 products, again one for each season.

We now proceed with a detailed evaluation of the individual stages and then conclude the chapter
with an evaluation of the end-to-end performance.

5.1. Data Acquisition

We used our CollGS data acquisition tool to identify and acquire suitable data for the above test
cases. Four collaborative ground segment accounts were added to the configuration: SciHub (ESA),
Finland, Norway and Greece. All other mirrors were either found to have disabled their API end-
points (Portugal, Sweden), changed API specifications (Germany), showed high error rates (Austria,
Italy) or left the Collaborative Ground Segment program (UK).

5.1.1. Product Search

The collgs search subcommand was used to perform an initial search in the L1C product catalogs.
For the Berlin area grid 33UUU, 13 cloud-free products were identified in the July 2018-2019 period.
On average a search was completed in 1.36 seconds (n=5). For our medium-scale test case, 1013

1Due to a bug in our selection mechanism, seasons of the same name from different years were not considered to be the
same. Thus we selected more than four products for some zones.

58

5.1. Data Acquisition

products were identified in 23.25 seconds. In contrast to the other two cases, products with up to
ten percent cloud coverage were included. For the large scale case 13048 cloud products were found
in 1285.63 seconds. For 42 of 866 specified grid zones no cloud-free products were found. Search
results were stored in a JSON file.

5.1.2. Product Selection

Next, we used the collgs select subcommand to narrow down our previous selection to one
product per grid zone and season of the year. All three operations were completed in less than a
second. Results were exported to a JSON file. The following number of products was selected: 3 for
small-scale, 352 for medium-scale and 2824 large-scale.

The selections statistics shown in Table 5.1 were generated with the help of the collgs describe

subcommand. Additional season statistics can be found in Appendix D.1.

Scale Products Avg. Size Total Size Avg. Cloud
small 3 313.61 MB 0.91 GB 0.0%
medium 352 499.17 MB 171.58 GB 6.9%
large 2824 509.33 MB 1404.63 GB 0.0%

Table 5.1.
Description of the evaluation datasets after selecting one product per season and MGRS zone.

5.1.3. Mirror Ranking

Before we started the data acquisition process we first evaluated the performance of the configured
mirrors using the collgs mirror rank subcommand. We selected 7 MGRS zones, one from each
European Collaborative Ground Segment member, for collecting the performance metrics: 33UWP

(Austria), 35VLG (Finland), 32UQD (Germany), 34SGH (Greece), 31UES (France), 32VNM (Norway),
32TQM (Italy). Allowed cloud cover percentage was set to zero percent. To accommodate for varying
connection quality we repeated the ranking process ten times and calculated the average values. The
results are shown in Figure 5.1.

The highest average performance value, 11.2± 0.6, was measured for ESA’s SciHub mirror, fol-
lowed by Finland with 9.2± 0.5, Greece with 7.0± 0.0 and Norway with 6.6± 0.2. With 4229
available products the ESA mirror also outperforms all other mirrors with regards to the total number
of products available for the given test zones. The Norwegian mirror came in second with 1679 files,
followed by Finland with 507 and Greece with 19.

With one exception, the results of the speed measurement were similar to the spring 2019 mea-
surements shown in Table 3.1. In terms of average download speed the SciHub mirror, with 2.9±0.7
MB/s, performs only slightly better than Finnish one, with 2.6±0.75 MB/s. While not as fast as the
first two, the Greek mirror, with 1.46± 0.14 MB/s, exhibits a relatively low standard deviation. In
contrast to the earlier measurement however, the speed of the Norwegian Mirror seemed to have been
massively reduced: From 48.5± 3.2 MB/s in January 2019 down to 0.14± 0.0 MB/s in September
2019.

The average request duration was calculated by sending a GET request to the mirrors’ OpenSearch
endpoints and measuring the time it took the server to respond. For all three national mirrors average
response times of under one second were measured. The Greek mirror answered the fastest, with
0.10±0.01 seconds, followed by the Finnish one, with 0.35±0.08 seconds, and the Norwegian one

59

5. Evaluation

ESA Finland Greece Norway0

5

10

(a) Average mirror performance rank (n=10)

ESA Finland Greece Norway0

1000

2000

3000

4000

(b) Number of avaible products for test zones

ESA Finland Greece Norway0

1

2

3

4

(c) Average download speed per connection in MB/s (n=10)

ESA Finland Greece Norway0
1
2
3
4

(d) Average query response time in seconds (n=10)

Figure 5.1.
Evaluation of the mirror performance ranking.

with 0.44± 0.03 seconds. The server with both the largest data archive and the largest user base,
ESA’s SciHub mirror, was also the slowest to respond with an average of 3.53±0.71 seconds.

5.1.4. Product Download

After completing the mirror ranking we started the data acquisition with the collgs get subcom-
mand. A maximum of 6 parallel connections were allowed, with 2 connections per server. The
timeout was set to 15 seconds and the number of retries limited to 50. To compensate for the loss
of our two most promising Mirrors, Germany (changed API specs) and Norway (heavily reduced
download speed), we used a trick to bypass the SciHub connection and rate limit: By adding another
set of SciHub user login details we were able to raise the number of available connections by two
to a total of four. The available bandwidth increased accordingly. On receiving the fifth connection
from the same IP address however, the SciHub mirror blocks all connections from this address for
the next 2 hours2

The results of the acquisition process, as shown in Table 5.2, show the positive impacts of the
concurrent mirror access strategy on the download speed. Average speeds up to five times greater
than the fastest individual connections were achieved. The test data for the small-scale was acquired
in 2.07 minutes, for the medium-scale test in 3.46 hours and for the large-scale test in 26.1 hours.

2While this successfully demonstrates the capabilities of the concurrent mirror access strategy, multi-account use is often
seen as rude behavior. The bandwidth limitations exist for a reason, don’t be rude.

