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Abstract

Large auto-generated datasets with imperfect labels have sparked interest in developing meth-
ods for training deep neural networks (DNN) robust to label noise. In this context, this thesis
hypothesizes that the distinction of hard and noisy-labeled samples plays a crucial role for state-
of-the-art performance. It follows the common assumption in deep learning that more diverse
samples are harder to learn from, but are of higher informative value for generalization. In or-
der to identify globally hard samples, the thesis establishes a notion of sample difficulty that is
derived from implicit learning orders in DNN curricula. Considering the difficulty of a sample,
learning dynamics under label noise are examined. Further, as a necessary condition, the rela-
tion of sample difficulty and informativeness is investigated. Experimental results show an ab-
sence of correlation between the two measures for standard benchmarks in noise robust training,
CIFAR-10 and CIFAR-100 and a non-linear correlation for TinyImagenet. As a consequence,
the central hypothesis is partially rejected. In fact, it is concluded that the identification of easy
and thus, less noisy samples is sufficient for the development of powerful noise robust methods.
The findings are incorporated into label noise research by illustrating a powerful approach to-
wards state-of-the-art performance by training a semi-supervised method with clean, rather easy
samples.
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Zusammenfassung

Große automatisch generierte Datensätze mit imperfekten Annotationen haben Interesse an der
Entwicklung von Methoden zum Training von tiefen neuronalen Netzen geweckt, die gegenüber
inkorrekten Labels robust sind. In diesem Zusammenhang stellt diese Masterarbeit die Hy-
pothese auf, dass die Unterscheidung zwischen schwierigen und inkorrekt annotierten Daten-
punkten eine entscheidende Rolle für die State-of-the-Art Performance spielt. Sie folgt der beim
Deep Learning üblichen Annahme, dass vielfältigere Datenpunkte schwieriger zu erlernen sind,
aber einen höheren Informationswert für die Generalisierung vom Datensatz haben. Um global
schwierige Datenpunkte zu identifizieren, wird in dieser Arbeit ein Begriff der Lernschwierigkeit
eingeführt, der von der impliziten Lernabfolge von tiefen neuronalen Netzen abgeleitet ist.
Unter Berücksichtigung des Schwierigkeitsgrades eines Datenpunktes wird die Lerndynamik
unter teilweise inkorrekt annotierten Daten untersucht. Außerdem wird als notwendige Bedin-
gung der Zusammenhang zwischen der Schwierigkeit eines Datenpunktes und der Informativität
untersucht. Experimentelle Ergebnisse zeigen eine fehlende Korrelation zwischen den beiden
Variablen für Standard-Benchmarks für Training mit imperfekten Annotationen, CIFAR-10 und
CIFAR-100 und eine nichtlineare Korrelation für TinyImagenet. Die zentrale Hypothese wird
als Folge dessen teilweise zurückgewiesen. Es wird geschlussfolgert, dass die Identifizierung
einfacher und damit weniger häufig falsch annotierter Datenpunkte für die Entwicklung leis-
tungsfähiger Methoden zum Lernen mit imperfekten Annotationen ausreicht. Die Erkenntnisse
werden genutzt, um die Entwicklung einer Methode mit State-of-the-Art Performance durch
Training eines tiefen neuronalen Netzes per halbüberwachten Lernen mit korrekten, eher ein-
fachen Datenpunkten zu skizzieren. Die Experimente werden mit den geläufigen Computer
Vision Benchmarks CIFAR-10, CIFAR-100 und TinyImagenet durchgeführt.
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1 Introduction

With the advent of deep learning, great advances have been made in the fields of computer vision,
speech recognition and natural language processing. While its success is strongly tied to theoret-
ical foundations that enabled the development of complex architectures and training strategies,
another key to the success of deep neural networks (DNN) lays in its ability to learn from big
data archives. However, acquiring manual annotations for them in order to carry out supervised
learning tasks remains an expensive procedure in practice. Therefore, more and more annota-
tion processes involve crowdsourcing procedures or rely on automated label generation. While
cheaper to obtain, these approaches come with the risk of label noise. For example, non-expert
annotators might mislabel samples due to a lack of knowledge, while automated procedures can
induce noise due to imprecise mappings or outdated data. As a consequence, there has been
rising interest in the development of methods that are robust to label noise in recent years.

A deeper understanding of the task of learning under label noise can be established by tak-
ing a closer look at the learning behavior of DNN. Principally, the distributed and hierarchical
representation inherent to the architecture of DNN enables a structural learning process that
generalizes from the dominant patterns in the dataset [2]. In fact, it has been shown, that DNN
follow implicit curricula independent of the order of the data samples presented to the network
[69]. Under ideal conditions, e.g., noise-free data, they consistently start to learn from easier
more representative samples, while learning from harder (i.e., more difficult) samples only at
later stages of the training. At earlier stages of the learning process the networks generalize,
while at later stages they start to memorize [2]. Nonetheless, these general observations can be
transferred to the field of noisy label research. When training with moderately noisy-labeled
datasets, the overfitting on mislabeled samples takes place at later stages of the training process,
concurrently with learning harder samples [10] [35].

A shortcoming of the majority of works in the label noise literature is a strong focus on improv-
ing benchmark scores on datasets under varying artificial noise injection. In contrast to these
well established benchmarks, this thesis aims in providing a broader perspective on the evalua-
tion and development of label noise robust methods by taking into account the implicit curricula
of DNN. Build upon the observations on training dynamics of easy, hard and noisy-labeled sam-
ples, we postulate the following hypothesis:

Hypothesis 1 (H1): The key challenge in learning from noisy-labeled datasets lays in the dis-
tinction between hard and noisy-labeled samples.

The central postulate on learning under label noise further relies on two additional hypotheses,
namely:
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1 Introduction

Hypothesis 2 (H2): Samples can be ranked consistently according to their hardness in implicit
curricula of neural networks. In particular, this rank is subset consistent, i.e., has no dataset
sampling-bias.

Hypothesis 3 (H3): The hardness rank correlates with the informative value that a sample can
provide for generalization. Harder samples are less redundant for generalization.

Hypothesis 2 is a necessary condition in order to justify a particular focus on harder samples. If
the initialization or the optimization procedure of the network has a profound influence on the
order of learning, no global hard samples can be determined. Another problem for identifying
samples that are hard-to-learn is related to the co-occurrence with other samples. The relative
hardness (i.e., difficulty) of two samples need to be independent of the set in which they co-
occur. Furthermore, only if harder samples are of greater value for generalization (as stated in
Hypothesis 3), it is reasonable to particularly identify them for the evaluation and development
of new noise robust methods. From a proof of Hypothesis 3, it would follow that the perfor-
mance of a model suffers, if the memorization of mislabeled samples begins before the learning
of hard samples is finished.

In general, the knowledge about hard samples can allow specific experiments (e.g., on loss func-
tions, training curricula, selection procedures) to distinguish hard from noisy-labeled samples.
For example, a method that is designed to filter out noisy-labeled samples (e.g., [47]) could be
impacted differently with respect to its ability to generalize depending on the amount of easy
or hard samples being filtered out together with the noisy-labeled samples. In the following,
this thesis investigates the truthfulness of Hypothesis 2 and Hypothesis 3 in order to enable a
new perspective for the development of new noise robust methods and provide a more in-depth
understanding of the learning dynamics under label noise. The thesis is structured as follows:

Chapter 2 provides a fundamental introduction to the relevant research disciplines in deep learn-
ing for examining the postulated hypotheses. At first, literature investigating sample difficulty
from a learning perspective of DNN is presented. Thereafter, research directions and state-of-
the-art methods in training under label noise are described. Finally, the chapter concludes with
a short summary of current trends in semi-supervised learning, that is a training approach that
becomes increasingly relevant for the development of noise robust methods.

A brief summary of the datasets and experimental setup used throughout the thesis is given in
Chapter 3.

