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Abstract

As improving Earth Observation technologies, many remote sensing data from different sources
are produced every day. Creating an image retrieval system to retrieve relevant images from
these big data sources by an image query would benefit different fields like urban area study,
climate change analysis, and forestry study. Hence, a content-based multi-modal image retrieval
system has been proposed in this thesis to increase the efficiency of using the big remote sensing
data. Instead of using single modality, multi-modality, Sentinel-1, and Sentinel-2 images have
been used to utilize various data sources’ varied characteristics.

Our CBIR system has been created hashing based because of its advantages in searching time
and storage units. When big images are hashed to small compact binary codes, the retrieving
mechanism is getting faster, and the cost of storage decreases. Deep neural networks, specifically
Convolutional Neural Networks, have been created to obtain data sources’ hash codes. These
networks have been trained in two different ways: mean square error loss and triplet loss. Results
have been evaluated with mean average precision and weighted mean average precision.

Keywords: Content-Based Image Retrieval, Remote Sensing, Deep learning, Convolutional
Neural Networks, Multi-modality, Cross-modality
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Zusammenfassung

Im Zuge der Verbesserung der Erdbeobachtung Technologien werden täglich viele Fernerkun-
dungsdaten aus verschiedenen Quellen produziert. Die Schaffung eines Bildabfragesystems zum
Abrufen relevanter Bilder aus diesen großen Datenquellen durch eine Bildabfrage würde ver-
schiedenen Bereichen wie der Untersuchung städtischer Gebiete, der Analyse des Klimawan-
dels und der Forstwirtschaft zugute kommen. Daher wurde in dieser Arbeit ein inhaltsbasiertes
multimodales Bildabfragesystem vorgeschlagen, um die Effizienz der Nutzung der großen Fern-
erkundungsdaten zu erhöhen. Anstatt eine einzelne Modalität zu verwenden, wurden multi-
modale, Sentinel-1- und Sentinel-2-Bilder verwendet, um die unterschiedlichen Eigenschaften
der verschiedenen Datenquellen zu nutzen.

Unser CBIR-System wurde aufgrund seiner Vorteile bei der Suche nach Zeit- und Speichere-
inheiten auf Hashing-Basis geschaffen. Wenn große Bilder in kleine kompakte Binärcodes
gehasht werden, wird der Abrufmechanismus immer schneller, und die Speicherkosten sinken.
Tiefe neuronale Netzwerke, insbesondere Convolutional Neural Networks, wurden geschaffen,
um die Hash-Codes der Datenquellen zu erhalten. Diese Netzwerke wurden auf zwei verschiede-
nen Arten trainiert: Verlust durch mittlere quadratische Fehler und Verlust durch Tripletts. Die
Ergebnisse wurden mit mittlerer Durchschnittspräzision und gewichteter Durchschnittspräzision
ausgewertet.

Schlüsselwörter: Bildgewinnung durch Fernerkundung, Tiefes Lernen, Neuronale Faltungsnetze,
Multimodalität, Crossmedialität, Inhaltsbasierte Bildgewinnung
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1 Introduction

1.1 Motivation

Remote sensing can be defined as a process that detects and monitors emitted or reflected signals
from the objects on the earth and use these radiations to obtain physical characteristics of the
objects. These signals are gathered by satellites or aircraft. Shortly, it can be described as sensing
from a great distance. Thanks to improvements in Earth Observation technologies, the volume
of remote sensing images is getting higher with higher spatial and higher spectral resolutions.
Using these big data archives effectively would be beneficial in several different domains, such
as urban area study, forestry research, risk management. That is why implementing an efficient
and correct remote sensing image retrieval systems is a need.

Early remote sensing image retrieval methods have used text-based manual annotations like
geographical locations, visual descriptions, sensor types. However, these annotations are not
always available, and the quality of these annotations directly affects the retrieval systems’ per-
formance. Therefore, the recent and popular approach of image retrieval in remote sensing is
content-based.

In content-based image retrieval systems, the feature representation of the query image is
computed. This representation is compared with the feature representations of all images used
as a database. Feature representations can be obtained by handcrafted feature descriptors or
data-driven feature descriptors.

CBIR systems relying on handcrafted features have shallow learning architectures. These
simple architectures can not afford a feature learning which is optimized simultaneously. There-
fore, it has a limited capability to represent the high-level semantic content of remote sensing
images. On the other hand, deep learning-based CBIR systems simultaneously optimize feature
learning during the image retrieval process. It removes the need for descriptors which are created
by human [34].

In order to have a quick search and find related images in big data archives, hashing has been
used. It is getting more critical to retrieve data in terms of time and storage efficiency. Hashing
methods convert original high dimensional images into small binary hash codes. Therefore,
original data storage requirements have been reduced significantly, and similarities of the images
are measured by the calculated Hamming distance between the binary hash codes. Decreased
cost of storage and less searching time is the fundamental purpose of using hashing in image
retrieval. Using the hashing techniques with deep neural networks(DHNNs) has achieved good
results on large-scale remote sensing image retrieval, as proposed by Li et al. (2017) [17].

1



1 Introduction

1.2 Objective

Thanks to advances in sensor technologies, remote sensing images’ spectral and spatial reso-
lution are getting higher, and the volume of remote sensing images increases. According to
Kempeneers and Soille, Sentinel satellites operated by the Copernicus program of the European
Commission (EC) produce around 10 TB of Earth Observation (EO) data per day [12]. Find-
ing semantically similar images or classifying similar images together in this big data source
by human-based approaches takes a considerable amount of time. In order to utilize this data
source effectively, deep hashing techniques can be used. Therefore, the retrieval process’s speed
can be increased, and storage requirements can be decreased because of hashing advantages.

CBIR systems do not have to be in one modality. Some datasets can have multi modalities
such as image, audio, text, so on so forth. There are several examples of multi modalities.
For example, images or audio can have text descriptors as labels or tags to keep some text
information related to the data’s class or category. In this study, two different remote sensing
datasets have been used. Sentinel-1 and Sentinel-2 are missions of the European Space Agency.
Creating hashed codes of Sentinel-1 and Sentinel-2 images by using deep hashing techniques
was the first step of this study, and then, these hashed codes have been used to find similar
images in the same and different datasets.

1.3 Outline

This thesis is separated into 5 chapters. A short introduction of each chapter is given below.

Chapter 2 is the Foundation and Related Work. Deep learning techniques have been used in
this study to hash the images. In this chapter, the basics of deep learning have been discussed.
A literature review about CBIR and hashing in Section 2.2 and remote sensing basics in Section
2.3 has been shared. Details of the used dataset have been written in Section 2.4, and the most
commonly used evaluation metrics in multi-labeled image retrieval problems have been detailed
in the last part of this chapter.

Chapter 3 is the Proposed Multi-Modality Hashing Methods. Two different loss functions have
been implemented to fulfill the purpose of the study. These approaches have been shared in this
chapter.

Chapter 4 is the Experimental Results. Train, validation, and test results have been shared
for both of the proposed methods. Time and evaluation metrics based comparisons are also in
this chapter. Finally, the visual representations of retrieved images by an example query have
been presented.

Chapter 5 is the Conclusion and Discussion. A summary of the thesis has been shared. It
has been concluded by discussing future works.

2



2 Foundation and Related Work

Using deep learning techniques in CBIR systems is attractive and influential in computer vision
and remote sensing fields. This chapter explains the fundamentals of Deep Learning, hashing
mechanisms, remote sensing basics, used dataset details, and evaluation metrics.