60

5.2. Processing & Analysis

Scale Size Duration Avg. Speed
small 0.91 GB 2.07 min 7.5 MB/s
medium 171.58 GB 3.46 h 14.1 MB/s
large 1.37 TB 26.1 h 14.9 MB/s

(a) Download duration and speed

ESA Finland Greece Norway
100% 0.0% 0.0% 0.0%
86.9% 13.0% 0.0% 0.0%
91.2% 8.2% 0.5% 0.1%

(b) Percentage of downloads per mirror

Table 5.2.
Evaluation of the data acquisition results

Another visible feature is SciHub’s dominance in the distribution of downloads per mirror. In knowl-
edge of our scheduling strategy this can be attributed to the following factors: As the highest scoring
one the SciHub mirror is preferred. It also has the largest amount of products available (see Figure
5.1) and thus all of the 4 available connections will be in use most of the time. As we have limited
the amount of total connections to 6 this leaves only 2 connections to the other mirrors. Whether or
not those can then occupy the remaining connections depends on the size of their product catalogs.
But the product portfolios offered by national mirrors are usually limited to the borders of the oper-
ator nation, which further skews the distribution towards the SciHub mirror. In addition, the smaller
mirrors were slower so that fewer downloads could be completed overall.

In the two longer running download sessions our fault tolerance strategy could also demonstrate its
usefulness. Six read timeouts were reported during the medium-scale test. The system successfully
recovered by retrying the respective downloads. In the large-scale test 67 retries were reported. When
the SciHub server was taken offline for maintenance shortly before the session was completed, the
retry limit was quickly exceeded and the 52 remaining downloads were marked as failed. Due to
time constraints, we continued with the reduced data set.

5.1.5. HDFS Upload

After finishing the downloads we uploaded the files to the HDFS using the collgs hdfs upload

subcommand. The updated product paths were exported to a JSON file. For all three cases we
achieved stable upload rates of around 55 MB/s. It took 16.9 seconds to upload the small-scale, 53.1
minutes to upload the medium-scale and 7.1 hours to upload the large-scale test data.

5.2. Processing & Analysis

After the L1C products were uploaded to the HDFS we started the processing stage. With the help
of our build & submit workflow job environments were packaged and submitted to the cluster (see
Section 2.8). Configuration parameters were set in the job’s config.yml files.

5.2.1. Atmospheric Processing

Paths to the JSON files returned by the HDFS uploader were specified to jobs/atcor/config.yml.
The number of partitions for the output file was set to the respective number of executors. We decided
not to retry failed conversions because in all the cases we observed the problem was with the HDFS
and not with the Sen2Cor logic. This particular issue, which lead to some executor not being able
to write to the HDFS, continued until the end of this stage. Before starting the next stage, however,
we were able to identify a wrongly mounted partition on one of the storage nodes and thereby fixed

61

5. Evaluation

the problem. As an additional metric for comparing the scales, we calculated the average number of
products processed per minute.

In a newly installed Anaconda distribution building the job environment took 6.2 minutes. A
subsequent run utilized the pre-cached packages and was completed in 3.2 minutes.

Scale L2A Duration Avg. Sen2Cor L2A/min
small 3 41.7 min 29.2±3.5 min 0.07
medium 341 5.4 h 28.4±7.1 min 1.05
large 2443 37.6 h 31.5±6.1 min 1.08

Table 5.3.
Evaluation of the atmospheric correction results

As shown in Table 5.3, the atmospheric correction for the small scale tests was completed in 41.7
minutes with three Spark executors. This corresponds to a throughput of 0.07 products per minute.
From the aggregated log file the average duration per conversion was calculated to be 29.2± 3.5
minutes, indicating that a significant portion (12.5±3.5 minutes) of the job was spent on setting up
and pulling down the Spark context.

The medium-scale test was completed in 5.4 hours using all 69 scheduled executors. With 28.4±
7.1 minutes the average duration per conversion was comparable to that of the the small-scale test.
Due to problems with the HDFS 11 out of 352 (3.1%) conversion jobs failed, reducing the number
of generated L2A files to 341. This corresponds to a throughput of 1.05 products per minute.

The large-scale test was completed in 26.1 hours again using all 69 Spark executors. The average
duration per conversion was again very similar to the previous test with 31.5±6.1 minutes. 381 out
of 2824 product conversions failed which amounts to a failure rate of 13.5%. With 2443 successfully
converted products a throughput of 1.08 products per minute is achieved. This is the highest value
of the three tests. Especially the pronounced difference to the small-scale test highlights the benefits
of distributing the processing tasks. Medium- and large-scale tests perform similarly, suggesting that
the maximum throughput depends mainly on the amount of resources allocated.

On completion of the processing the L2A metadata was uploaded into an SQL table. The upload
was completed in 0.5 seconds for the small-scale, 1.6 seconds for the medium-scale and 12.6 seconds
for the large-scale experiment.

5.2.2. Patch Generation

Figure 5.2.
Example image patch,

Sweden, Pastures & Water
courses

After successfully completing the atmospheric correction we set up
the configuration file for the patch generation job. Parquet files cre-
ated by the previous stage were specified as input. Band information
were read in wide mode. Since the narrow mode repeatedly led to
memory-related crashes of the executors, no comparison could be
made between the two modes. The TCI, AOT and WVP bands were
excluded from loading. A PostGIS database instance was configured
as described in Section 4.4.2. The analysis stage was configured to
filter out all patches containing the NO DATA scene classification la-
bel. System throughput was measured in number of L2A products
processed per hour.

The time required to build the job environment was very similar
to that of the previous job: Packaging in a newly installed Anaconda

62

5.2. Processing & Analysis

distribution was completed in 6.5 minutes. A subsequent run took
3.4 minutes.

Scale Patches Duration L2A/h
small 16413 24.43 min 6.72
medium 1.71 M 19.63 h 17.37
large 10.3 M 150.87 h 16.19

(a) Patch generation statistics

Info Load Scene PostGIS
0.12% 6.3% 0.49% 41.95%
0.14% 10.2% 0.52% 87.42%
0.17% 10.19% 0.66% 87.49%

(b) Percentage duration of subtasks

Table 5.4.
Explanation of the column names in (b): Info includes loading of band information, Load includes

loading and merging of patches, Scene includes annotation with scene classification labels, PostGIS
includes integration of labels from PostGIS and creation of a patch dataframe.

Table 5.4 shows the result of the patch generation stage. In the small-scale test, 16413 patches were
generated in 24.43 minutes. As 3 input files were processes this amounts to a throughput rate of 6.72
products per hours. Identification of the band files was completed in 1.77 seconds and produced 39
bands. Before loading the bands the DataFrame was repartitioned from 3 to 150 partitions. Loading
and merging of the patches took 1.54 minutes and produced 24843 patches, 8281 patches for each
product. Annotation with scene classification labels was completed in 7.24 seconds. 8340 (33.57%)
of the patches contained NO DATA labels and where removed. A total of 10.25 minutes (41.95%) was
spent on integrating data from PostGIS. The largest share of time, 12.49 minutes (51.13%), was not
spent in any of the subtasks and can be attributed to setup and pulldown of the Spark environment.
For all patches both the land cover and country labels were found. The generated parquet file had a
size of 1.1 GB.