In Chapter 4 the truthfulness of Hypothesis 2 is investigated. Before analyzing training dy-
namics under label noise, an easy-to-compute metric for describing sample difficulty from the
perspective of DNN curricula is introduced. Further, possible training design choices are studied
in order to make the metric subset consistent. Afterwards, the consistency of difficulty ranks as
well as training dynamics under label noise are studied.
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The objective of Chapter 5 is to prove Hypothesis 3. Multiple experiments are conducted in
order to understand the informative values that samples of different degrees of difficulty can
provide for generalization. In addition, the outcome of the experiments is put into context with
Hypothesis 1 and consequences for noise robust learning are discussed.

Chapter 6 illustrates a possible direction of integrating the observations made throughout the
experiments of the thesis into label noise research. A final summary of discoveries and an
outlook of future work is provided in Chapter 7.
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2 Related Work

2.1 Sample Di�culty in Deep Learning Curricula

During the last decade, great advances have been made in improving neural network archi-
tectures, regularization techniques and training strategies. However, while these methods con-
stantly become better, there has been rising interest in understanding the learning dynamics of
deep neural networks. New research objectives include explaining decisions of neural networks
or understanding sample difficulty during the course of learning. In particular, the research field
of sample difficulty studies the structures and regularities of datasets with respect to the ability
of DNN to learn and generalize from them. In the literature, different properties of neural net-
works and its respective training procedures are studied in order to serve as a measure of sample
difficulty in implicit curricula of neural network. In the following, various notions of difficulty
are described.

Training prediction/loss: Based on the assumption that it is beneficial to train neural networks
in an order of increasing complexity, the inventors of curriculum learning, Bengio et al. [5],
propose to use loss values of samples to determine its difficulty. Following the idea of deriving
information from predictions during training, Toneva et al. [65] suggest to use the first iteration
in which a sample is learned and remains learned for every subsequent iteration as a notion of
sample difficulty.

Hold-out prediction: Aiming on distinguishing prototypical from atypical samples in a dataset,
Carlini et al. [9] define the metric Holdout Retraining that compares the sample confidences
by models that were trained with and without the respective sample. Elaborating these ideas,
Jiang et al. [33] propose the consistency score (c-score) that describes sample difficulty by the
probability of predicting the correct label for a sample that is omitted during training. In partic-
ular, the score is composed of the expected accuracy for a hold-out sample for training sets with
varying sizes that are subsampled from a given dataset. While resource demanding to compute,
the authors also study the correlations of the c-score with easy-to-compute proxies such as iter-
ation learned [65], the entropy of the softmax layer of a neural network or feature representation
based difficulty rankings. They find that prediction based proxies have higher correlation with
the c-score than representation based proxies.

High-level feature representation: Concerned with developing noise robust training curricula,
Guo et al. [22] rank samples by difficulty according to a density-based unsupervised clustering
algorithm that makes use of feature representations extracted from a pretrained network. For
each class cluster centers are assigned to samples that have a higher density than neighboring
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2.1 Sample Difficulty in Deep Learning Curricula

samples while maintaining relatively larges distances to samples with higher densities (other
cluster centers). Once established, the distances to the respective cluster centers are then used to
compute the difficulty scores.

Network representation: There exists a group of works that define sample difficulty by its hier-
archical representation inside a neural network at inference time. For example, Wu et al. [69]
develop a policy using reinforcement learning to select the minimal configuration of blocks in
a ResNet [26] that is necessary to classify a sample correctly. The number of respective blocks
can be interpreted as the sample difficulty. Following a similar approach, Baldock et al. [4]
introduce the measure prediction depth that aims in summarizing the computational difficulty
of making a prediction for a given sample. In particular, they construct k-NN classifier probes
from the feature representations in all hidden layers of a neural network for the training set. The
prediction depth is determined by the first layer in which the prediction of the k-NN probe coin-
cides with all subsequent layers including the final prediction of the network. They further show
high correlations between the prediction depth and other statistical learning measures such as
uncertainty, confidence and learning speed. Furthermore, Hooker et al. [30] establish a notion
of difficulty by applying model pruning. Specifically, they measure the degree of disagreement
in the predictions for a sample of a pruned and a non-pruned model. By human evaluation they
prove the assumption that Pruning Identified Examples (PIE) (high disagreement of predictions)
tend to be visually more challenging.

Learning signal: Agarwal and Hooker [1] adopt the variance of gradients during the training
procedure of a neural network as a measure of difficulty. In particular, in each iteration the
variance of the gradients of a sample with respect to its input pixels is computed. The metric
is able to identify clusters of samples with distinct semantic properties such as homogeneous
backgrounds and consistent object representations.

Cross machine learning models: In contrast to previous mentioned works, Mangalam and Prabhu
[48] compare the learning ability of shallow machine learning models such as SVM [14] or Ran-
dom Forest [29] with the order of learning in DNN curricula. They show that most samples that
can be learned by shallow classifiers are learned by neural networks at earlier stages of the train-
ing. Hence, they suggest to derive a notion of difficulty by adopting a cross model perspective
that is decoupled from the inductive bias of the neural network.

While multiple viewpoints on sample difficulty in deep learning curricula are established, many
of them show a high correlation among each other. By assumption and visual examination, these
approaches have in common that difficult samples are related to outliers and memorized samples
including samples that depict several objects, contain occlusions or cluttered backgrounds, and
are sometimes related to mislabeled samples. Easier samples, in contrast, are understood as pro-
totypical, following standard representations of the objects regarding shape, viewpoint, texture
and color.
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2 Related Work

2.2 Robust Learning under Label Noise

Facing the issues of big data archives, the development of noise robust methods to successfully
learn from partially mislabeled data is continuously gaining more relevance in the deep learning
community. Generally, noise robust methods can be divided into two groups of approaches that
make different assumptions about the data they aim to learn from. Methods belonging to the
first of the two groups assume the existence of a clean and trustworthy subset of data. There
are various techniques to enable noise-robust learning by exploiting this subset. Hendrycks et
al. [28] use the clean data to estimate a noise transition matrix to improve the predictions of a
classifier trained on the noisy-labeled data. Lee et al. [39] build class prototypes in feature space
from the clean subset of data. During training these prototypes are then compared to the samples
from the noisy set resulting in different similarity-based attention weights for the samples. In
contrast, Li et al. [43] use the clean data to train an auxiliary model leveraged by a knowledge
graph that produces additional soft labels for the noisy-labeled dataset contributing to the stan-
dard loss function of the original labels.

The second group of approaches aims to achieve more generalization by not utilizing any clean
data and learn directly from the noisy-labeled data. Some approaches in this scenario propose
specific training design choices that are inherently noise robust. This is mainly achieved by spe-
cialized architectures [59] [61] and noise robust loss functions [20] [76], but can also include
semi-supervised data augmentation techniques. Zhang et al. [75], for example, generate addi-
tional data by convex combinations of pairs of samples and their labels, leading to more noise
robustness during training. However, the majority of approaches belonging to the second group
perform some sort of auxiliary task for handling label noise during training. Such tasks usually
extend the classic training procedure of a neural network by a specific method or subroutine that
is designed to detect and handle noise. These routines either perform a process of re-weighting
or discarding noisy-labeled samples [22] [50] [47] [25] [52] [23] [32] [68] [40] or, alternatively,
incorporate noise specific information into a standard loss function [24] [43] [31] [44] [41] [72].
The information for noise handling is derived by exploiting prediction values [50] [52] [31] [44]
[40] [72], feature representations [22] [24] [43] or additional information from an ensemble of
networks. Ensembles of networks may be used in form of collaborative networks [47] [25] [23]
[68] [40], student-teacher networks [32] [43] [41] or as a self-ensemble network [50] [41].