2.1 Deep Learning

Deep learning is one of the machine learning techniques, and most of the deep learning methods
are based on neural networks. Deep neural networks try to mimic how the human brain operates
and recreate it artificially because of the human brain’s massive capability for learning, adapting
skills and then applying them. If computers could copy that, computer algorithms can utilize this
robust learning structure. Hence, an artificial structure is created, which has nodes or neurons.
There are several layers with connected neurons. Information is propagated and processed from
one layer to another in artificial neural networks. This structure allows for learning directly from
data. Therefore, it has shown impressive performance in several fields like computer vision,
speech recognition, machine translation, and bioinformatics.

There are two big categories in machine learning or deep learning. These are supervised and
unsupervised learning. Although labels as extra information are needed in supervised learning,
unsupervised learning realizes the learning process without label information.

2.1.1 Convolutional Neural Networks

In the computer vision field, the convolutional neural networks is a popular deep learning tech-
nique because of its robust ability to find images pattern. Finding patterns is done in a hierarchi-
cal way in CNN(Convolutional Neural Network), which means low-level patterns are detected
in the first layers, and high-level patterns are recognized towards to last layers.

Steps are followed in CNN:

1. Convolution

2. Pooling

3. Flattening

4. Full Connection

Filters are applied to input images to generate feature maps in the convolutional layer. How-
ever, input images are converted n-dimensional arrays or tensors in the pre-processing step. For
example, a Sentinel-1 image with double polarization 60x60 resolution is represented 60x60x2
tensor to use in the convolutional layer.

3



2 Foundation and Related Work

Filters are slid over the image spatially and computing dot products. Therefore, a feature map
or activation map is obtained. Multiple filters are created in order to have different feature maps.
Thus, different features are kept.

To define how many pixels are shifted over in the input matrix while filter slides, the stride is
defined. When the stride is 1, filters move 1 pixel at a time, or if it is 2, filters move 2 pixels at a
time.The output size is calculated with Formula 2.1 where N is for input size, F is for filter size.

Out put Size A f ter Convolution = (N �F)/stride+1 (2.1)

The convolution step can shrink images very quickly, and it is not always the requested case.
In order to adjust the output size, new dummy pixels are added to the input. This action is called
by padding, which increases the input data’s width and height. If zeros fill these added pixels,
it is named zero padding, and this is a common padding approach. As a result of employing
padding, information losses are lessened. Pixels on the edges are less processed than pixels on
the center when no padding is applied. Consequently, padding can overcome this problem.

The convolution step aims to make the image smaller while detecting certain features of the
images. Thanks to this reduction of the size, processing will be faster and easier.

After every convolution operation, the activation function is applied. Each activation function
operates a mathematical function between input and output neurons using the input nodes’ values
and weights, as seen in Figure 2.1.

Figure 2.1: The Structure of one example neuron which applies the activation function

Some popular activation functions are presented in Figure 2.2.
Pooling is applied to each activation map, which has been created in the convolution layer.

It makes the representations smaller and easier to manage. Max pooling, average pooling, L2-

4



2.1 Deep Learning

Figure 2.2: Different activation functions

norm pooling are different types of pooling. As in the convolution layer, filter size and stride is
also used in pooling. Max pooling is the most popular pooling technique with stride 2 and filters
size 2 or 3.

Pooled feature maps are flattened into one-dimensional vectors. These vectors are used as
input for further processing.

Fully connected layers are the last layers of the CNN. The flattened tensor is processed in the
fully connected layer, and it is made smaller until the desired number of neurons is obtained.
Therefore, these layers build the connections between flattened tensors and all output neurons.

All these processes are repeated to minimize the error of the model. Epoch is a hyperparam-
eter, and it defines how many times the learning algorithm runs through the entire dataset. It is
like a for loop, which means each loop proceeds over the all training dataset to update weights
and biases of the model effectively.

5



2 Foundation and Related Work

2.1.2 Loss Functions

Loss functions indicate how well the convolutional neural network is performing. In order to
optimize the network, the value resulted from the loss function should be minimized. After
calculating the error using the loss function, the network is backpropagated, and weights are
adjusted to reduce the error.

Mean Square Error is the sum of squared distances between the target and predicted values.
It is shown in Formula 2.2. MSE(Mean Square Error) and Mean Absolute Error is commonly
used regression losses.

LMSE =
Ân

i=1(yi � yp
i )

2

n
(2.2)

Cross-Entropy Loss is used in classification, image retrieval problems like in [18], [40]. The
calculation is shown in Formula 2.3, where yi is the real class value and ŷi is the prediction.

LCrossEntropy =� 1
N

N

Â
i=1

[yi log ŷi +(1� yi) log(1� ŷi)] (2.3)

Instead of feeding the network with pointwise or pairwise training examples, comparisons be-
tween three data points are fundamental of the triplet loss functions [25]. The Anchor, Positive
and Negative are named these data points. Anchor and positive images are similar images be-
cause they belong to the same class. However, anchor and negative images are dissimilar images
because they are in different classes. The purpose of the triplet loss function is to minimize the
distance between the anchor and positive sample while maintaining a distance between anchor
and negative sample more than a defined margin [34]. Thus, Formula 2.4 has been obtained for
the triplet loss function where f() refers to the trained model, A is for Anchor, P is for positive,
and N is for negative samples, alpha is the margin.

LTriplet =
M

Â
i=1

max(k f (A)� f (P)k2
2 �k f (A)� f (N)k2

2 +a,0) (2.4)

There are some other loss functions to achieve different purposes. To have better binarization
from the last layer of the neural network to hashed value, push loss is used, as shown in Formula
2.5 where K refers to the desired hash length and 1 is the K-dimensional vector with all elements
1 [26].

LPush =� 1
K

P

Â
i=1

k f (gi)�0.5 ·1k2 (2.5)

In order to increase the utilization of every bit, balancing loss is defined. It tries balancing the
number of 0s and 1s in each binary code. The calculation is shown in Formula 2.6.

LBalancing =
P

Â
i=1

(mean( f (gi))�0.5)2 (2.6)

6



2.2 Hashing Based Image Retrieval Methods

2.1.3 CNN Architectures

Different numbers and types of layers are in a convolutional network, and various CNN archi-
tectures are obtained by permuting these layers’ order. Researchers proposed the architectures
like AlexNet [36], GoogleNet [30], VGGNet [31], ResNet[7] to provide better results to solve
computer vision problems. The networks are getting larger and deeper with each new architec-
ture.

ImageNet Large Scale Visual Recognition Challenge(ILSVRC) [27] gives a chance to com-
pare these CNN architectures to traditional methods. Figure 2.3 shows ILSVRC winner methods
and their corresponding top-5 error on the classification task. The challenge winner of 2015 is
ResNet, which is the lowest error and largest network compared to previous years. Because of
that, ResNet has been chosen for the CNN configuration of this study. Figure 2.4 shows details
of ResNet architectures.

Figure 2.3: ILSVRC winner methods with top-5 error on the classification task [22]

2.2 Hashing Based Image Retrieval Methods

Image retrieval systems try finding similar images when a query image is given. Conventional
methods of image retrieval use metadata of images such as labels, tags, text descriptions. How-
ever, content-based image retrieval systems have provided better results without metadata or
human-made annotations. Instead of using manually added text information, CBIR systems use
the visual contents acquired from the images. These contents are named features that represent
the attributes of the images like color, texture, shape.

There are two main steps of the CBIR systems. Firstly, the image description step is done.
Characteristics of the images are defined in the image description step. The image retrieval step
is executed to retrieve images similar to a query by comparing the similarity between image
descriptors of the dataset and the query [34]. Figure 2.5 shows the general flow of the CBIR
system.