For the medium scale test 1.710.348 patches were generated in 19.63 hours. 341 input files were
processed, yielding a throughput rate of 17.37 products per hour. Identification of the band files was
completed in 2.04 minutes and produced 4433 bands. After obtaining the band infos the data was
repartitioned from 69 to 2500 partitions. Loading and merging of the patch data was completed in
2.55 hours and produced 2823821 patches. Integration of scene labels took 7.80 minutes and lead
to the exclusion of 1113473 (39.43%) NO DATA patches. By far the largest share of time was spent
with annotation of country and land cover labels, 17.61 hours, which amounts to 87.42% of the total
job duration. Again, we were able to find both label types for all specified patches. 18.58 minutes
(1.58%) of the time could not be attributed to any subtask. The patch data parquet file had a size of
221.3 GB.

For the large-scale test 10.301.669 patches were generated in 150.87 hours. Considering 2443 files
were specified as input we calculated a throughput rate of 16.19 products per hour. Identification
of 31759 sensor bands was achieved in 15.0 minutes. Before loading the patches the DataFrame

was repartitioned from 69 to 15000 partitions. Loading and merging of 20.230.483 patches took
17.2 hours. Annotation of scene class labels was completed in 1.0 hours. 7.079.998 (35.0%) of
those patches were removed because of a NO DATA tag. Integration of PostGIS data was achieved in
132.0 hours. For 2848816 patches (21.66% of the remaining patches), no CORINE labels could be
found. As a result those patches were not included in the final patch archive. After reviewing the
metadata for some of the rejected patches we identified two main causes: Either they were located in
international waterways or countries that did not participate in the CORINE Land Cover inventory.
Similar to the previous task 25.25 minutes (0.28%) of the time spent could not be attributed to any
subtask. The parquet file containing the patch data had a size of 1.3 TB.

63

5. Evaluation

A number of trends become apparent: Integration of labels from the PostGIS database is by far the
most time consuming of all subtasks. The percentage for the large and medium test is almost equal.
Also, the PostGIS throughput rate stayed very similar: 1601.27 patches/min for the small-scale,
1618.73 patches/min for the medium-scale and 1660.41 patches/min for the large-scale experiment.
Around 1600-1700 patches/minute seems to be the maximum throughput rate for the selected Post-
GIS setup regardless of the number of connections used. Our preliminary hypothesis is that the
number of CPUs available for the PostGIS processor, which remained the same in all three tests, is
the decisive factor.

While we seem to have reached the maximum system throughput rate in the medium-scale test,
the difference to the large-scale test is rather small. As with the atmospheric correction stage, this
leads us to conclude that not the size of the input data but the amount of assigned resources are the
decisive factor for the overall system performance.

Although the percentage time share for identifying sensor band information and integrating scene
class labels is always below 1%, their share increases with the size of the data set. A similar dynamic
can also be observed for loading and merging of the patches. Contrary to what was feared, however,
we could not observe any shuffle-induced exponential growth of the time share for this subtask. On
the contrary, with 19603.18 patches/minute the patch load throughput rate for the large-scale test was
even slightly faster than that of the middle-scale test (18456.34 patches/minute).

After completing the patches generation the patch metadata was uploaded to a PostGIS database
using the provided update database function. The upload for the small-scale test data was com-
pleted in 7.2 seconds, for the medium scale in 14.71 minutes and for the large-scale in 33.41 minutes.
As an example for the usefulness of the database we calculated the number of patches without coun-
try labels for the large-scale test, 1896615, in less than a second.

5.2.3. Data Export

Once all patches were generated we continued to export them to a GeoTIFF archive. Parquet files
generated by the patch generation stage were configured as input files. For storing the zipped parti-
tions we specified a path on the HDFS. For extracting the archive we allocated a total of 3.5 TB of
space on the most powerful machine in our cluster (50 CPUs). There we also launched the Spark
driver process. ZIP files obtained from the HDFS were configured to be deleted after extraction.

Scale Duration
small 26.05 min
medium 4.91 h
large 34.7 h

Table 5.5.
Export job durations

For the small-scale test 16413 patches in 150 partitions were
exported in 26.05 minutes. ZIP files were generated in 7.1 min-
utes (27.25%) and extracted in 9.3 minutes (35.7%). 9.65 minutes
(37.04%) were spent outside of the two subtasks. The final archive
had a size of 3 GB.

For the medium-scale test 1.71 million patches in 2500 partitions
were exported in 4.91 hours. GeoTIFF partitions were generated in
18 minutes (6.1%) and extracted in 4.4 hours (89.61%). Similar to
the previous experiments 12.6 minutes (4.29%) were spent outside
of any subtask. The extracted dataset had a size of 320 GB.

For the large-scale test 10.3 million patches in 14062 partitions were exported in 34.7 hours. While
generating the GeoTIFF ZIP files was completed in 2.65 (7.63%) hours, download and extraction of
the ZIP files amounted to 31.78 (91.58%) hours. 16.2 minutes (0.79%) of the time was spent outside
of the two subtasks. The extracted archive had a size of 1.9 TB.

As clearly visible from the results, the export job is split into a distributed (Generation of the
partition ZIP files) and a non-distributed (extraction if ZIP files) part. While the generation of the

64

5.3. End-to-End

ZIP files benefits from the fact that it is executed on several machines in parallel, the extraction
process is subject to a loss in performance, which is typical for working large volumes of data on
a single machine. In all three test cases both CPU and RAM usage for the extraction process was
relatively low, indicating that the hard disks were the cause of this bottleneck. However, it is also
unclear to what extent the chosen compression algorithm contributes to this effect.

5.3. End-to-End

After completing all stages of our end-to-end framework we compared the overall system perfor-
mance for the three selected scales. As an indicator for system performance we again calculated the
throughput rate, this time relative to the volume of data processed.