For most part, the relevant works published in recent years belong to the second group of ap-
proaches. Therefore, the in-depth presentation of noise robust methods focuses on approaches
that directly learn from the noisy-labeled data. In particular, Guo et al. [22] design a training
curriculum based on complexity clusters. The authors show that most samples with noisy labels
get assigned to clusters with higher complexities and hence, only influence the training process
at later stages, at which the model has learned the dominant patterns already. Han et al. [24]
build multiple prototypes for each class that are used to produce corrected pseudo-labels based
on a similarity measure in feature space during the training process. The loss function of the
neural network is mutually influenced by the observed and corrected labels. Following the strat-
egy of sample selection, Malach et al. [47] maintain two networks that are being updated only
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if their predictions disagree. The strategy assumes that correctly labeled hard samples are more
likely to produce ambiguous predictions than mislabeled easy samples. Inspired by this work,
Wei et al. [68] train two networks with small loss instances only, which are derived from a joint
loss to ensure the agreement of both networks. Addressing noise-robustness via loss function
design, Huang et al. [31] employ a label refurbishment loss that makes use of the exponential
moving average of predictions to progressively correct wrong labels. The ELR algorithm of Liu
et al. [44] exploits prediction values from the early learning phase to impose a regularization
term to the standard loss to neutralize the gradient of samples with false labels. Furthermore, Li
et al. [41] incorporate information on mislabeled samples into the loss function within a meta-
learning step. During this phase multiple mini-batches of synthetic noisy labels are generated
by a random neighbor label transfer. Each synthetic mini-batch updates a copy of the current
model enforcing consistent predictions with a self-ensemble teacher model and meta-updated
models at each iteration. Interpreting the noisy labels as a learnable parameter, Yi and Wu [72]
propose to update the distribution of the label matrix in each backpropagation step. These con-
tinuously refined pseudo-labels are then used as a training target. Further, the loss function is
extended by a compatibility loss that enforces the pseudo-label distribution to be of similar kind
as the original noisy labels. With the DivideMix framework, Li et al. [40] introduce a multi-
stage noise robust method that builds upon the semi-supervised learning technique MixMatch
[6]. DivideMix maintains two separate networks that model its per-sample loss distribution with
a Gaussian Mixture Model (GMM) [8] in order to split the samples into a labeled set (mostly
clean) and an unlabeled set (mostly noisy). Then, the two subsets are forwarded to the respec-
tive other network which applies a strategy of label co-refinement to the labeled set and a label
co-guessing strategy to the unlabeled set. The strategies are supported by multiple data augmen-
tations. At the last stage, the produced pseudo-labels are incorporated into the semi-supervised
MixMatch algorithm that provides the learning signal for updating the parameters of the two
networks.

Most state-of-the art methods in noise robust training develop certain aspects of DivideMix
further and rely on some sort of semi-supervised learning. For example, Nishi et al. [51] pro-
pose to use two augmentation strategies of different magnitudes at the individual stages of Di-
videMix. While the loss modeling stage for selecting a labeled and an unlabeled set performs
better under weak augmentations, the MixMatch algorithm that produces the learning signal
profits from stronger augmentations. Another recent example relying on semi-supervision is
the enhanced version of the ELR framework [44] that incorporates components from MixMatch
such as MixUp data augmentation and weight averaging into the basic ELR algorithm resulting
in competitive performance on standard benchmarks.

2.3 Semi-Supervised Learning

Recent success of state-of-the-art noise robust methods have increased the relevance of semi-
supervised techniques for learning under label noise. Improving the supervised learning signal
by making use of additional unlabeled data, modern semi-supervised learning methods build
upon two central concepts, pseudo-labeling and consistency regularization. Early works in the
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2 Related Work

field propose to use entropy regularization on unlabeled data [21] [53], following the assumption
that the decision boundary should be distant to high-density regions of the dataset. In fact, the
use of pseudo-labels has a similar effect on the decision boundary. Lee [38] uses the argmax of
the predictions on the unlabeled data as supervised training targets, if the largest class probabil-
ities fall above a fixed threshold. Recent works further encourage the predictions on unlabeled
data to be confident by sharpening the distribution of the predictions [6] [71]. Bachman et al. [3]
introduce the idea of consistency regularization in form of perturbing the input with Gaussian
noise processes and the model with dropout noise [60]. They suggest to regularize the standard
loss by a consistency term that assures consistent predictions under stochastic transformations
of an unlabeled sample. Sajjadi et al. [54] popularize this approach by replacing the Gaussian
noise process by weak data augmentation techniques such as cropping, rotating and flipping.
Further, Laine and Aila [36] improve consistency regularization by additionally using the expo-
nential moving average of predictions at different epochs. Addressing the problem of delayed
updates under a large number of iterations per epoch (i.e., big datasets), Tarvainen and Valpola
[64] propose to use an exponential moving average of the model weights instead. In contrast to
augmentation based approaches, Miyato et al. [49] conceive a consistency training on unlabeled
data that elaborates ideas from adversarial training. In order to impose consistency they perturb
samples by approximating the most adversarial direction in the input space that the model is
sensitive to.

State-of-the-art approaches like UDA [71] or FixMatch [58] apply different magnitudes of aug-
mentations to the two sub-tasks pseudo-labeling and consistency regularization. While artificial
labels are created for high-confidence samples by using weak augmentations, the consistency
loss is applied under strong augmentations generated by RandAugment [16] or CTAugment [7].
Approaches like MixMatch [6] and ReMixMatch [7] extend the common semi-supervised train-
ing pipeline by MixUp [75] data augmentation. From labeled and unlabeled samples additional
data is generated by convex combinations of pairs of samples and their (guessed) labels. Recent
generic enhancements of these methods include approaches that propose a curriculum for learn-
ing flexible class threshold for the selection of high-confidence samples in the pseudo-labeling
stage [74] or further regularization by self-supervised representation learning [66].
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3 Dataset Description and Experimental

Setup

This Chapter provides a brief summary of the datasets used throughout the experiments of the
thesis. Further, the hyperparameters used for training the neural networks are described.

Datasets. Methods developed for learning under label noise are usually evaluated on four com-
puter vision benchmarks, two clean datasets with simulated label noise, CIFAR-10 and CIFAR-
100 [34] and two real-world datasets with a natural amount of label noise, Clothing1M [70] and
WebVision [42]. The clean datasets are favorable for ablation studies, since noise rates can be
manually controlled and the handling of noisy labels can be empirically observed. Therefore,
the experiments conducted throughout this thesis focus on the CIFAR datasets. Both CIFAR-10
and CIFAR-100 contain 50,000 training images and 10,000 test images of size 32⇥32. They are
composed of 10 respectively 100 balanced classes. Example images of CIFAR-10 are shown in
Figure 3.1. Additionally, experiments are carried out on TinyImagenet [37], a simplified version
of ImageNet [17], in order to provide results on three different datasets with increasing com-
plexity. TinyImagenet is composed of 100,000 images of size 64⇥64 divided into 200 balanced
classes.

Figure 3.1: Example images from CIFAR-10 dataset [13].

9



3 Dataset Description and Experimental Setup

Setup. The experiments in Chapter 4, Chapter 5 and Chapter 6 are implemented with PyTorch.
The standard training time of neural networks is set to 30 epochs with a batch size of 128.
The semi-supervised methods in Chapter 6 are trained for 250 epochs. When optimized by
AdamW [45], the learning rate is set to 1⇥ 10�3 with a weight decay of 1⇥ 10�4. The SGD
optimizer is run with a maximum learning rate of 1⇥ 10�2, a weight decay of 1⇥ 10�4 and a
momentum of 0.9. The optimization steps are scheduled by an OneCycleLR [57]. Each score
is the results of five independent training runs with different random seeds. Data augmentation
strategies for CIFAR-10 and CIFAR-100 include horizontal flips and random crops. Samples
from TinyImagenet are augmented by AutoAugment [15].
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4 Subset Consistent Hardness Score

This chapter aims in establishing a procedure to produce a hardness score (h-score) that ranks
samples according to their difficulty in implicit curricula of deep neural networks. In order to
provide a sufficient supplementary perspective on training under label noise, the h-score needs
to be subset consistent (see Hypothesis 2). In particular, if the h-score is applied to a dataset and
a subset of it, samples A and B that occur in both the original dataset and the subset need to be
ranked consistently. If sample A is assigned with an h-score higher than sample B in the original
dataset, the same has to hold true for the subset. In other words, the ranking of two samples
needs to be independent of the samples with which they co-occur. A subset consistent h-score
can be understood as a global difficulty score that has no subsampling bias.