7



2 Foundation and Related Work

Figure 2.4: ResNet architectures for ImageNet [7]

Figure 2.5: Representation of the content-based image retrieval system

Among all CBIR methods, hashing methods take significant attention because of its retrieval
accuracy and time efficiency. Hashing mechanisms convert images kept in big storage units into
binary codes, which are small and compact representations [34]. During this conversion, the
similarity between the raw images is kept in the Hamming space [11]. Hence, image retrieval
is done by using the Hamming distance between hashed images. The Hamming distance is the
number of positions which are different between two equal-length input. For example, a query
image has been hashed to binary 8 bits, [0,0,0,0,1,1,0,0]. Hashed database images are shown
in Table 2.1 with their hamming distances to the query. The image with index 3 has minimum
differences with the query when compared with others. Therefore, the image with index 3 is
called the closest image to the query. Thanks to using hamming distance, finding and retrieving
similar images of a query in a big hashed database are quicker and more effective than traditional
human-based approaches.

Conventional hashing-based CBIR systems use hand-crafted features to obtain binary hashed

8



2.2 Hashing Based Image Retrieval Methods

Table 2.1: Example hashed images
Index Binary Hash Hamming Distance to Query

0 [1,1,1,1,0,0,0,0] 6
1 [1,1,0,1,0,0,0,0] 5
2 [0,0,0,0,0,0,0,1] 3
3 [1,0,0,0,0,1,0,0] 2

codes. However, it does not provide a satisfactory result to represent the big volume of remote
sensing images because this feature extraction process is not directly connected to the hash-code
learning phase [11]. That is why hand-crafted features can not be fit to use in hash code learning.
However, deep neural networks hashing-based CBIR systems provide end-to-end learning archi-
tecture with more accurate results due to their capability to convert images into binary codes as
preserving the semantics of the images more adequately. These deep hashing techniques are
categorized into two headings. There is one type of data source in single-modality, and this data
source is used for both the query and retrieval set. In multi-modalities, there are different types
of data sources.

2.2.1 Single Modality Hashing Methods

Query and database for retrieval images are from the same source in hashing based single modal-
ity CBIR methods [5]. Using an image for a query to retrieve similar images from the same
dataset using hashing techniques is a typical example of single modality hashing usage. Many
studies have used a single modality hashing approach in CBIR systems of different domains like
computer vision, remote sensing.

Lin et al. (2016) proposed an unsupervised deep hashing approach for image retrieval in a
single modality [19]. It did not require labeled training data and had three goals during the
creation of binary hash codes. These were minimal quantization loss, evenly distributed codes,
and uncorrelated bits. It has two deep learning networks. The first network has been initialized
with pre-trained weights from 16 layers VGGNet [31] which is trained on the ImageNet dataset.
Therefore, it benefits from transfer learning. However, transfer learning does not help to provide
satisfactory results always. The parameters from a network trained in computer vision datasets
can not be efficiently used in a network trained in remote sensing datasets because computer
vision and remote sensing datasets have different characteristics like spatial and spectral reso-
lution [35] [18]. Because of that reason, transfer learning from a network that was trained on a
computer vision dataset into the remote sensing domain can not produce good results.

A supervised deep hashing approach was proposed for fast and accurate image search in
remote sensing by Roy et al. (2018) [26]. It utilizes a pre-trained network(Inception Net [37])
trained on ImageNet besides, the second stage is trained with diverse losses such as triplet loss,
representation penalty, and a balancing loss.

Instance similarity deep hashing(ISDH) by proposed Zhang et al. (2018) [40] and Deep Multi-
Similarity Hashing(DMSH) by proposed Li et al. (2017) [16] have used multi-label computer
vision datasets instead of using single-label datasets. In single-label datasets, images can be
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classified as similar when they have the same label. However, the similarity between two images
in multi-label datasets is based on how many labels are shared. While the number of common
labels is increasing, the similarity between images is getting higher. Hence, binary codes should
be more closer to preserve this similarity. This primary purpose has been tried to achieve by
defined new different pairwise loss functions [40], [16].

2.2.2 Multi-Modality Hashing Methods

Query and retrieval images are located in the same dataset, while single-modality hashing meth-
ods are applied. However, heterogeneous multi-modal data sources have been converted com-
pact binary hash codes by multi-modality hashing methods. It allows searching semantically
similar images in a modality as using a query from a different modality.

Although data can represent better with multiple modalities, most of the hashing studies still
base on a single modality. Different modalities can complete each other to reflect the features of
the object or scene. Though, the number of multi modalities hashing studies are much less than
single modality hashing studies. Therefore, multi-modalities hashing is needed more attention
[2].

Plenty of multi-modality hashing studies [[2], [38], [11], [1], [4], [33]] are based on com-
puter vision datasets like MIRFlickr[9], NUS-WIDE[3], Wiki[23], IAPR TC-12[6], Microsoft
Coco[20] rather than remote sensing datasets. However, Sentinel-1 radar images and Sentinel-2
multispectral optical images are used in this thesis.

Creating a correlation between modalities based on handcrafted features is not easy because
the modalities have notably different statistical properties. Deep neural network techniques have
remarkable abilities to capture a correlation between these heterogeneous data sources [1].

Supervised hashing methods utilize supervised information to obtain semantic information of
the images, and it creates better correlation and decreases the semantic gap between modalities;
ergo, more accurate results are achieved with supervised learning instead of unsupervised in
multi modalities [1].

Deng et al. (2018) presented a supervised triplet-based deep hashing network for cross-modal
retrieval in a computer vision dataset [4]. This triplet based loss function works on inter-modal
and intra-modal. Anchor, positive and negative examples have been chosen from the same source
like text or image in intra-modal. However, inter-modal works to create a cross-modality corre-
lation. Anchor and positive, negative examples are from different sources. For example, while
anchors have been collected from the text dataset, positives and negatives have been collected
from the image dataset to calculate inter-modal loss value from text to image.

Li et al. (2018) presented a cross-source hashing approach for image retrieval based on remote
sensing datasets by using panchromatic and multispectral single label images [18]. The panchro-
matic and multispectral image is a pair that were taken from the same location, but they show
different properties of the land. Generally, their approach can be summarized into two main
categories. One of them is uni-source LSRSIR(Large Scale Remote Sensing Image Retrieval).
Intrasource pairwise similarity constraint(IASC) has been defined for uni-source image retrieval,
which means query and retrieval are in the same source. This loss function keeps binary values
of the similar images closer while keeping the distance between binary values of the dissimilar
images in each source. The other category is the cross-source LSRSIR. The intersource pairwise
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similarity constraint(IRSC) has been defined to use in this category. IRSC operates like IASC,
but IRSC is operated between two data sources. The query and retrieval images are from differ-
ent sources in cross-source LSRSIR. To minimize the information loss during binarization from
the final feature representation to binary hashed codes, binary quantization constraint(BQC) has
been defined. Feature distribution constraint(FDC) has been employed to have balanced bit
values across the hashed dataset.

2.3 Basics on Remote Sensing

Remote sensing is a technology to observe the objects on the earth using sensors on the aircraft
or satellite. According to the type of energy resources during data acquisition, remote sensing
systems are categorized as passive and active systems. As illustrated in Figure 2.6, passive re-
mote sensing systems exploit solar radiation emitted or reflected by objects. However, active
remote sensing systems produce signals towards target objects and then register reflected ra-
diation from the target. Active or passive sensors can get different types of information like
Multispectral, Hyperspectral, Synthetic Aperture Radar, Laser Imaging Detection and Rang-
ing(LIDAR), Scatterometer, Radiometer. Multi and hyperspectral imaging sensors are some
examples of passive remote sensing systems. Radar systems or LIDAR are examples of active
remote sensing systems. Remote sensing image analysis is getting more popular because of its
wide range of applied fields like climate analysis, urban area study, forestry research, risk and
damage management, water quality evaluation, and monitoring.