Scale Input Duration GB/h
small 0.9 GB 1.60 h 0.57
medium 171.58 GB 38.80 h 4.42
large 1.4 TB 249.27 h 5.99

(a) End-to-end statistics

DL AtCor PatchGen Export
2.16% 43.44% 27.92% 27.14%
8.92% 13.92% 64.51% 12.65%
10.47% 15.08% 60.52% 13.92%

(b) Percentage duration of stages

Table 5.6.
Explanation of the column names in (b): DL includes data acquisition, AtCor includes atmospheric
correction, PatchGen includes patch generation and analyis, Export includes exporting of GeoTIFF

archives

For the small-scale test the end-to-end run was completed in 1.6 hours. As documented in the
previous sections a significant part of this is contributed by system setup and pulldown overhead,
which highlights the disadvantages of running smaller batches in the presented framework.

For the medium-scale test one complete run took 38.8 hours. In comparison to the small-scale
tests the importance of achieving a high level of parallelism became clear.

For the large-scale test the four sections of the framework were completed in 249.27 hours.
Throughout all conducted experiments the performance of the large-scale test was comparable to
that of the medium-scale case, which is again shown by the time share percentage presented in Table
5.6. Other than expected, the size of the dataset did not have a negative effect on the system perfor-
mance. On the contrary, the overall throughput rate of 5.99 GB/s was even greater than that of the
medium-scale test with 4.42 GB/h. Although one must consider that a significant proportion of the
large-scale test data either contained NO DATA values or no CORINE labels and was thus not passed
to the subsequent stages. The comparison of the two scales on the basis of the processed input data
is therefore only of limited value for understanding the overall system performance.

65

6. Conclusion and Discussion

In the past chapters we have designed, implemented and evaluated an end-to-end framework for pro-
cessing and analysis of big data in remote sensing. We began with a system for the fast acquisition of
satellite data. On the basis of an existing API client we developed a strategy for concurrently access-
ing multiple open-access mirrors for Copernicus data, the so called Collaborative Ground Segments.
In combination with a custom download scheduling mechanism we were able to achieve a five-fold
increase in download speed compared to existing, non concurrent approaches. This gain would prob-
ably have been even greater if several ground segment operators had not changed or even disabled
their services. Especially worth mentioning are the German and Norwegian mirrors which were each
more than three times as fast in our preliminary examination as the maximum value reached at the
end. While the German mirror replaced the standardized Ground Segment API specification with
a custom one at the beginning of 2019, the Norwegian mirror reduced its download speed by more
than fifty times of the original value. The loss of these two largest ground segments ultimately led
to the fact that most of the increase in speed achieved was due to concurrent access to the ESA-run
SciHub server. Although our system could also demonstrate its usefulness under these more difficult
conditions, the question arises whether the effort to develop a complex parallel system was justified.
By building on an open-source client with an active community we were able to outsource much of
the API-specific implementation work, but the effort required to manage concurrency was still con-
siderable. While commercial solutions for the acquisition of satellite data, in contrast to the approach
presented here, are usually subject to a fee, they offer significantly faster connections, which renders
the use of concurrent approaches unnecessary. Such providers also offer several year old data, which
is usually removed from the product catalog on open-access servers. Regardless of the achieved
download rates, the approach developed by us is tailored specifically to the requirements of a big
data remote sensing task, as we were able to demonstrate in several experiments. The search, selec-
tion and acquisition of several thousand Sentinel-2 products was achieved within a few calls to the
provided command line interface. The built-in failure tolerance mechanism provides effective pro-
tection against short-term connection problems, preventing premature termination of long-running
download sessions. Another helpful feature was the built-in distributed file system interface which
allowed acquired products to be quickly uploaded to the HDFS.

For the processing and analysis of the acquired earth observation data we developed a system based
on two well-known big data tools: Apache Hadoop and Apache Spark. Looking back, we conclude
that this was a good choice - Both are mature systems with a large and active user base. To address
their missing support for remote sensing tasks we first developed a number of tools with which
we could extend the functionality accordingly. Based on the standard Python package managers
the presented design allows the convenient extension of Apache Spark by arbitrary Python libraries
via the Hadoop YARN cluster manager. By reducing the underlying logic to two basic commands,
build and submit, we were able to massively reduce the effort required to generate and launch such
modified Spark jobs. This is particularly useful in the present case as it allows users with little
prior knowledge about big data technologies, e.g remote sensing experts, to use the system. Based
on the job templates defined in this context we subsequently developed a series of Spark jobs with
which we successfully generated a large-scale multi-label data set from the acquired satellite data.

66

The beginning was made by a module for concurrent atmospheric correction. After reviewing the
available algorithms we selected ESA’s Sen2Cor processor and modified it in such a way that we
could integrate it into Spark. In view of the efforts involved we recommend that for future research
the existing alternatives be thoroughly re-examined. Despite an active developer community the
Sen2Cor source code is not publicly accessible. Only via detours we managed to extract it from the
provided installer. It is only sparsely documented and partially not readable due to patent protection.
The libraries dynamically linked against this code section had to be managed manually. Due to
the patent protection it was also not possible to optimize the algorithm for distributed processing,
although there would be plenty of potential for this. However, by adding a distributed file system
interface we have managed to integrate it into the cluster context and successfully demonstrated the
distributed atmospheric correction of thousands of Sentinel-2 products. Specifying input and output
files as well as other parameters via a central job configuration file made it possible to start various
experiments without changing the code or the command to launch the job. Since our changes to the
logging process allowed us to collect Spark executor log files we were able to evaluate various debug
and performance information about the Sen2Cor business logic and that of the following stages.

The atmospheric correction was followed by a stage for generating large-scale multi-label image
archives from atmospherically corrected products. Using our build and submit workflow, it was easy
to deploy libraries that allowed access to remote sensing data into the cluster. We have adapted exist-
ing techniques for loading Sentinel 2 data for Apache Spark data structures. Patches were extracted
using a fixed-size sliding window. By performing the distributed patch generation process on indi-
vidual sensor bands (in comparison to whole products) we have successfully managed to maintained
a low memory footprint. This was underlined by the repeated memory-related failure when loading
whole products in our experiments. Contrary to our expectations, the additional costs for aggregating
the single-band patches remained moderate. Nevertheless, we see further potential for future work
to speed up the patch generation process by minimizing shuffle operation. In our evaluation it be-
came apparent that integrating external data using the PostGIS spatial database extension requires
the most time of all tasks. This large share is probably due to the fact that we only had one central
PostGIS instance available, which emphasizes a problem with our approach: Although we can dy-
namically decide what Python libraries are distributed to the worker nodes we have no control over
what other software will be run there. Any change to the installed software requires manual work
by a third person with the appropriate access rights. A different arrangement of the analysis setup,
with one PostGIS instance on every worker node for example, could not be tested here because our
administrator was not available in the corresponding period of time. From a researcher’s point of
view it would be more desirable to decide independently on the software used. A possible approach
would be to use operating-system-level virtualization tools such as Docker (Merkel, 2014 [48]). In
recent versions of Hadoop YARN experimental support for Docker has been added. Alternatively, a
different cluster manager with stable containerization support, like Apache Mesos [6] or Kubernetes
(Bernstein, 2014 [11]) could be used.