Why is a subset consistent hardness ranking relevant for noisy label training? Due to the lack of
diverse datasets that include different proportions of label noise by nature, a common approach
for evaluating noise robust methods comprises the injection of synthetic label noise to a clean
dataset. Any synthetic injection of label noise produces a clean and a noisy subset of the dataset.
A phenomena described in the label noise literature is the tendency of DNN to learn from hard
and noisy-labeled samples only at later stages of the training [10] [35]. To better quantify this
learning behavior under different noise rates, the existence of a global subset consistent hard-
ness ranking is beneficial. Once the h-score ranking is produced for the original (i.e., clean)
dataset, any difficult sample can be tracked during the learning process under different noise
rates (leading to differing clean subsets), since its relative degree of hardness is subset inde-
pendent. This can enable detailed studies on how to focus more on learning from hard while
neglecting the noisy-labeled samples at later stages of the training and thus, alleviates the devel-
opment of noise robust methods.

The experiments for establishing a subset consistent hardness score are divided into two parts.
For simplicity, the first part conducts experiments on subset consistency by considering clean
data only (see Sections 4.1, 4.2, 4.4.) The second part includes further studies of h-score consis-
tency under the injection of label noise (see Section 4.5).

4.1 H-Score Definition and Metrics

Inspired by Jiang et al. [33] that propose the c-score (see 2.1) as a measure of sample difficulty,
we adopt its suggested proxies (1) pL (softmax confidence on the annotated class), (2) pmax
(max softmax confidence across all classes) and (3) E (negative entropy of softmax confidences)
as a baseline for developing a subset consistent h-score. These statistical measures have the
advantage over the c-score that they are easy to compute and describe sample difficulty from a
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4 Subset Consistent Hardness Score

Figure 4.1: H-score (pL) consistency by hard-intersect of 20% hardest samples for CIFAR-10
in different training runs (A, B) different subset sizes (75%, 50%, 25%) and three
different subset-samplings.

viewpoint of learning velocity due to the course of learning. Concretely, we define

hscore : (X , t) 7! [0,1]k,hscore(X , t) = 1� Ât
i=1 g(X)(t)

t
,g 2 {pL, pmax,E} (4.1)

where pL(X)(t) is the vector containing all softmax confidences on the correct class, pmax(X)(t)

the vector of the maximums of the softmax confidences across all classes and E(X)(t) the corre-
sponding negative entropy of softmax confidences, for samples X at epoch t.

We evaluate our experiments for subset consistent h-scores under two metrics. Following the
discoveries in label noise research that easy samples are learned at earlier stages of the training
while hard and noisy-labeled samples are simultaneously learned at later stages (see Section 1,
Section 2.2), consistent ranking of more difficult samples has more relevance than one of easy
samples. Therefore, we introduce the metric hard-intersect that puts emphasis on subset consis-
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4.1 H-Score Definition and Metrics

tency of difficult samples in order to evaluate the h-score rankings. It computes the overlap of
the top k hardest samples (according to the h-score) that are part of both (sub)sets. In particular,
let X and Y be subsets of a dataset D, with X \Y 6= /0 and HX = h(X) and HY = h(Y ) the respec-
tive h-scores. Let further be H 0X = {HX

i | Xi 2 X \Y} and H 0Y = {HY
i | Yi 2 X \Y} the h-scores

of the samples that are part of both subsets and r a ranking function in descending order. Then:

hard-intersect(k) =
|{r(H 0X)i | 1  i  k}\{r(H 0Y )i | 1  i  k}|

k
(4.2)

Besides the heuristic metric hard-intersect, we also evaluate the h-score rankings by a statistical
metric that applies the spearman rank correlation [18] to all samples that occur in both (sub)sets.
It is defined as follows:

r = 1� 6Ân
i=1[r(H 0X

i )� r(H 0Y
i )]2

n(n2 �1)
(4.3)

where n is the number of samples in the intersection of the two (sub)sets, |X \Y |. Both metrics
relate to the principle of macro averaging and are computed by averaging the class-wise scores.
A class independent perspective of the hardest samples (micro averaging) would neglect hard
samples of easier classes that possibly result in lower h-scores than easy samples of hard classes.

Figure 4.2: Left: H-score (pL) consistency by hard-intersect for CIFAR-10 dataset and different
subset sizes. Scores are averaged by multiple subset-samplings and runs per size.
Right: Comparison of different proxies for the c-score by hard-intersect for CIFAR-
10 dataset (50k samples) and a 75% (37k samples) subset. Scores are averaged by
multiple subset-samplings and runs per size.

Before particular training design choices for improving h-score consistency are studied, we com-
pare the three proxies in an initial experiment following a basic training procedure for different
training runs, subset sizes and subset samplings for the CIFAR-10 dataset. The results in Fig-
ure 4.1 suggest that the subset consistency of the h-score (based on pL) is invariant to subset-
sampling and training runs under the hard-intersect metric. Further, the h-score consistency of
a certain subset size is always slightly higher under the same subset sampling (self-consistency)
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than a different one (subset-consistency). There is a linear relationship between the reduction of
the size of one of the two subsets and the subset consistency (see 4.2; left). The same tendencies
can be observed when evaluating the consistency by the spearman rank correlation. Moreover,
as Figure 4.3 emphasizes, there exists a strong correlation between the heuristic and the statis-
tical metric. Figure 4.2 (right) shows that pL is the proxy with the highest h-score consistency.
Following the results of the initial experiment, we base our h-score on the pL measure. Due
to the linear relationship between reducing the size of a subset and its h-score consistency, the
experiments for training design choices to produces the optimal subset consistent h-score will
be only evaluated for the original dataset with itself (self-consistency) and a subset of size 75%
(subset-consistency).

Figure 4.3: Correlation of hard-intersect of 20% hardest samples and spearman rank correla-
tion for all h-scores based on pL build on subset sizes and samplings of CIFAR-10
presented in Figure 4.1. The correlation coefficient is 0.9.
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4.2 Training Design Choices for H-Score Consistency

This section covers experiments with different architectural and training design choices for in-
creasing the subset (and self) consistency of the h-score. By making use of the statistical mea-
sure pL for learning speed we use the proxy of the c-score [33] that revealed the highest subset
consistency.
In the experiments we analyze the following design choices:

• pretraining vs. no pretraining: DNN pretrained on ImageNet [17] or with random weight
initialization

• AdamW optimizer [45] vs. Stochastic Gradient Decent (SGD) optimizer: AdamW with
weight decay or SGD optimizer with one-cycle scheduler [57]

• different DNN architectures: ResNet18 [26], ResNet50 [26], ResNet101 [26], VGG19
[56], EfficientNetB1 [63], EfficientNetB4 [63], InceptionNetV3 [62]

• data augmentation: with and without standard data augmentations for datasets (cropping,
flipping for CIFAR-10/CIFAR-100, AutoAugment [15] for TinyImagenet)

• dropout layers [60]: adding dropout layers to the hidden layers of the neural network with
differing rates of 0.1, 0.3, 0.5, 0.7

• test-time augmentation: augmentation applied at multiple inference passes to the train set
for obtaining pL (independent from training, obtained after each epoch)

• test-time dropout: dropout applied at multiple inference passes to the train set for obtain-
ing pL (independent from training, obtained after each epoch)

• ensembles of networks: use of multiple h-scores runs to produce final scores

• cumulative scores until different iterations (as suggested by Jiang et al.[33]): average pL
until a certain epoch

An overview of all combinations of design choices that are part of the experiments can be found
in Table 4.4. For detailed results of the experiments evaluated under both metrics hard-intersect
and spearmanr we refer the reader to Table 4.5 for CIFAR-10, Table 4.6 for CIFAR-100 and
Table 4.7 for TinyImagenet.