Figure 2.6: Passive and active remote sensing [10]

Sentinel-1 is the first mission of the Copernicus program developed by European Space
Agency(ESA). The mission comprises a constellation of two-polar orbiting satellites, perform-
ing C-band synthetic aperture radar instrument which provides acquiring images in all weather
conditions, day or night. It offers images in single or double polarization [28].

Electromagnetic radiation varies in a spectrum range from the shorter wavelengths like gamma
and x-rays to longer wavelengths like microwaves and broadcast radio waves. Different wave-
lengths are used in remote sensing to observe different types of materials. The absorption
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and emission of radiation are affected by the molecular form and shape of the observed ob-
ject. Therefore, a multispectral image has 2-15 bands, and each band detects varied information
obtained by a particular wavelength signal.

Sentinel-2 is another earth observation mission that ESA is developing for the Copernicus
initiative. It comprises a constellation of two identical satellites, which are Sentinel-2A and
Sentinel-2B, in the same orbit that acquires multispectral optical images at high spatial resolution
(10 m to 60 m) over land and coastal areas [29].

Pixel is the smallest element of information in a digital image. A digital image comprises
pixels in two-dimensional, which are columns and rows. Spatial resolution is named for the size
of an area, which is represented by a pixel. The ability of the sensor affects spatial resolution,
which means detected details on the observed area.

Sentinel-2 multispectral images have 13 bands with different spatial and spectral resolutions.
A Sentinel-2 image has 4 bands with 120x120 pixels 10 meter spatial resolution, 6 bands with
60x60 pixels 20 meter spatial resolution, and 2 bands with 20x20 pixels 60 meter spatial resolu-
tion, which are presented in Table 2.2

Table 2.2: Sentinel-2 image bands [21]
Sentinel-2

Bands

Spatial

Resolution

(m)

Description
Sentinel-2A Sentinel-2B

Central

Wavelength

(nm)

Bandwidth

(nm)

Central

Wavelength

(nm)

Bandwidth

(nm)

B1 60 Aerosols 442.7 21 442.2 21
B2 10 Blue 492.4 66 492.1 66
B3 10 Green 559.8 36 559.0 36
B4 10 Red 664.6 31 664.9 31
B5 20 Red Edge 1 704.1 15 703.8 16
B6 20 Red Edge 2 740.5 15 739.1 15
B7 20 Red Edge 3 782.8 20 779.7 20
B8 10 Near infrared 832.8 106 832.9 106
B8A 20 Red Edge 4 864.7 21 864.0 22
B9 60 Water vapor 945.1 20 943.2 21
B10 60 Cirrus 1373.5 31 1376.9 30

B11 20 Short-Wavelength
Infrared 1 1613.7 91 1610.4 94

B12 20 Short-Wavelength
Infrared 2 2202.4 175 2185.7 185

2.4 Data Set Description

The deep learning models aim to generalize patterns in training data to predict new data that the
model has never processed. In order to have a high generalization ability, the neural networks
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should be supplied by large data sources. That is why using a limited number of annotated re-
mote sensing images to feed deep learning networks causes unsatisfied results. A trained neural
network with a small data set can suffer from the overfitting problem. Overfitting is adjusting
the model too closely to a particular set of data, extracting some inexistent patterns, and it may
cause failure to predict future observations reliably. When there is insufficient data for a domain
such as remote sensing, transfer learning is used to benefit a trained network over big data set
into the new task. Using and applying well-trained on large data sets and well-constructed net-
works to models with smaller data set to increase the performance is called transfer learning.
Transfer learning is using what was learned for a particular task to solve a different task. In
transfer learning, all layers can be removed after a particular layer. A new fully-connected layer
with a different number of neurons and random weights can be added to these transferred layers.
Transfer learning from the computer vision domain to the remote sensing domain is a way to
overcome the lack of big annotated remote sensing images, but the source and destination tasks
should be similar to have good results by transfer learning. This precondition can not be satisfied
between computer vision and remote sensing because the properties of the computer vision and
remote sensing images are not similar. Hence, using transfer learning to overcome small data
set problem is not an effective way.

BigEarthNet is a new comprehensive multi-label Sentinel-2 archive presented by Sumbul et
al. (2019) [35]. It is a multi-label archive, which means each image can have several land-cover
class labels, and it is larger than existing archives in remote sensing. Our study has been trained
and tested with Sentinel-1 and BigEarthNet Sentinel-2 images. Thanks to these adequate data
sources, transfer learning has not been needed, and overfitting has not occurred.

BigEarthNet Sentinel-2 archive is used with Sentinel-1 images, which have double polariza-
tion, VV, and VH. The focused area is the country of Serbia. A subset of BigEarthNet has
been created. That has only images related to the area of Serbia. Although BigEarthNet has 43
classes [35], some of these classes have not been represented in Serbia patches because of the
land’s nature, and totally there are 31 classes in Serbia patches. These not represented classes
are written in Table 2.3. Classes in all Serbia patches and the number of images associated with
each land-cover class have been presented in Table 2.4.

Sentinel-1 and Sentinel-2 image pairs have been created. Paired Sentinel-1 and Sentinel-2
images mean that they have the same coordinates and same land-cover classes. These pairs have
been used to feed CNN models.

Sentinel-2 multispectral images have 13 bands. However, the 10th band, which does not
keep the information about the land-cover class, had been excluded from BigEarthNet [35].
Therefore, the datasets have 12 bands for Sentinel-2 images and 2 polarizations for Sentinel-1
images.

Totally 71,855 paired images have been processed to feed both of the CNNs. It means 71,855
Sentinel-1 and 71,855 Sentinel-2 images have been used. These sets have been divided as train,
validation, and test sets by applying ratios respectively 50%, 25%, and 25% of the whole sets.
Therefore, the train set with 35928 image pairs, the validation set with 17963 image pairs, and
the test set with 17964 image pairs have been obtained. The train set is a sample of data to train
the model. The model learns weights and biases as processing this data. In order to have an
unbiased evaluation while tuning the model’s hyperparameters, validation sets are used. When
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Table 2.3: Unrepresented classes in Serbia patches
Land-Cover Classes

Agro-forestry areas
Annual crops associated with permanent crops
Coastal lagoons
Estuaries
Intertidal flats
Olive groves
Peatbogs
Permanently irrigated land
Rice fields
Salines
Salt marshes
Sea and ocean

training loss decreases but error increases in the validation set, this is a sign of overfitting to the
training set. That is why the validation set is used to detect overfitting problems. A model is
trained many times, defined by the number of epochs. A validation set is used to find the best
trained model by comparing the accuracy values between different epochs. The test set is used
to determine the general performance of the system. During the testing phase, query images are
chosen from the test set, and images are retrieved from the validation set. In other words, the
validation set is defined as a database.

Land-cover classes are kept as texts in a JSON file per image. They are categorical data, not
numeric. Categorical data has values from the fixed categories, but these categories can not or-
der. There are 31 land-cover classes, so images have some of them, and these class names do
not have an ordering. Most deep learning algorithms can not operate categorical data directly.
Numeric data like coordinates can be compared, and intervals between these values can be cal-
culated. This study’s proposed algorithms require numeric land-cover classes to calculate label
similarities between images using Hamming distance. Therefore, one-hot encoding has been
applied to the text-based categorical land-cover classes to convert them into numeric values.
The length of the encoded label’s array is 31 bits because of the total number of classes in the
patches. Every class has been represented by a bit. When the bit is 1, the image has the related
class. When the bit is 0, the related class is nonexistent for that image.