Another option would be to use geospatial extensions to Apache Spark, like GeoSpark (Yu et al.,
2015 [77]) or GeoTrellis (Kini et al., 2014 [41]), instead of an external system like PostGIS. Both
options provide spark-native intersection queries suitable for our labeling task. For future work we
recommend to compare them with the approach presented here. There is also potential for improve-
ment for the intersection queries themselves. At the moment we don’t consider the size of the overlap
with the CORINE shapes, which leads to the fact that even for areas with minimal overlap the cor-
responding label is adopted. While we initially built the query to contain the overlap percentage
along with the labels we finally decided against it for performance reasons. It is also quite easy to
calculate this information afterwards with the help of the metadata stored in the PostGIS database.

67

6. Conclusion and Discussion

The corresponding adaptation could therefore also be implemented outside of Spark. Overall, stor-
ing the metadata of the different sections of the framework in a common database turned out to be a
good idea. This enabled us to link generated patches with their output data and to perform analyses
without loading the pixel data.

The dataset generated by us is well suited as training data for machine learning. Subsequent
analyses, e.g. a multi-label classification or cloud detection task, could be carried out either in Spark
itself, on platforms based on the Hadoop ecosystem or on an external system with support for the
respective data types, depending on the method used. For deep learning tasks for example, systems
such as Horovod [62] (Sergeev et al., 2018), Apache Submarine [7] or TensorFlowOnSpark [75]
could be used.

With the last job presented in this thesis we exported the generated data to a GeoTIFF archive. We
were able to successfully work around the small file problem. Especially when working with large
amounts of data, however, we recommend to use fast storage solutions like NVMe SSDs and file
indexing techniques. Unpacking and searching the large volumes of small image files is otherwise
very time-consuming.

68

Bibliography

[1] Accessed: 2019-07-15. URL: https://sentinel.esa.int/documents/247904/1955685/
S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_

B00.kml.

[2] European Space Agency. Level-2A Algorithm Overview - Figure 3: Scene Classification Val-
ues. Accessed: 2019-11-27. 2019. URL: https : / / earth . esa . int / web / sentinel /
technical-guides/sentinel-2-msi/level-2a/algorithm.

[3] European Space Agency. SENTINEL-2 User Handbook. July 2015. URL: https://sentinel.
esa.int/documents/247904/685211/Sentinel-2_User_Handbook.

[4] Apache Software Foundation. Hadoop: v2.1.0. Accessed: 2019-09-13. Oct. 2019. URL: https:
//hadoop.apache.org.

[5] apache/arrow: v0.15.1. Accessed: 2019-11-28. Oct. 2019. URL: https://github.com/
apache/arrow.

[6] apache/mesos: v1.9.0. Accessed: 2019-12-05. Sept. 2019. URL: https://github.com/
apache/mesos.

[7] apache/submarine: v0.3.0. Accessed: 2019-12-05. Nov. 2019. URL: https://github.com/
apache/submarine.

[8] Szele Balint. The Small Files Problem. Accessed: 2019-11-26. Feb. 2009. URL: https://
blog.cloudera.com/the-small-files-problem/.

[9] Kyle Banker. MongoDB in action. Manning Publications Co., 2011.

[10] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. “Yaml ain’t markup language (yamlTM)
version 1.1”. In: yaml. org, Tech. Rep (2005), p. 23.

[11] David Bernstein. “Containers and cloud: From lxc to docker to kubernetes”. In: IEEE Cloud
Computing 1.3 (2014), pp. 81–84.

[12] M Bossard, Jan Feranec, J Otahel, et al. “CORINE land cover technical guide: Addendum
2000”. In: (2000).

[13] Tim Bray. “The javascript object notation (json) data interchange format”. In: (2014).

[14] Pete Bunting. Introduction to ARCSI for generating Analysis Ready Data (ARD). Accessed:
2019-11-05. URL: https://www.arcsi.remotesensing.info/tutorials/ARCSI_
Intro_Tutorial_compress.pdf.

[15] Peter Bunting and Sam Gillingham. “The KEA image file format”. In: Computers & geo-
sciences 57 (2013), pp. 54–58.

[16] Peter Bunting et al. “The remote sensing and GIS software library (RSGISLib)”. In: Comput-
ers & geosciences 62 (2014), pp. 216–226.

[17] Akshara Preethy Byju et al. “Approximating JPEG 2000 wavelet representation through deep
neural networks for remote sensing image scene classification”. In: 2019.

69

https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml
https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://hadoop.apache.org
https://hadoop.apache.org
https://github.com/apache/arrow
https://github.com/apache/arrow
https://github.com/apache/mesos
https://github.com/apache/mesos
https://github.com/apache/submarine
https://github.com/apache/submarine
https://blog.cloudera.com/the-small-files-problem/
https://blog.cloudera.com/the-small-files-problem/
https://www.arcsi.remotesensing.info/tutorials/ARCSI_Intro_Tutorial_compress.pdf
https://www.arcsi.remotesensing.info/tutorials/ARCSI_Intro_Tutorial_compress.pdf

Bibliography

[18] Mingmin Chi et al. “Big data for remote sensing: Challenges and opportunities”. In: Proceed-
ings of the IEEE 104.11 (2016), pp. 2207–2219.

[19] Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi. “The JPEG2000 still
image coding system: an overview”. In: IEEE transactions on consumer electronics 46.4
(2000), pp. 1103–1127.

[20] Nick Coghlan and Donald Stufft. PEP 440 – Version Identification and Dependency Specifi-
cation. Accessed: 2019-07-19. 2013. URL: https://www.python.org/dev/peps/pep-
0440/.