Starting with basic design choices, the h-score consistency is indifferent to the choice of using
a pretrained network or not (see Figure 4.4; left). The results in Figure 4.4 (middle) suggest
that under little regularization, an increase in depth of ResNets can increase the h-score consis-
tency. The experiments in Figure 4.4 (right) and more detailed in Table 4.5 show that different
architectures require different optimization strategies to achieve optimal consistency. While
ResNets perform better under an AdamW optimizer, VGG19 and EfficientNets produce better
results with SGD optimizer. While an EfficientNetB1 with SGD and a ResNet18 with AdamW
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Figure 4.4: Class-wise h-score consistency between full dataset and a subset of 75% of CIFAR-
10 measured by hard-intersect evaluated for different K most difficult samples. Left:
Pretrained model versus random weight initialization. Middle: ResNet architectures
of different depth. Right: Resnet18 and EfficientNetB1 with AdamW or SGD Opti-
mizer.

Figure 4.5: Class-wise h-score consistency between full dataset and a subset of 75% of CIFAR-
10 measured by hard-intersect evaluated for different K most difficult samples. Left:
Data augmentation versus no data augmentation. Middle: Using dropout with dif-
ferent rates (without data augmentation). Right: Data augmentation combined with
dropout at different rates.

achieve similar consistency scores under little regularization, we tested the effect of regulariza-
tion methods on ResNet18, before evaluating the best design choices for different architecture
and optimization strategies. Figure 4.5 (left; middle) emphasizes that data augmentation as well
as additional dropout layers have a positive impact on the h-score consistency. While applied
without data augmentation, a dropout rate of 0.7 shows the strongest consistency in h-scores.
Under data augmentation strategies the optimal dropout rate amounts to 0.3 (see Figure 4.5;
right). The lower dropout rate for the combined experiment can be explained by the additional
regularization effect due to data augmentation. Computing pL with three (test-time) augmenta-
tions increases the subset consistency further (see Figure 4.6; left). However, the positive effect
is independent of the choice of three or five augmentations. In contrast to test-time augmen-
tation, test-time dropout did not reveal a positive impact on the h-score consistency. Further,
the use of multiple training runs to produce an ensembled h-score is beneficial for reaching the
highest consistencies. In particular, using five training runs achieves the best performance across
all architectures (see Figure 4.6; middle, Table 4.5). Under optimal training design choices (reg-
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ularization and optimization) all architectures attain an h-score consistency of above 0.9 for the
20% hardest samples ranked in the intersection of the full dataset and a 75% subset of CIFAR-10.
ResNet18 and ResNet50 achieve the highest consistencies (Figure 4.6; right). It is an increase
of over 50% in comparison to a baseline without any regularization. The same tendencies hold
for an evaluation of self-consistency as well as adopting the spearman rank correlation metric
(see Table 4.5). Averaging pL until epoch 30 shows a slight advantage over epoch 20 when
more regularization methods are used. The results for CIFAR-10 are consistent with the results
for CIFAR-100 and TinyImagenet (see Table 4.6, see Table 4.7). In summary, the best training
design choices for subset consistency of the h-score used in the following sections include data
augmentation, dropout, test-time augmentation and an ensembled average of five training runs.
Even though ResNet18 trained with AdamW produced the highest consistency (see ID 23 in
Table 4.4), other architectures (sometimes trained with SGD) revealed comparable consistency
when trained under the optimal training design choices.

Figure 4.6: Class-wise h-score consistency between full dataset and a subset of 75% of CIFAR-
10 measured by hard-intersect evaluated for different K most difficult samples. Left:
Test-time augmentation and test-time dropout with different number of inference
passes. Middle: Using ensembles of different sizes. Right: Different architectures
with best optimizer with best h-score consistent training design choices.

4.3 Cross Model Consistency and Relationship with C-Score

Following Sections 4.1 and 4.2 that analyze the consistency of sample hardness from an intra-
method perspective, this section investigates the model bias in h-scores rankings from an inter-
method perspective. Figure 4.7 shows the h-score consistency measured by the spearman rank
correlation between different model sizes of ResNets, EfficientNets and VGGs trained with ei-
ther an SGD or an AdamW optimizer under the optimal training design choices for h-score
consistency. In general, the different methods produce h-score rankings that follow similar char-
acteristics. With few exceptions the spearman rank correlation is above 0.7 for all architectures
and optimizer. It emphasizes that under an h-score consistent training setup, state-of-the-art
DNN architectures follow similar paths when learning from a dataset. This is coherent with
the empirical observations of Wu et al. [69]. Nonetheless, ResNet architectures tend to follow
more consistent learning patterns than other architectures, regardless of size and optimization
strategy. They produce the most similar h-score rankings with scores above 0.9. While net-
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work size does not have a big impact on the order of learning for EfficientNet and VGG, the
choice of its optimizer influences the h-score ranking strongly. The variation can reach mag-
nitudes of differences up to 0.15 (e.g., EfficientNetB1/B4 with AdamW versus EfficientNetB1
with AdamW/SGD). Compared to the c-score rankings [33] that are produced with an Inception
network [62] as a backbone, the spearman rank correlation scores take on similar values to any
other inter-method rank comparison of two different network families under the h-score between
0.7 and 0.8, including the h-score ranking produced with an Inception backbone.

Figure 4.7: The cross model consistency in h-score ranks on CIFAR-10 measured by spearman
rank correlation. Last column/row represents the difficulty rank of the c-score pro-
posed by Jiang et al. [33].

4.4 H-score Consistency for di↵erent Set Sizes

While Section 4.2 evaluated its experiments for a single subset size only, this section takes a
closer look at the impact of varying dataset and subset sizes to h-score consistency. Experiments
are carried out on CIFAR-10, CIFAR-100 and TinyImagenet with the training design choices
that produces the highest h-score consistency. Details can be found in Table 4.4 for ID 23. The
dataset sizes are set to 48,000, 24,000 and 12,000 for CIFAR-10 and CIFAR-100 and to 96,000,
48,000 and 24,000 for TinyImagenet. Subset sizes are 75%, 50% and 25% of the respective
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dataset size. When looking at the results of CIFAR-10 in Figure 4.8 (left), it is notable that
there is only a marginal drop in consistency, when the dataset size is reduced. All dataset sizes
follow similar dynamics when reducing the subset size. There is a decrease about 0.1 in hard-
intersect consistency between the datasets intersected with subsets of 75% and subsets of 25%.
The results of CIFAR-100 (see Figure 4.8; middle) and TinyImagenet (see Figure 4.8; right)
suggest that in general, smaller class sizes (i.e., only a tenth of the class size in CIFAR-10) have
a negative effect on the subset consistency when the dataset size is reduced. With decreasing
subset size this effect is amplified. For example, the difference in hard-intersect of a dataset
with 48000 samples from CIFAR-100 intersected with a subset of 75% and a smaller dataset
with 12000 samples from CIFAR-100 intersected with a subset of 75% is about 0.05. This
difference grows up to 0.09 when intersected with subsets of 25%. A similar trend is observable
for TinyImagenet. Nonetheless, even a very small dataset of 12000 samples from CIFAR-100
that consists of only 120 samples per class has an intersection score of 0.7 for the 20% hardest
samples that occur in both this dataset and a respective subset with 3000 samples.

Figure 4.8: Hard-intersect scores for 20% hardest samples in intersection of a dataset and a
subset with varying sizes. Left: CIFAR-100. Middle: CIFAR-100. Right: TinyIm-
agenet.