2.5 Evaluation Metrics

Evaluation of a CBIR system’s performance is based on measuring the ranking quality of re-
sponse for a given query. The highly relevant images are more useful than moderately relevant
images, and these moderately relevant images are more useful than irrelevant images during re-
trieving similar images of a query. Therefore, this prioritizing should be taken into account in
evaluation metrics.
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Metrics most commonly used to evaluate a CBIR system’s performance have been shared in
this section. These metrics are mostly used in multi-labeled image retrieval methods [25].

2.5.1 Average Cumulative Gains

Average Cumulative Gains (ACG) is for the average number of shared labels between the query
image and the top n retrieved images, as shown in the formula 2.7 where C(q,i) refers to the
number of shared class labels between query q and retrieved i image [39].

ACG@n =
1
n

n

Â
i

C(q, i) (2.7)

2.5.2 Normalized Discounted Cumulative Gains

There is a drawback with Average Cumulative Gains. ACG calculation does not include the
ranking of retrieved images. However, the images with the most number of shared labels with
the query should be retrieved earlier than the images with fewer shared labels. Discounted
Cumulative Gains(DCG) calculation involves the retrieved images’ position beside the relevance
score and is calculated as in Formula 2.8

DCG =
n

Â
i=1

2C(q,i)�1
log(1+ i)

(2.8)

Discounted Cumulative Gains are normalized to keep it in the range [0,1]. DCG is divided by
the ideal ranking order of DCG to have Normalized Discount Cumulative Gains(NDCG) as in
Formula 2.9. Ideal ranking order means that retrieved images should be in decreasing order of
the number of shared labels with the query.

NDCG =
DCG
iDCG

(2.9)

2.5.3 Mean Average Precision

The mAP metric is a well-known evaluation metrics used in information retrieval [25]. Many
studies[[26], [39], [15], [16], [41], [14]] have used this metric to show the accuracy of their
methods. It is the mean of average precision for each query, calculated as in Formula 2.10 where
Q refers to the query set’s size. The calculation of average precision per query has been shown
in Formula 2.11 where Tr(q, i)2 0,1 is an indicator function. If q and i share at least 1 class, it is
1. If they do not have any common labels, it equals 0. NTr(q)@i returns the number of relevant
images, which means the query and retrieved image has at least 1 shared class, from the query q
within the top i images [39].

mAP =
1
Q

Q

Â
q

AP(q) (2.10)

15



2 Foundation and Related Work

AP(q) =
1

NTr(q)@n

n

Â
i
(Tr(q, i)

NTr(q)@i
i

) (2.11)

2.5.4 Weighted Mean Average Precision

Weighted Mean Average Precision(WAP) is similar to MAP. However, WAP uses Average Cu-
mulative Gains(ACG). WAP calculates the average ACG at each top n retrieved images instead
of average precision. The formula 2.12 shows the calculation of the WAP.

WAP =
1
Q

Q

Â
q
(

1
NTr(q)@n

n

Â
i
(Tr(q, i)⇤ACG@i)) (2.12)
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Table 2.4: Distribution of classes in Serbia patches
Land-Cover Classes Number of Images

Broad-leaved forest 43079
Non-irrigated arable land 34064
Land principally occupied by agriculture,
with significant areas of natural vegetation 31955

Complex cultivation patterns 27832
Transitional woodland/shrub 25904
Discontinous urban fabric 11331
Natural grassland 7763
Pastures 7239
Mixed forest 3916
Water courses 3596
Coniferous forest 2089
Industrial or commercial units 1764
Inland marshes 1440
Water bodies 1191
Fruit trees and berry plantations 1052
Vineyards 623
Mineral extraction sites 610
Sparsely vegetated areas 548
Sport and leisure facilities 245
Road and rail networks and associated land 138
Construction sites 111
Green urban areas 100
Burnt areas 73
Dump sites 71
Bare rock 62
Airports 42
Beaches, dunes, sands 35
Sclerophyllous vegatation 24
Continous urban fabric 20
Moors and heathland 12
Port areas 2
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3 Proposed Multi-Modality Hashing
Methods

Two separate deep learning architectures have been implemented to create hash codes of Sentinel-
1 and Sentinel-2 images. Both architectures are based on ResNet50, whereas the only difference
is the number of input channels. Used Sentinel-1 images have two polarizations, and used
Sentinel-2 images have 12 bands. Therefore, CNN Sentinel-1 number of input channels is 2,
and CNN Sentinel-2 number of input channels is 12.

After learning the features of the images by ResNet50 architectures, a linear transformation
has been applied in the fully connected layer. Thus, feature vectors have been shrunk to a hash
length vector. After a fully connected layer, a sigmoid function has been applied to have values
between 0 and 1. The sigmoid function keeps the values in the range of 0, 1. However, the
binarization loss function penalizes the system when the codes returned from the neural network
has 0.5. Therefore, it pushes the system to produce codes close to 0 or 1. In the validation phase,
these decimals should have been converted to binary codes to save and use them as a database for
the testing phase. Thus, a faster searching and retrieving mechanism has been provided thanks
to benefiting the Hamming distance between binary codes. That is why a sign function is applied
per modality after results obtained from the neural networks in the validation. Hence, saved hash
codes have only 0s and 1s. The calculation of the sign function has been shown in Formula 3.1

Binary = (sign(Logits�0.5)+1)/2 (3.1)

These networks have been operated in two different ways, which are detailed in the section
3.1 Multi-Modality Hashing with Mean Square Error Loss and 3.2 Multi-Modality Hashing with
Triplet Loss. However, both methods are empowered by using push (binarization) and balancing
losses, as shown in the formula 3.2. The coefficients have been determined as following the study
of Roy et al. (2018) [26] as l1 = 0.001, and l2 = 1.

LCombined = LMain +l1 ⇤LPush +l2 ⇤LBalancing (3.2)

Mini batch gradient descent has been used during the training of both methods. It splits the
whole data into a lot of small batches. The size of small batches has been defined as 200 in this
study. In each iteration, this small batch of data has been used to train the neural networks.

Adam Optimizer [13] has been used to optimize loss functions with learning rate 10�3 and
weight decay 10�4. It is an algorithm for the first-order gradient-based optimization of stochastic
objective functions.
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3.1 Multi-Modality Hashing with Mean Square Error Loss

As defined in Section 2.1.2, MSE is the sum of squared distances between the target and pre-
dicted values. The predicted values of the loss function are cosine similarities of images’ hash
codes, and the target value is the cosine similarities of labels. It means cosine similarities of
two images’ hash codes should close to their labels’ similarities. Therefore, binary codes of the
images have preserved the label’s similarity.

The mini-batch has been read like in Figure 3.1. Each pair has two rows. Every row has one
paired Sentinel-1 and Sentinel-2 images that share the same land-cover classes.

Figure 3.1: Representation of mini-batch used in MSE loss based approach

Cosine similarity is a metric to measure how similar two data are regardless of their size.
Cosine similarity has been used to measure how similar labels and binary codes of images, and
it is calculated as in the formula 3.3. The cosine similarity is useful because even if two data
points are far apart by the Euclidean distance due to the magnitude of the points, they may still
be closer in terms of cosine distance. As seen in the figure 3.2, the Euclidean distance of A2-B2
is bigger than A1-B1, but the cosine distance is the same. The length of the labels and hashed
binary codes can be different. That is why using Euclidean distance to find similarity does
not always produce realistic results [1]. However, cosine similarity looks at the angle between
vectors, not magnitude.