[21] Robert Collins. PEP 508 – Dependency specification for Python Software Packages. Accessed:
2019-07-20. 2015. URL: https://www.python.org/dev/peps/pep-0508/.

[22] Copernicus Land Service - Pan-European Component: CORINE Land Cover. Accessed: 2019-
07-19. May 2017. URL: https://land.copernicus.eu/user-corner/publications/
clc-flyer/at_download/file.

[23] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. URL: https:
//dask.org.

[24] Liesbeth De Keukelaere et al. “Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI
data using iCOR algorithm: Validation for coastal and inland waters”. In: European Journal
of Remote Sensing 51.1 (2018), pp. 525–542.

[25] Mathieu Dugré, Valérie Hayot-Sasson, and Tristan Glatard. “A performance comparison of
Dask and Apache Spark for data-intensive neuroimaging pipelines”. In: arXiv preprint arXiv:1907.13030
(2019).

[26] NUTS Eurostat. Nomenclature of territorial units for statistics. Accessed: 2019-11-26. 1995.
URL: https://ec.europa.eu/eurostat/web/nuts/background.

[27] Apache Software Foundation. Apache Solr. Accessed: 2019-07-19. URL: https://lucene.
apache.org/solr/.

[28] Jean-loup Gailly and Mark Adler. zlib: v1.2.11. Accessed: 2019-11-28. Jan. 2017. URL: http:
//www.zlib.net/.

[29] Graphic technology — Prepress digital data exchange — Tag image file format for image
technology (TIFF/IT). Standard. ISO 12639:2004. Geneva, CH: International Organization
for Standardization, May 2004.

[30] CS Group. Sen2Cor Configuration and User Manual. 2019. URL: http://step.esa.int/
thirdparties/sen2cor/2.8.0/docs/S2-PDGS-MPC-L2A-SUM-V2.8.pdf.

[31] Olivier Hagolle et al. “A multi-temporal and multi-spectral method to estimate aerosol opti-
cal thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENµS and
Sentinel-2 images”. In: Remote Sensing 7.3 (2015), pp. 2668–2691.

[32] Filip Hanik. The KISS principle. Accessed: 2019-11-28. URL: https://people.apache.
org/~fhanik/kiss.html.

[33] Nicolaus Hanowski. Sentinel Data Access Annual Report 2018. Tech. rep. Accessed: 2019-07-
19. ESA/ESRIN, 2019. URL: https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/
AnnualReport2018/COPE-SERCO-RP-19-0389_-_Sentinel_Data_Access_Annual_

Report_Y2018_v1.0.pdf.

[34] Jonathan M Hethey. GitLab repository management. Packt Publishing Ltd, 2013.

70

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0508/
https://land.copernicus.eu/user-corner/publications/clc-flyer/at_download/file
https://land.copernicus.eu/user-corner/publications/clc-flyer/at_download/file
https://dask.org
https://dask.org
https://ec.europa.eu/eurostat/web/nuts/background
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
http://www.zlib.net/
http://www.zlib.net/
http://step.esa.int/thirdparties/sen2cor/2.8.0/docs/S2-PDGS-MPC-L2A-SUM-V2.8.pdf
http://step.esa.int/thirdparties/sen2cor/2.8.0/docs/S2-PDGS-MPC-L2A-SUM-V2.8.pdf
https://people.apache.org/~fhanik/kiss.html
https://people.apache.org/~fhanik/kiss.html
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2018/COPE-SERCO-RP-19-0389_-_Sentinel_Data_Access_Annual_Report_Y2018_v1.0.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2018/COPE-SERCO-RP-19-0389_-_Sentinel_Data_Access_Annual_Report_Y2018_v1.0.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2018/COPE-SERCO-RP-19-0389_-_Sentinel_Data_Access_Annual_Report_Y2018_v1.0.pdf

Bibliography

[35] James N Hughes et al. “Geomesa: a distributed architecture for spatio-temporal fusion”. In:
Geospatial Informatics, Fusion, and Motion Video Analytics V. Vol. 9473. International Soci-
ety for Optics and Photonics. 2015, 94730F.

[36] Anaconda Inc. conda/conda: v4.7.12. Sept. 2019. URL: https://github.com/conda/
conda.

[37] Yelp Inc. Yelp/mrjob: v0.6.12. Accessed: 2019-09-13. Oct. 2019. URL: https://github.
com/Yelp/mrjob.

[38] Information technology – Open Systems Interconnection – Remote Procedure Call (RPC).
Standard. ISO/IEC 11578:1996. Geneva, CH: International Organization for Standardization,
Dec. 1996.

[39] Information technology — Database languages — SQL multimedia and application packages
— Part 3: Spatial. Standard. ISO/IEC 13249-3:2016. Geneva, CH: International Organization
for Standardization, Jan. 2016.

[40] Eran Kampf. Best Practices Writing Production-Grade PySpark Jobs. Jan. 2017. URL: https:
//developerzen.com/best-practices- writing- production-grade-pyspark-

jobs-cb688ac4d20f?gi=ec23eede13de.

[41] Ameet Kini and Rob Emanuele. “Geotrellis: Adding geospatial capabilities to spark”. In:
Spark Summit (2014).

[42] kraftek/awsdownload: c7e60e0. Accessed: 2019-11-05. 2018. URL: https://github.com/
kraftek/awsdownload.

[43] Songnian Li et al. “Geospatial big data handling theory and methods: A review and research
challenges”. In: ISPRS journal of Photogrammetry and Remote Sensing 115 (2016), pp. 119–
133.

[44] Jérôme Louis et al. “Sentinel-2 sen2cor: L2a processor for users”. In: Proceedings of the
Living Planet Symposium, Prague, Czech Republic. 2016, pp. 9–13.

[45] Yan Ma et al. “Remote sensing big data computing: Challenges and opportunities”. In: Future
Generation Computer Systems 51 (2015), pp. 47–60.

[46] Antonios Makris et al. “Performance Evaluation of MongoDB and PostgreSQL for Spatio-
temporal Data.” In: EDBT/ICDT Workshops. 2019.

[47] Hector Muro Mauri et al. “Benchmarking Apache Spark spatial libraries”. In: 9th International
Congress on Environmental Modelling and Software. Brigham Young University. 2018.

[48] Dirk Merkel. “Docker: lightweight linux containers for consistent development and deploy-
ment”. In: Linux journal 2014.239 (2014), p. 2.