4.5 H-score Consistency under Label Noise

In order to understand h-score consistency under label noise, we analyze the resulting h-scores
for the best training design choices. The h-score consistency is computed between the inter-
secting clean samples of a noise-free and a noisy-labeled version of a dataset. Figure 4.9 (left)
compares the h-score consistency between the full dataset with a 75% subset of CIFAR-10 with-
out noise and the full dataset with a version consisting of 25% label noise (i.e., 75% clean
subset) for a ResNet18 with AdamW optimizer. While conducted without label noise, the subset
achieves a hard-intersect score of around 0.93 considering the 20% hardest samples, its coun-
terpart under 25% label noise achieves a score of 0.83 only. It becomes apparent that label noise
injection influences the internal understanding of hard and easy samples even for a method with
high h-score consistency. Figure 4.9 (right) visualizes the impact of label noise under different
rates. It can be observed that the h-score consistency decreases disproportionately strong for
higher noise rates, resulting in less discriminative learning orders with respect to hard samples.
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Figure 4.9: H-score consistency under label noise for ResNet18 and AdamW optimizer for
CIFAR-10 dataset. Left: hard-intersect scores for full dataset and 75% clean sub-
set with and without 25% additional noisy-labeled samples. Right: hard-intersect
scores for different noise rates (different clean subsets).

When comparing different architectures and optimization strategies for the training design choices
with the highest h-score consistency, the observations partly contradict the consistent results of
Section 4.2. While methods based on ResNets trained with AdamW optimizer obtained the
highest subset consistency scores for all dataset without label noise, the outcome for label noise
scenarios is more heterogeneous. With the exception of a noise rate of 20%, Figure 4.10 empha-
sizes that SGD Optimizer can provide better learning consistency under label noise. For label
noise scenarios of 40% and 60% ResNet architectures trained by SGD lead to highest consis-
tency, while under stronger label noise an EfficientNetB4 backbone produces the most consistent
h-scores. Further, it is the only method that has relative stable consistency values across all noise
levels. Similar observations can be made for CIFAR-100 and TinyImagenet (see Table 4.2, Table
4.3).

When looking at the distribution of the h-scores under different noise rates, it becomes appar-
ent that with increasing noise rates the h-score looses its discriminative power (see Figure 4.11,
4.12). While h-scores spread over a wide range from 0.0 to 0.8 for a noise rate of 20% with a
clear peak of clean (and easy) samples at 0.0 and mostly noisy-labeled samples located at the
higher h-score values, both observations diminish with increasing noise rates. The higher the
noise rate the smaller the variance of the h-scores gets, eventually ranging from 0.35 to 0.55
only for 80% noise. Simultaneously, the clear duality of noisy-labeled samples located at the
higher end (more difficult) of the h-score spectrum and the majority of clean samples located at
the lower end (easier) disappears. Eventually, at 80% label noise, no clear decision boundary
between the two types of samples is visible. In contrast to the findings on consistency under la-
bel noise, the EfficientNetB4 backbone produces more discriminative h-scores than a ResNet18
backbone in terms of correct and mislabeled samples even for smaller noise scenarios (see Fig-
ure 4.11, 4.12).
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Figure 4.10: For the CIFAR-10 dataset, comparison of results of different backbones and ar-
chitectures for best subset consistent training design choices under different noise
rates. H-intersect scores are related to respective 20% hardest samples between in-
tersecting clean samples of the noise-free and noisy-labeled dataset.

Figure 4.11: For the CIFAR-10 dataset, h-score distributions of clean and noisy-labeled samples
under different noise rates for ResNet18 and AdamW optimizer.

Figure 4.12: For the CIFAR-10 dataset, h-score distributions of clean and noisy-labeled samples
under different noise rates for EfficientNetB4 and SGD optimizer.

Another perspective on the capacity of structural learning under label noise enables a closer look
at the samples located at the lower end of the h-score rankings (i.e., easier samples). Figure 4.13
visualizes the relative noise rates among the easiest samples up to a certain threshold consid-
ering a balanced number of easy samples per class for CIFAR-10. The superiority of an SGD
Optimizer in combination with an EfficientNetB4 backbone becomes particularly apparent un-
der 80% label noise where only a third of the easiest 20% of the samples contain label noise. For
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ResNet backbones optimized with AdamW the proportion of noisy-labeled samples among the
same amount of easy samples is twice as high. The result suggest that even though ResNet ar-
chitectures optimized with AdamW yield to the highest h-score subset consistency without label
noise, these methods have little structural learning capacity under high noise rates. This obser-
vation is further emphasized by the results for CIFAR-100 and TinyImagenet (see Appendix,
Figure A2 and Figure A3).

Figure 4.13: For the CIFAR-10 dataset, relative noise rates among top K% easiest samples ac-
cording to h-score. Left: under 40% label noise. Right: under 80% label noise.

4.6 Conclusions

Experiments have shown that by adopting the softmax confidences of the annotated class as a
difficulty measure during the course of learning subset consistent hardness scores can be pro-
duced. In particular, the consistency can be increased when using specific design choices during
training. These design choices include data augmentation, dropout, test-time augmentation and
an ensembled average of five training runs. While architectures of the ResNet family trained
by an AdamW optimizer revealed the highest subset consistency without noise, the results for
experiments with different rates of label noise are more ambiguous. During the experiments, it
became apparent that SGD optimizer produce more consistent h-scores than AdamW optimizer
when label noise is introduced. Further, when studying the decision boundary between clean
and noisy-labeled samples in the respective h-scores rankings as well as examining the relative
noise rates among the easiest samples, an EfficientNetB4 backbone produced the best results. In
general, the truthfulness of Hypothesis 2 was proven. Nonetheless, the decision of the architec-
tural backbone and the optimizer for producing the h-score ranking depends on the amount of
artificial label noise induced to the dataset. A ResNet18 trained by an SGD optimizer is the best
choice when considering all noise scenarios from 0% to 80% noise.
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Table 4.1: H-score consistency under label noise for CIFAR-10 dataset.

Arch+Optim
Noise Rate 20% 40% 60% 80%

resnet18-adamw 0.86 0.80 0.65 0.33
resnet18-sgd 0.83 0.78 0.70 0.42
resnet50-adamw 0.78 0.68 0.54 0.34
resnet50-sgd 0.81 0.79 0.71 0.51
effnetb4-sgd 0.67 0.65 0.65 0.53

Table 4.2: H-score consistency under label noise for CIFAR-100 dataset.

Arch+Optim
Noise Rate 20% 40% 60% 80%

resnet18-adamw 0.83 0.71 0.59 0.41
resnet18-sgd 0.84 0.79 0.68 0.50
resnet50-adamw 0.81 0.74 0.62 0.43
resnet50-sgd 0.82 0.79 0.72 0.58
effnetb4-sgd 0.62 0.62 0.60 0.51

Table 4.3: H-score consistency under label noise for TinyImagenet dataset.

Arch+Optim
Noise Rate 20% 40% 60% 80%

resnet18-adamw 0.86 0.76 0.62 0.35
resnet18-sgd 0.82 0.80 0.76 0.49
resnet50-adamw 0.80 0.73 0.61 0.28
resnet50-sgd 0.78 0.77 0.74 0.64
effnetb4-sgd 0.67 0.66 0.63 0.58
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Table 4.4: Overview of Training Design Choices

ID Arch Optim DA DO TTA TTDO Esbl. Pretr.
1 ResNet18 AdamW x x x x x x
2 ResNet18 AdamW x x x x x X
3 ResNet18 SGD x x x x x X
4 ResNet50 AdamW x x x x x X
5 ResNet101 AdamW x x x x x X
6 VGG19 AdamW x x x x x X
7 VGG19 SGD x x x x x X
8 EfficientNetB1 AdamW x x x x x X
9 EfficientNetB1 SGD x x x x x X
10 ResNet18 AdamW X x x x x X
11 ResNet18 AdamW x 0.1 x x x X
12 ResNet18 AdamW x 0.3 x x x X
13 ResNet18 AdamW x 0.5 x x x X
14 ResNet18 AdamW x 0.7 x x x X
15 ResNet18 AdamW X 0.3 x x x X
16 ResNet18 AdamW X 0.5 x x x X
17 ResNet18 AdamW X 0.7 x x x X
18 ResNet18 AdamW X 0.5 3 x x X
19 ResNet18 AdamW X 0.5 5 x x X
20 ResNet18 AdamW X 0.5 x 3 x X
21 ResNet18 AdamW X 0.5 x 5 x X
22 ResNet18 AdamW X 0.3 3 x 3 X
23 ResNet18 AdamW X 0.3 3 x 5 X
24 ResNet50 AdamW X 0.3 3 x 3 X
25 ResNet50 AdamW X 0.3 3 x 5 X
26 ResNet101 AdamW X 0.3 3 x 3 X
27 ResNet101 AdamW X 0.3 3 x 5 X
28 VGG19 SGD X 0.3 3 x 3 X
29 VGG19 SGD X 0.3 3 x 5 X
30 EfficientNetB1 SGD X 0.3 3 x 3 X
31 EfficientNetB1 SGD X 0.3 3 x 5 X
32 EfficientNetB4 SGD X 0.3 3 x 3 X
33 EfficientNetB4 SGD X 0.3 3 x 5 X
34 InceptionV3 SGD X 0.3 3 x 3 X
35 InceptionV3 SGD X 0.3 3 x 5 X

Explanations. Arch: Architecture. Optim Optimizer. DA: Data Augmentation. DO: Dropout
Layer with rates 0.1,0.3,0.5,0.7. TTA: Test-Time Augmentation. TTDO: Test-Time Dropout.
Esbl.: Use of ensembles to produce h-score. Pretr.: Use a pretrained network.
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Table 4.5: Results for design choice experiments for CIFAR-10 dataset.