Cos(a,b) =
~a ·~b

k~ak
���~b

���
=

Ân
i aibiq
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i

q
Ân

i b2
i

(3.3)

MSE Loss has been implemented with intramodality and intermodality loss calculations.
These calculations have been done in pair based. Thus, they have been operated in every pair
of the batch. Intra refers to the calculation inside of modality, and inter refers to the calculation
between the modalities. There are two intramodality loss calculations. One is for Sentinel-1,
and another is for Sentinel-2. In Sentinel-1 intramodality, cosine similarity of Sentinel-1 image
1’s and Sentinel-1 image 2’s hash codes have been used to input MSE. Cosine similarity of label
1 and label 2 is the target of the MSE. MSE loss function for Sentinel-1 intramodality has been
calculated as in the formula 3.4. Replacing hash codes of Sentinel-1 images with hash codes of
Sentinel-2 images in the calculation, Sentinel-2 intramodality loss calculation has been obtained,
as shown in the formula 3.5
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Figure 3.2: Euclidean distance and cosine distance

MSEIntraS1 = MSE(Cos(S1Image1,S1Image2),Cos(label1, label2)) (3.4)

MSEIntraS2 = MSE(Cos(S2Image1,S2Image2),Cos(label1, label2)) (3.5)

Besides the intramodality loss calculation, there are four intermodality loss calculations. Two
of them have been calculated in the same row. The labels in the same row are the same. That is
why 1.0, which is the cosine similarity of the same labels, is written to target values of the MSE
loss. Paired hash codes of Sentinel-1 and hash codes of Sentinel-2 images should be similar
because they share the same land cover classes. The formula 3.6 and the formula 3.7 has been
operated to calculate respectively for row 1 and row 2 intermodality MSE Loss.

MSEInterSameLabel1 = MSE(Cos(S1Image1,S2Image1),1.0) (3.6)

MSEInterSameLabel2 = MSE(Cos(S1Image2,S2Image2),1.0) (3.7)

The cosine similarity of the hash codes is the input of the MSE Loss. If these hash codes have
been chosen diagonally in the pair, MSE loss for intramodality in different labels have been
obtained. Two equations have been operated, as shown in the formula 3.8 and 3.9, in order to
calculate the loss value of intermodality MSE for different labels.

MSEIntrerDi f f erentLabel1 = MSE(Cos(S1Image1,S2Image2),cos(label1, labe2)) (3.8)

MSEIntrerDi f f erentLabel2 = MSE(Cos(S1Image2,S2Image1),cos(label1, labe2)) (3.9)
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3.2 Multi-Modality Hashing with Triplet Loss

The general view of the approach like this:

1. Sentinel-1 intramodality as shown in the formula 3.4

2. Sentinel-2 intramodality as shown in the formula 3.5

3. Intermodadality

a) Same labels(same row)

i. The formula 3.6

ii. The formula 3.7

b) Different labels

i. The formula 3.8

ii. The formula 3.9

It has different equations to fulfill all purposes. These equations are gathered in the formulas
(3.10, 3.11, 3.12, 3.13).

LMSE = 0.33⇤MSEIntraS1 +0.33⇤MSEIntraS2 +0.33⇤MSEInter (3.10)

MSEInter = 0.5⇤MSESameLabel +0.5MSEDi f f erentLabel (3.11)

MSESameLabel = 0.5⇤MSEInterSameLabel1 +0.5⇤MSEInterSameLabel2 (3.12)

MSEDi f f erentLabel = 0.5⇤MSEInterDi f f erentLabel1 +0.5⇤MSEInterDi f f erentLabel2 (3.13)

3.2 Multi-Modality Hashing with Triplet Loss

Our MSE based approach or any pairwise loss functions check the similarities between image
pairs, not among multiple images. This issue can cause a decrease in the accuracy of hashing
based CBIR systems. In order to cope with this problem, triplet loss can be applied [34].

Hamming distances between one-hot encoded labels have been evaluated to find positive
(closest) and negative (farthest) per anchor in every batch. Triplet loss keeps close binary hash
codes of anchor and positive images to preserve labels’ similarity after hashing. Moreover, it
pushes away the binary codes of negative images from the anchor to maintain labels’ differences
in the hashed codes.

Anchor, positive and negative samples have been chosen in the same modality while in-
tramodality losses are calculating.

Triplet-Based Deep Hashing Network for Cross-Modal Retrieval by Deng et al. (2018) has
been followed for adapting triplet loss to the cross-modality [4]. Although it is in the computer
vision domain, the fundamental is the same. A query is chosen from a source, while the positive
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and negative instances are from another source. Anchor behaviors like the query of the retrieving
mechanism. The anchor has been chosen from Sentinel-1, and positive, negative samples have
been chosen from Sentinel-2 to simulate retrieving Sentinel-2 images by using the Sentinel-1
query. That is InterLoss1 of the formula 3.16. The anchor is from Sentinel-2, and positive,
negative samples are from Sentinel-1. That is the InterLoss2 of the formula 3.16.

LTriplet = 0.5⇤LTripletIntra +0.5⇤LTripletInter (3.14)

LTripletIntra = 0.5⇤LTripletS1Intra +0.5⇤LTripletS2Intra (3.15)

LTripletInter = 0.5⇤LTripletInterLoss1 +0.5⇤LTripletInterLoss2 (3.16)

As shown in Figure 3.3, Sentinel-1 and Sentinel-2’s neural networks have been trained with
different loss functions. These trained networks have been utilized to generate hash binary codes
of the query in the testing phase. In the figure, only a Sentinel-1 query has been presented in
testing for the sake of simplicity. Sentinel-2 images have been hashed using trained Sentinel-2’s
neural network in testing, and these hashed codes have been compared with hashed Sentinel-1
and Sentinel-2 archives to retrieve semantically similar images.

Figure 3.3: Workflow of the proposed triplet based method to retrieve images as using Sentinel-1
query
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MSE loss and triplet loss have been implemented to train the neural networks. The networks
have been trained, validated, and tested with different parameters, which are the length of hash
bits, number of retrieved images per query, and fixed parameters, which are the mini-batch size
and number of epochs. The length of hash bits has been varied in a wide range of 8, 16, 32, 64,
and 128 bits. The number of retrieved images per query has been defined as 20 and 50. The
mini-batch size is 200.

The number of epochs is usually large to allow the learning algorithm to run until the model’s
error has been sufficiently minimized. However, as detailed in the next chapters, no vital de-
crease in loss function errors has been observed while the number of epochs increases and 10
has been determined as the number of epochs.

A model trained for the number of epochs. The model with the best results in a particular
epoch should be saved to be used in the testing. mAP values have been compared in the val-
idation phase to find the best epoch. The epoch that produced the highest mAP value in the
validation has been saved as the best-trained epoch to use in testing.

All models have been trained and tested in TU Berlin High-Performance Cluster [8]. 2 GPU
nodes have been reserved from the cluster to run the processes. This configuration has 1 NVIDIA
Tesla P100 16GB HBM2 per node.

The results of all cases in both approaches have been evaluated by mAP and WAP metrics. In
this chapter, these results have been shared.

4.1 Results of Mean Square Error Multi-Modality Hashing

In this section, the method’s results, which is the mean square error-based approach, have been
given. A line plot that shows epochs along the x-axis as time and the model’s loss function error
occurred during several training experiments on the y-axis has been presented, as shown in the
figure 4.1. As the desired result of a deep learning algorithm, loss values have been decreased
in every epoch. From 1st epoch to 5th epoch, a well-nigh 29% decrease of the loss error has
been observed. However, the ratio has lessened after epoch 5. From the 5th epoch to the 10th
epoch, the loss error reduction is about 9%. To be sure about this movement of the error among
epochs, the model has been trained 5 times with the same parameters. Although the large epoch
numbers will need a long time to finish the training, there would not be a drastic change in the
result. Therefore, the train of the model has been done with 10 epochs number.