[49] Bruce Momjian. PostgreSQL: introduction and concepts. Vol. 192. Addison-Wesley New
York, 2001.

[50] NixOS/patchelf: v0.10. Accessed: 2019-11-05. Mar. 2019. URL: https://github.com/
NixOS/patchelf.

[51] olivierhagolle/peps download: 19c3b3d. Accessed: 2019-11-05. 2019. URL: https://github.
com/olivierhagolle/peps_download.

[52] pdoc3/pdoc: v0.7.1. Accessed: 2019-11-05. 2019. URL: https://github.com/pdoc3/
pdoc.

71

https://github.com/conda/conda
https://github.com/conda/conda
https://github.com/Yelp/mrjob
https://github.com/Yelp/mrjob
https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f?gi=ec23eede13de
https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f?gi=ec23eede13de
https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f?gi=ec23eede13de
https://github.com/kraftek/awsdownload
https://github.com/kraftek/awsdownload
https://github.com/NixOS/patchelf
https://github.com/NixOS/patchelf
https://github.com/olivierhagolle/peps_download
https://github.com/olivierhagolle/peps_download
https://github.com/pdoc3/pdoc
https://github.com/pdoc3/pdoc

Bibliography

[53] Inc. PKWARE Phil Katz. ZIP File Format Specification. Accessed: 2019-11-28. Mar. 1989.
URL: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT.

[54] pyarrow: v0.15.1. Accessed: 2019-11-05. 2019. URL: https : / / pypi . org / project /
pyarrow/.

[55] pytest-dev/pytest: v5.2.2. Accessed: 2019-11-05. 2019. URL: https://github.com/pytest-
dev/pytest/.

[56] Paul Ramsey et al. “Postgis manual”. In: Refractions Research Inc 17 (2005).

[57] Kenneth Reitz. Repository Structure and Python. Accessed: 2019-01-15. 2013. URL: https:
//www.kennethreitz.org/essays/repository-structure-and-python.

[58] Niles Ritter and Mike Ruth. “The GeoTiff data interchange standard for raster geographic
images”. In: International Journal of Remote Sensing 18.7 (1997), pp. 1637–1647.

[59] sat-utils/sat-api: v0.3.0. Accessed: 2019-11-05. 2019. URL: https://github.com/sat-
utils/sat-api.

[60] sentinelhub-py/sentinelhub: v2.6.0. 2019. URL: https://github.com/sentinel-hub/
sentinelhub-py.

[61] sentinelsat/sentinelsat: v0.13. Version v0.13. https : / / doi . org / 10 . 5281 / zenodo .
2629555. Apr. 2019. DOI: 10.5281/zenodo.2629555.

[62] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed deep learning in
TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[63] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. “Thrift: Scalable cross-language services
implementation”. In: Facebook White Paper 5.8 (2007).

[64] Gencer Sumbul et al. “BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing
Image Understanding”. In: arXiv preprint arXiv:1902.06148 (2019).

[65] Gencer Sümbül and Begüm Demir. “A Novel Multi-Attention Driven System for Multi-Label
Remote Sensing Image Classification”. In: IEEE International Conference on Geoscience and
Remote Sensing Symposium Yokohama, Japan. Accepted for publication. 2019.

[66] Microsoft OData Team. Open Data Protocol. Accessed: 2019-07-19. URL: https://www.
odata.org/.

[67] toml-lang/toml: v0.5.0. Accessed: 2019-11-15. July 2018. URL: https://github.com/
toml-lang/toml.

[68] Matthew A Toups. “A study of three paradigms for storing geospatial data: distributed-cloud
model, relational database, and indexed flat file”. In: (2016). URL: https://scholarworks.
uno.edu/cgi/viewcontent.cgi?article=3292&context=td.

[69] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde en Infor-
matica Amsterdam, The Netherlands, 1995.

[70] Daniele Varrazzo. psycopg2: v2.8.4. Accessed: 2019-12-01. Oct. 2019. URL: http://initd.
org/psycopg/.

[71] Gregory K Wallace. “The JPEG still picture compression standard”. In: IEEE transactions on
consumer electronics 38.1 (1992), pp. xviii–xxxiv.

[72] Frank Warmerdam. “The geospatial data abstraction library”. In: Open source approaches in
spatial data handling. Springer, 2008, pp. 87–104.

72

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pypi.org/project/pyarrow/
https://pypi.org/project/pyarrow/
https://github.com/pytest-dev/pytest/
https://github.com/pytest-dev/pytest/
https://www.kennethreitz.org/essays/repository-structure-and-python
https://www.kennethreitz.org/essays/repository-structure-and-python
https://github.com/sat-utils/sat-api
https://github.com/sat-utils/sat-api
https://github.com/sentinel-hub/sentinelhub-py
https://github.com/sentinel-hub/sentinelhub-py
https://doi.org/10.5281/zenodo.2629555
https://doi.org/10.5281/zenodo.2629555
https://doi.org/10.5281/zenodo.2629555
https://www.odata.org/
https://www.odata.org/
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=3292&context=td
https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=3292&context=td
http://initd.org/psycopg/
http://initd.org/psycopg/

Bibliography

[73] wget: 1.20.3. Accessed: 2019-07-19. Apr. 2019. URL: https://www.gnu.org/software/
wget/.

[74] Florian Wilhelm. Managing isolated Environments with PySpark. Accessed: 2019-09-13. Mar.
2018. URL: https://florianwilhelm.info/2018/03/isolated_environments_
with_pyspark/.

[75] yahoo/TensorFlowOnSpark : v2.0.0. Accessed: 2019-12-05. Oct. 2019. URL: https://github.
com/yahoo/TensorFlowOnSpark.

[76] yaml/pyyaml: v5.1.2. Accessed: 2019-11-05. July 2019. URL: https://github.com/yaml/
pyyaml.

[77] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. “Geospark: A cluster computing framework for
processing large-scale spatial data”. In: Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM. 2015, p. 70.

[78] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Processing”. In: Commun.
ACM 59.11 (Oct. 2016), pp. 56–65. ISSN: 0001-0782. DOI: 10.1145/2934664. URL: http:
//doi.acm.org/10.1145/2934664.