ID Setup Name h-inters20 h-inters30 spearm20 spearm30
self/sub75 self/sub75 self/sub75 self/sub75

1 r18-ad-xx-notpretrained 0.68/0.70 0.69/0.70 0.78/0.79 0.78/0.80
2 r18-ad-xx-do0-ta0-to0-e1 0.71/0.70 0.69/0.70 0.78/0.78 0.73/0.77
3 r18-sg-xx-do0-ta0-to0-e1 0.69/0.68 0.69/0.68 0.72/0.72 0.72/0.72
4 r50-ad-xx-do0-ta0-to0-e1 0.73/0.73 0.74/0.73 0.81/0.80 0.81/0.81
5 r101-ad-xx-do0-ta0-to0-e1 0.76/0.74 0.76/0.74 0.85/0.83 0.85/0.83
6 vgg-ad-xx-do0-ta0-to0-e1 0.20/0.72 0.20/0.73 0.01/0.78 0.01/0.80
7 vgg-sg-xx-do0-ta0-to0-e1 0.61/0.59 0.61/0.59 0.69/0.67 0.69/0.67
8 eff-ad-xx-do0-ta0-to0-e1 0.54/0.53 0.54/0.53 0.61/0.60 0.61/0.61
9 eff-sg-xx-do0-ta0-to0-e1 0.74/0.73 0.74/0.74 0.71/0.72 0.71/0.72
10 r18-ad-da-do0-ta0-to0-e1 0.82/0.81 0.83/0.82 0.89/0.89 0.90/0.90
11 r18-ad-xx-do1-ta0-to0-e1 0.73/0.73 0.72/0.72 0.82/0.81 0.78/0.78
12 r18-ad-xx-do3-ta0-to0-e1 0.76/0.76 0.76/0.76 0.85/0.84 0.85/0.84
13 r18-ad-xx-do5-ta0-to0-e1 0.79/0.78 0.79/0.78 0.87/0.86 0.88/0.87
14 r18-ad-xx-do7-ta0-to0-e1 0.80/0.78 0.80/0.79 0.89/0.88 0.90/0.90
15 r18-ad-da-do3-ta0-to0-e1 0.83/0.83 0.85/0.84 0.91/0.90 0.92/0.92
16 r18-ad-da-do5-ta0-to0-e1 0.83/0.83 0.85/0.84 0.91/0.91 0.93/0.93
17 r18-ad-da-do7-ta0-to0-e1 0.83/0.82 0.84/0.84 0.92/0.91 0.94/0.93
18 r18-ad-da-do5-ta3-to0-e1 0.86/0.86 0.87/0.87 0.95/0.95 0.96/0.96
19 r18-ad-da-do5-ta5-to0-e1 0.86/0.85 0.87/0.86 0.95/0.95 0.96/0.95
20 r18-ad-da-do5-ta0-to3-e1 0.82/0.82 0.83/0.82 0.93/0.93 0.94/0.93
21 r18-ad-da-do5-ta0-to5-e1 0.83/0.82 0.83/0.83 0.94/0.93 0.94/0.93
22 r18-ad-da-do3-ta3-to0-e3 0.91/0.90 0.92/0.91 0.98/0.97 0.97/0.97
23 r18-ad-da-do3-ta3-to0-e5 0.93/0.92 0.94/0.92 0.99/0.98 0.98/0.97
24 r50-ad-da-do3-ta3-to0-e3 0.92/0.90 0.93/0.91 0.98/0.97 0.98/0.97
25 r50-ad-da-do3-ta3-to0-e5 0.94/0.93 0.95/0.93 0.99/0.98 0.99/0.99
26 r101-ad-da-do3-ta3-to0-e3 0.91/0.91 0.92/0.91 0.98/0.98 0.98/0.98
27 r101-ad-da-do3-ta3-to0-e5 0.93/0.91 0.95/0.91 0.99/0.98 0.99/0.98
28 vgg-sg-da-do3-ta3-to0-e3 0.91/0.90 0.91/0.90 0.98/0.97 0.98/0.97
29 vgg-sg-da-do3-ta3-to0-e5 0.93/0.91 0.93/0.91 0.99/0.98 0.99/0.98
30 eff1-sg-da-do3-ta3-to0-e3 0.92/0.91 0.92/0.91 0.96/0.97 0.96/0.97
31 eff1-sg-da-do3-ta3-to0-e5 0.93/0.92 0.93/0.92 0.98/0.97 0.98/0.97
32 eff4-sg-da-do3-ta3-to0-e3 0.92/0.91 0.92/0.91 0.96/0.96 0.96/0.96
33 eff4-sg-da-do3-ta3-to0-e5 0.93/0.92 0.93/0.92 0.96/0.96 0.96/0.95
34 incv3-sg-da-do3-ta3-to0-e3 0.89/0.88 0.89/0.88 0.96/0.96 0.96/0.96
35 incv3-sg-da-do3-ta3-to0-e5 0.91/0.91 0.91/0.91 0.97/0.97 0.97/0.97

Explanations. h-inters20/30: hardness intersection score of pL averaged until epoch 20/30,
values computed for 20% hardest samples. spearm20/30: class-wise spearman rank correlation
for pL averaged until epoch 20/30. First value is related to self-consistency, while second value
is associated to consistency between original dataset and a subset of 75% its size.
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4 Subset Consistent Hardness Score

Table 4.6: Results for design choice experiments for CIFAR-100 dataset.

ID Setup Name h-inters20 h-inters30 spearm20 spearm30
self/sub75 self/sub75 self/sub75 self/sub75