Figure 4.2 shows the time spent in training and validation of the models for different length
of hash bits with 20 and 50 retrieved images per query.

Tables 4.1 and 4.2 are a statistical summary of our mean square error multi-modality hashing.
The cells which have yellow background represent the best value among all length of hash bits.
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4 Experimental Results

Figure 4.1: Errors during the training of MSE based approach

Figure 4.2: Elapsed time during training and validation, number of retrieved images per query =
20, 50

The mAP and WAP results for different numbers of bits have been shown in Table 4.1. The
number of retrieved images for these results is 20. It can be observed that 32-bit and 64-bit
hash lengths have outperformed to retrieve 20 images per query in the Mean Square Error based
method.

Table 4.2 also has been shown the mAP and WAP results for different numbers of bits, but 50
is the number of retrieved images for these results. Although the 8-bit hash length has the highest
average mAP and WAP, other hash lengths also have the best scores in different scenarios, like
the method which produces the 32-bit length of hashes outperforms to retrieve 50 Sentinel-1
images on intramodality.
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4.2 Results of Triplet Loss Approach

Table 4.1: Results of Mean Average Precision (mAP) and Weighted Mean Average Preci-
sion(WAP) of MSE based approach for different numbers of bits on 20 retrieved
images per query

mAP

8-bit 16-bit 32-bit 64-bit 128-bit

S1–>S1 0.911 0.886 0.905 0.918 0.883
S1–>S2 0.545 0.602 0.760 0.590 0.451
S2–>S1 0.457 0.531 0.502 0.588 0.528
S2–>S2 0.860 0.909 0.796 0.960 0.906
Average mAP 0.693 0.732 0.741 0.764 0.692

WAP

S1–>S1 1.533 1.425 1.536 1.546 1.380
S1–>S2 0.812 0.791 1.238 0.824 0.661
S2–>S1 0.633 0.725 0.664 0.837 0.804
S2–>S2 1.410 1.455 1.477 1.603 1.319
Average WAP 1.097 1.099 1.229 1.202 1.041

4.2 Results of Triplet Loss Approach

In this section, the method’s results, which is the triplet loss-based approach, have been given.
A line plot shown in the Figure 4.3 has also been created to illustrate how training loss errors
appeared on several training experiments among the epochs. The rate of loss error’s change
from 1st epoch to 5th epoch is more notable in the triplet Loss-based approach than MSE based
approach. Approximately 58% decrease in the loss errors has been observed from 1st to 5th
epoch. This ratio is decreasing after the 5th epoch. From the 5th epoch to the 10th epoch,
reducing the training loss errors is only about 8%.

Figure 4.3: Errors during the training of the triplet loss-based approach

Figure 4.4 shows the time spent in training with triplet loss function and validating the models
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4 Experimental Results

Table 4.2: Results of Mean Average Precision (mAP) and Weighted Mean Average Preci-
sion(WAP) of MSE based approach for different numbers of bits on 50 retrieved
images per query

mAP

8-bit 16-bit 32-bit 64-bit 128-bit

S1–>S1 0.600 0.876 0.919 0.864 0.777
S1–>S2 0.679 0.552 0.476 0.370 0.477
S2–>S1 0.891 0.500 0.491 0.641 0.600
S2–>S2 0.666 0.885 0.909 0.938 0.905
Average mAP 0.709 0.703 0.699 0.703 0.690

WAP

S1–>S1 0.910 1.386 1.484 1.341 1.127
S1–>S2 1.066 0.841 0.618 0.481 0.657
S2–>S1 1.463 0.703 0.672 1.028 0.849
S2–>S2 1.029 1.313 1.424 1.393 1.511
Average WAP 1.117 1.061 1.049 1.061 1.036

for different length of hash bits with 20 and 50 retrieved images per query.

Figure 4.4: Elapsed time during training and validation of triplet loss-based method, number of
retrieved images per query = 20, 50

The mAP and WAP results of the triplet loss-based method for different numbers of bits have
been shown in Tables 4.3 and 4.4. The number of retrieved images per query is 20 for Table
4.3 and 50 for Table 4.4. A specific length of hash bits outperforms others in all cases can not
be said in our triplet loss multi-modality hashing. Evaluation results of a length of hash bits
depend on the number of retrieved images per query and retrieving type. Although that length
has lower metrics in a case, it can have a higher outcome in another case. Even though 32 and
64-bit hashes produce better outcomes than others, results are so similar among the number of
bits, as can be observed.
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4.3 Comparision Between Proposed Methods

Table 4.3: Results of Mean Average Precision (mAP) and Weighted Mean Average Preci-
sion(WAP) of triplet loss based approach for different numbers of bits on 20 retrieved
images per query

mAP

8-bit 16-bit 32-bit 64-bit 128-bit

S1–>S1 0.933 0.921 0.897 0.952 0.836
S1–>S2 0.917 0.950 0.943 0.921 0.772
S2–>S1 0.933 0.847 0.924 0.939 0.927
S2–>S2 0.964 0.924 0.961 0.960 0.901
Average mAP 0.936 0.910 0.931 0.943 0.859

WAP

S1–>S1 1.471 1.399 1.540 1.589 1.383
S1–>S2 1.265 1.563 1.676 1.369 1.322
S2–>S1 1.486 1.234 1.503 1.353 1.488
S2–>S2 1.640 1.423 1.688 1.644 1.409
Average WAP 1.465 1.405 1.602 1.489 1.400

4.3 Comparision Between Proposed Methods

Mean square error loss and triplet loss do not have the capability of bit balancing and bina-
rization. The same loss functions have been added to the MSE and triplet-based approach to
have balanced bits in hashing and better binarization from the neural network’s output to hashed
codes.

Mean Square Error loss focuses on similarities among only image pairs, and similarities
among multiple images are ignored. It causes poor performance to learn similarities of the
images for CBIR problems. However, triplet loss works on image triplets, and it provides more
effective image descriptors [34]. This performance difference also can be observed clearly in our
study. As shown in Figure 4.5, triplet loss has produced better results than MSE loss in average
mAP and WAP among all length of hash bits.

In terms of consumed time during training and validation, triplet loss needs more time, as
presented in Figure 4.6. Although the training phase has not used the parameter, which is the
number of images per query, the validation performance is directly connected to the number of
retrieved images per query. As the number of retrieved images per query increases, the difference
between the models’ time spent is grown. For example, 3 hours and 56 minutes have been spent
to train and validate the triplet loss-based model to create 128-bit hashes to retrieve 20 images,
and the consumed time has been raised approximately 43% to retrieve 50 images in the same
length of hash bits. This increment ratio is about 35% for the 128-bit length of hashes in the
MSE-based approach. Therefore, the increment rate for consumed time in the validation of
triplet loss is more prominent than MSE loss.
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4 Experimental Results

Table 4.4: Results of Mean Average Precision (mAP) and Weighted Mean Average Preci-
sion(WAP) of triplet loss based approach for different numbers of bits on 50 retrieved
images per query

mAP

8-bit 16-bit 32-bit 64-bit 128-bit

S1–>S1 0.909 0.819 0.890 0.878 0.852
S1–>S2 0.909 0.867 0.919 0.902 0.892
S2–>S1 0.927 0.910 0.921 0.883 0.931
S2–>S2 0.895 0.930 0.959 0.929 0.951
Average mAP 0.910 0.882 0.922 0.898 0.906

WAP

S1–>S1 1.352 1.267 1.412 1.425 1.267
S1–>S2 1.316 1.372 1.415 1.308 1.404
S2–>S1 1.396 1.418 1.455 1.455 1.520
S2–>S2 1.461 1.500 1.616 1.453 1.455
Average WAP 1.381 1.389 1.474 1.410 1.412

4.4 Visual Representations of Retrieved Images

Visual representations of Sentinel-1 images have been created as building an RGB color image.
The composite RGB image has been built using the VV channel for red, VH channel for green,
and ratio |VV |/|V H| for blue [24].