73

https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://florianwilhelm.info/2018/03/isolated_environments_with_pyspark/
https://florianwilhelm.info/2018/03/isolated_environments_with_pyspark/
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/yaml/pyyaml
https://github.com/yaml/pyyaml
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664

Appendices

74

A. Data Acquisition

A.1. Metadata Storage

A.1.1. OpenSearch Response Structure

The following fields were returned by the Copernicus OpenSearch endpoint:

• beginposition

• processinglevel

• orbitnumber

• producttype

• platformname

• processingbaseline

• size

• cloudcoverpercentage

• sensoroperationalmode

• instrumentshortname

• title

• orbitdirection

• filename

• link alternative

• gmlfootprint

• platformidentifier

• tileid

• hv order tileid

• format

• relativeorbitnumber

• datatakesensingstart

• link

• footprint

• s2datatakeid

• uuid

• instrumentname

• link icon

• platformserialidentifier

• endposition

• summary

• ingestiondate

• identifier

76

B. Processing

B.1. Atmospheric Correction

B.1.1. Sen2Cor Dependencies

The following Python dependencies were required in order to run the Sen2Cor v2.8 processor outside
of the environment provided by it’s standalone installer.

• cloudpickle v0.8.1

• contextlib2 v0.5.5

• cycler v0.10.0

• decorator v4.4.0

• funcsigs v1.0.2

• GDAL v2.3.3

• Glymur v0.8.17

• kiwisolver v1.0.1

• lxml v4.3.3

• matplotlib v2.2.4

• mock v2.0.0

• networkx v2.2

• numexpr v2.6.9

• numpy v1.16.2

• pbr v5.1.3

• Pillow v5.4.1

• psutil v5.6.1

• pyparsing v2.3.1

• python-dateutil

v2.8.0

• pytz v2018.9

• PyWavelets v1.0.2

• scikit-image v0.14.2

• scipy v1.2.1

• six v1.12.0

• subprocess32 v3.5.3

• tables v3.5.1

• toolz v0.9.0

• dask v1.2.2

77

C. Analysis

C.1. Land Cover & Country Label Annotation

C.1.1. CLC 18 Covered Countries

The following 39 countries are covered by the CLC 18 dataset: Albania, Austria, Belgium, Bosnia
and Herzegovina, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Kosovo, Latvia, Liechtenstein, Lithuania, Luxembourg,
North Macedonia, Malta, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom.

C.1.2. CLC 18 Land Cover Classes

The 44 land cover classes included in the CLC 18 inventory can be divided into five major groups:

1. Artificial surfaces

• Continuous urban fabric

• Discontinuous urban
fabric

• Industrial or commer-
cial units

• Road and rail networks

and associated land

• Port areas

• Airports

• Mineral extraction sites

• Dump sites

• Construction sites

• Green urban areas

• Sport and leisure facili-
ties

• Unknown

2. Agricultural areas

• Non-irrigated arable
land

• Permanently irrigated
land

• Rice fields

• Vineyards

• Fruit trees and berry
plantations

• Olive groves

• Pastures

• Annual crops associated
with permanent crops

• Complex cultivation
patterns

• Land principally occu-
pied by agriculture with
significant areas of nat-
ural vegetation

3. Forests and semi-natural areas

• Agro-forestry areas

• Broad-leaved forest

• Coniferous forest

• Mixed forest

• Natural grassland

• Transitional wood-
land/shrub

• Sclerophyllous vegeta-
tion

• Bare rock

• Sparsely vegetated areas

• Burnt areas

• Glaciers and perpetual
snow

78

C.1. Land Cover & Country Label Annotation

4. Wetlands

• Moors and heathland

• Beaches and dunes and
sands

• Inland marshes

• Peatbogs

• Salt marshes

• Salines

• Intertidal flats

5. Waterbodies

• Water courses

• Water bodies

• Coastal lagoons

• Estuaries

• Sea and ocean

79

D. Evaluation

D.1. Data Acquisition

D.1.1. Selection Season Statistics

Scale Spring Summer Autumn Winter
small 33.33% 33.33% 0.0% 33.33%

medium 35.80% 19.89% 25.00% 19.32%
large 25.85% 27.41% 24.26% 22.49%

Table D.1.
Evaluation data selection season statistics

80

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	Problems & Strategies
	Data Acquisition
	Processing & Analysis

	Contribution
	Structure of the Thesis

	Fundamentals
	Sentinel-2 Data
	Atmospheric Correction
	Sentinel-2 Processing Levels

	Copernicus Open Access Hub
	Application Program Interfaces
	Collaborative Ground Segments
	Clients

	CORINE Land Cover Inventory
	Eurostat NUTS
	Geospatial Data
	Spatial Data Management
	Distributed Computing
	Apache Hadoop
	Apache Spark

	Hardware Setup

	System Design
	Overview
	Data Acquisition
	Requirements
	CollGS: Concurrent Access to Multiple Mirrors
	Selecting an Existing Client for Abstraction
	Concurrent Mirror Access
	Download Scheduling
	Custom Filtering & Product Statistics
	Metadata Storage
	Distributed File System Interface

	Processing
	Requirements
	PySpark Workflow
	Dependency Management
	Deployment
	Distributed Atmospheric Correction
	Distributed Patch Generation
	Distributed Data Export

	Analysis
	Requirements
	Scene Classification Label Annotation
	Land Cover & Country Label Annotation

	Implementation
	Overview
	Data Acquisition
	Package Structure
	Installation
	Configuration
	Command line interface
	Utility functions
	Unit Tests

	Processing
	Build & Submit Utilities
	Cluster Configuration
	Logging
	Distributed Sen2Cor
	Patch Generation
	Data Export
	Unit Tests

	Analysis
	Scene Classification Label Annotation
	Land Cover & Country Label Annotation
	Installation & Deployment
	Configuration
	Metadata Management
	Unit Tests

	Evaluation
	Data Acquisition
	Product Search
	Product Selection
	Mirror Ranking
	Product Download
	HDFS Upload

	Processing & Analysis
	Atmospheric Processing
	Patch Generation
	Data Export

	End-to-End

	Conclusion and Discussion
	Bibliography
	Appendices
	Data Acquisition
	Metadata Storage
	OpenSearch Response Structure

	Processing
	Atmospheric Correction
	Sen2Cor Dependencies

	Analysis
	Land Cover & Country Label Annotation
	CLC 18 Covered Countries
	CLC 18 Land Cover Classes

	Evaluation
	Data Acquisition
	Selection Season Statistics