Image visualizations of Sentinel-2 have been done by following the natural color represen-
tations. The composite RGB image has been built using band 4 for red, band 3 for green, and
band 2 for blue [32]. Visualizations of the RGB format of Sentinel-2 images are presented with
a scale of 0.5 to fit them into the page.

The same example image pair (Sentinel-1 and Sentinel-2 images) has been chosen as a query
to visualize retrieved images of all cases in both methods. These cases are:

• Query: Sentinel-1, retrieved images: Sentinel-1

• Query: Sentinel-2, retrieved images: Sentinel-2

• Query: Sentinel-2, retrieved images: Sentinel-1

• Query: Sentinel-2, retrieved images: Sentinel-2

The number of retrieved images is 20 for these visualizations, and these results have been pre-
sented in different hash length bits.

Tables 4.5, 4.6, 4.7, and 4.8 have been created to visualize the results of retrieved images by
mean square error multi-modality hashing. Sentinel-1 and Sentinel-2 intra-modalities have been
shown in Table 4.5 and 4.8, respectively. From Sentinel-1 to Sentinel-2 is in Table 4.6, and from
Sentinel-2 to Sentinel-1 is in Table 4.7.
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4.4 Visual Representations of Retrieved Images

Figure 4.5: Average mAP and WAP results comparisons among different hash bits for 20 and 50
retrieved images per query

Tables 4.9, 4.10, 4.11, and 4.12 have been created to visualize the results of retrieved images
by triplet loss multi-modality hashing. Tables 4.9 and 4.12 have been used to present intra-
modalities’ results of Sentinel-1 and Sentinel-2, respectively. Table 4.10 is for cross-modality
from Sentinel-1 to Sentinel-2, and Table 4.11 is for cross-modality from Sentinel-2 to Sentinel-1
in the triplet-based approach.
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4 Experimental Results

Figure 4.6: Consumed time to train and validate both models for 20 and 50 retrieved images per
query
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4.4 Visual Representations of Retrieved Images

Table 4.5: Visual results on retrieved 20 Sentinel-1 images by Sentinel-1 query under various
hash length bits in MSE based approach

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits

31



4 Experimental Results

Table 4.6: Visual results on retrieved 20 Sentinel-2 images by Sentinel-1 query under various
hash length bits in MSE based approach

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4.4 Visual Representations of Retrieved Images

Table 4.7: Visual results on retrieved 20 Sentinel-1 images by Sentinel-2 query under various
hash length bits in MSE based approach

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4 Experimental Results

Table 4.8: Visual results on retrieved 20 Sentinel-2 images by Sentinel-2 query under various
hash length bits in MSE based approach

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4.4 Visual Representations of Retrieved Images

Table 4.9: Visual results on retrieved 20 Sentinel-1 images by a Sentinel-1 query as employed a
neural network trained with triplet loss under various hash length bits

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4 Experimental Results

Table 4.10: Visual results on retrieved 20 Sentinel-2 images by a Sentinel-1 query as employed
a neural network trained with triplet loss under various hash length bits

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4.4 Visual Representations of Retrieved Images

Table 4.11: Visual results on retrieved 20 Sentinel-1 images by a Sentinel-2 query as employed
a neural network trained with triplet loss under various hash length bits

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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4 Experimental Results

Table 4.12: Visual results on retrieved 20 Sentinel-2 images by a Sentinel-2 query as employed
a neural network trained with triplet loss under various hash length bits

Query

1st 5th 10th 15th 20th

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits
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5 Conclusion and Future

5.1 Conclusion

A content-based image retrieval system has been implemented with a deep hashing technique
to get semantically similar images in a multi-modality remote sensing data source in this thesis.
This multi-modality structure has two subheadings. One of them is intramodality, which means
query and retrieved images are in the same modality. The other one is intermodality, which
means query and retrieved images are in different modalities.

If images are hashed to binary codes while preserving label similarities, a low storage required
and fast CBIR system can be obtained because the distance between hashed binary codes is
calculated by Hamming distance quickly, and hashed binary codes need much less storage than
original images. Consequently, our CBIR system has been created in a hashing based way.

In order to hash images to binary codes, feature descriptors are required. Feature descriptors
of the images have been computed by using convolutional neural networks. It has provided a
more optimized learning mechanism than hand-crafted feature descriptors. ResNet50 architec-
ture has been followed to build neural networks per modality. A network has been created for
Sentinel-1 images, and a network has been created for Sentinel-2 images. These deep neural
networks have been trained with two different loss functions, and these two approaches have
been implemented to present an effective multi-modality CBIR system in remote sensing. These
approaches are:

• Multi-modality hashing with mean square error loss

• Multi-modality hashing with triplet loss

The same neural network architectures have been employed in both approaches. Binarization
and balancing loss functions have been added to the next of the primary loss function.

Mean square error loss has been adapted to the problem of this study. In this approach, neural
networks have been feed by the pairs of data. Cosine similarities of the binary codes of the
images should have been near to cosine similarities of the class labels of the images. Mean
square error has calculated the distance between these two cosine similarities.

Although the Mean square error-based approach has produced favorable results in some par-
ticular cases, using MSE to train CBIR systems’ neural networks is not the best way. Triplet loss
calculates similarities among triple images, not a pair of images like in MSE, and it makes better
performance than MSE loss. In this approach, images have been categorized as the anchor, pos-
itive and negative. A positive image means the image has the most number of shared labels with
the anchor in the batch, and a negative image means the image has the least number of shared
labels with the anchor. The purpose of the triplet loss keeps the anchor’s and positive’s binary
codes closer while maintaining a distance between the anchor and the negative binary codes.
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5 Conclusion and Future

Both approaches have been trained, validated, and tested with various length of hash bits and
20, 50 retrieved images per query. The length of hash bits is 8, 16, 32, 64, and 128. Evaluation
results have been shared, and as estimated, the triplet loss-based approach outperforms than the
MSE-based approach. Besides evaluation metrics, visual representations of all cases in both
methods have been shared with 20 retrieved images per query.

5.2 Future Work

Although proposed methods, especially triplet loss-based, succeed in CBIR of multi-modality
remote sensing dataset, some directions have been shared to improve the study in future research.

The results could not be compared with the state of the art methods because most previous
multi-modality hashing studies used computer vision datasets. Using our data source in these
studies is not possible because of the differences in neural network structure. While multi-
modality hashing in computer vision uses image-text datasets, Sentinel-1 and Sentinel-2 images
have been used in this study. This difference also affects the architecture of the neural networks.
Significant modifications are needed to use our data source in a computer vision study, but it
means changing almost all parts of the related study. That is why it has not been done. There
are a few papers for multi-modality hashing in remote sensing, but they did not share the source
codes. Therefore, using their solutions with our data source is not possible. Getting the results
of other studies with our data source and comparing them with our methods’ results would be a
valuable contribution.

ResNet50 architecture has been followed to build neural networks for Sentinel-1 and Sentinel-
2 images. ResNet also has deeper architectures like ResNet101 and ResNet152-layer. These
deeper architectures or completely new architectures can be implemented to see other architec-
tures’ performance in the future.

In addition to mAP and WAP, Normalized Discounted Cumulative Gains (NDCG) and Aver-
age Cumulative Gains(ACG) can also be used as evaluation metrics to increase the variety in the
results of the study.
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