1 r18-ad-xx-notpretrained 0.68/0.67 0.68/0.66 0.73/0.72 0.72/0.71
2 r18-ad-xx-do0-ta0-to0-e1 0.70/0.70 0.70/0.70 0.75/0.74 0.75/0.74
3 r18-sg-xx-do0-ta0-to0-e1 0.62/0.61 0.62/0.61 0.62/0.62 0.62/0.62
4 r50-ad-xx-do0-ta0-to0-e1 0.71/0.69 0.71/0.68 0.75/0.73 0.75/0.72
5 r101-ad-xx-do0-ta0-to0-e1 0.70/0.71 0.69/0.70 0.74/0.76 0.73/0.75
6 vgg-ad-xx-do0-ta0-to0-e1 0.70/0.68 0.70/0.67 0.78/0.74 0.79/0.75
7 vgg-sg-xx-do0-ta0-to0-e1 0.46/0.47 0.46/0.47 0.46/0.43 0.46/0.43
8 eff-ad-xx-do0-ta0-to0-e1 0.50/0.50 0.50/0.50 0.49/0.48 0.49/0.48
9 eff-sg-xx-do0-ta0-to0-e1 0.66/0.65 0.66/0.65 0.61/0.61 0.61/0.61
10 r18-ad-da-do0-ta0-to0-e1 0.81/0.80 0.81/0.80 0.87/0.86 0.89/0.88
11 r18-ad-xx-do1-ta0-to0-e1 0.74/0.73 0.74/0.73 0.82/0.81 0.82/0.81
12 r18-ad-xx-do3-ta0-to0-e1 0.79/0.77 0.79/0.78 0.87/0.86 0.88/0.87
13 r18-ad-xx-do5-ta0-to0-e1 0.79/0.79 0.81/0.80 0.88/0.88 0.90/0.90
14 r18-ad-xx-do7-ta0-to0-e1 0.75/0.79 0.74/0.80 0.83/0.87 0.84/0.89
15 r18-ad-da-do3-ta0-to0-e1 0.82/0.80 0.84/0.83 0.91/0.90 0.92/0.92
16 r18-ad-da-do5-ta0-to0-e1 0.80/0.80 0.82/0.82 0.89/0.89 0.91/0.92
17 r18-ad-da-do7-ta0-to0-e1 0.78/0.79 0.80/0.81 0.85/0.86 0.88/0.89
18 r18-ad-da-do3-ta3-to0-e1 0.84/0.84 0.86/0.85 0.94/0.93 0.95/0.94
19 r18-ad-da-do3-ta5-to0-e1 0.85/0.84 0.86/0.85 0.93/0.93 0.94/0.94
20 r18-ad-da-do3-ta0-to3-e1 0.82/0.82 0.83/0.83 0.92/0.91 0.93/0.92
21 r18-ad-da-do3-ta0-to5-e1 0.82/0.82 0.83/0.83 0.92/0.92 0.93/0.93
22 r18-ad-da-do3-ta3-to0-e3 0.90/0.90 0.91/0.90 0.97/0.97 0.98/0.97
23 r18-ad-da-do3-ta3-to0-e5 0.93/0.91 0.93/0.91 0.98/0.98 0.98/0.98
24 r50-ad-da-do3-ta3-to0-e3 0.89/0.86 0.88/0.84 0.91/0.92 0.90/0.90
25 r50-ad-da-do3-ta3-to0-e5 0.92/0.88 0.91/0.86 0.95/0.94 0.94/0.92
26 r101-ad-da-do3-ta3-to0-e3 0.91/0.88 0.91/0.88 0.96/0.94 0.97/0.94
27 r101-ad-da-do3-ta3-to0-e5 0.91/0.90 0.91/0.90 0.97/0.96 0.96/0.96
28 vgg-sg-da-do3-ta3-to0-e3 0.89/0.88 0.89/0.88 0.97/0.96 0.97/0.96
29 vgg-sg-da-do3-ta3-to0-e5 0.92/0.90 0.92/0.90 0.98/0.97 0.98/0.97
30 eff1-sg-da-do3-ta3-to0-e3 0.88/0.87 0.88/0.87 0.94/0.93 0.94/0.93
31 eff1-sg-da-do3-ta3-to0-e5 0.90/0.89 0.91/0.89 0.96/0.95 0.96/0.95
32 eff4-sg-da-do3-ta3-to0-e3 0.82/0.84 0.81/0.83 0.84/0.89 0.81/0.87
33 eff4-sg-da-do3-ta3-to0-e5 0.87/0.86 0.86/0.84 0.90/0.89 0.89/0.87
34 incv3-sg-da-do3-ta3-to0-e3 0.88/0.87 0.88/0.87 0.96/0.95 0.96/0.95
35 incv3-sg-da-do3-ta3-to0-e5 0.90/0.90 0.90/0.90 0.97/0.97 0.97/0.97

Explanations. h-inters20/30: hardness intersection score of pL averaged until epoch 20/30,
values computed for 20% hardest samples. spearm20/30: class-wise spearman rank correlation
for pL averaged until epoch 20/30. First value is related to self-consistency, while second value
is associated to consistency between original dataset and a subset of 75% its size.
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4.6 Conclusions

Table 4.7: Results for design choice experiments for TinyImagenet dataset.

ID Setup Name h-inters20 h-inters30 spearm20 spearm30
self/sub75 self/sub75 self/sub75 self/sub75

1 r18-ad-xx-notpretrained 0.73/0.73 0.73/0.73 0.74/0.74 0.74/0.74
2 r18-ad-xx-do0-ta0-to0-e1 0.72/0.71 0.72/0.71 0.75/0.74 0.76/0.74
3 r18-sg-xx-do0-ta0-to0-e1 0.57/0.59 0.57/0.59 0.50/0.53 0.50/0.53
4 r50-ad-xx-do0-ta0-to0-e1 0.73/0.73 0.71/0.71 0.80/0.79 0.80/0.79
5 r101-ad-xx-do0-ta0-to0-e1 0.73/0.73 0.72/0.72 0.80/0.80 0.80/0.80
6 vgg-ad-xx-do0-ta0-to0-e1 0.20/0.20 0.20/0.20 0.00/0.00 0.00/0.00
7 vgg-sg-xx-do0-ta0-to0-e1 0.42/0.43 0.42/0.43 0.45/0.42 0.45/0.42
8 eff-ad-xx-do0-ta0-to0-e1 0.67/0.65 0.67/0.65 0.69/0.67 0.69/0.67
9 eff-sg-xx-do0-ta0-to0-e1 0.63/0.63 0.63/0.63 0.53/0.55 0.53/0.55
10 r18-ad-da-do0-ta0-to0-e1 0.75/0.74 0.76/0.74 0.83/0.82 0.85/0.83
11 r18-ad-xx-do1-ta0-to0-e1 0.74/0.73 0.74/0.73 0.79/0.78 0.80/0.79
12 r18-ad-xx-do3-ta0-to0-e1 0.77/0.77 0.77/0.76 0.85/0.84 0.85/0.84
13 r18-ad-xx-do5-ta0-to0-e1 0.81/0.79 0.80/0.78 0.90/0.89 0.90/0.89
14 r18-ad-xx-do7-ta0-to0-e1 0.83/0.82 0.84/0.81 0.93/0.91 0.93/0.92
15 r18-ad-da-do3-ta0-to0-e1 0.81/0.78 0.82/0.79 0.89/0.88 0.90/0.89
16 r18-ad-da-do5-ta0-to0-e1 0.81/0.81 0.83/0.82 0.90/0.90 0.92/0.91
17 r18-ad-da-do7-ta0-to0-e1 0.82/0.81 0.84/0.83 0.91/0.90 0.93/0.93
18 r18-ad-da-do3-ta3-to0-e1 0.83/0.83 0.82/0.83 0.93/0.92 0.93/0.93
19 r18-ad-da-do3-ta5-to0-e1 0.85/0.83 0.84/0.82 0.94/0.93 0.94/0.93
20 r18-ad-da-do3-ta0-to3-e1 0.83/0.81 0.82/0.80 0.93/0.92 0.93/0.92
21 r18-ad-da-do3-ta0-to5-e1 0.83/0.81 0.82/0.80 0.93/0.92 0.93/0.92
22 r18-ad-da-do3-ta3-to0-e3 0.90/0.88 0.90/0.88 0.97/0.96 0.97/0.96
23 r18-ad-da-do3-ta3-to0-e5 0.93/0.90 0.92/0.90 0.98/0.97 0.98/0.97
24 r50-ad-da-do3-ta3-to0-e3 0.90/0.86 0.89/0.86 0.97/0.95 0.97/0.95
25 r50-ad-da-do3-ta3-to0-e5 0.92/0.89 0.92/0.88 0.98/0.97 0.98/0.97
26 r101-ad-da-do3-ta3-to0-e3 0.90/0.89 0.90/0.88 0.97/0.96 0.97/0.96
27 r101-ad-da-do3-ta3-to0-e5 0.92/0.91 0.92/0.90 0.98/0.98 0.98/0.98
28 vgg-sg-da-do3-ta3-to0-e3 0.89/0.88 0.90/0.88 0.95/0.94 0.95/0.94
29 vgg-sg-da-do3-ta3-to0-e5 0.91/0.90 0.92/0.90 0.97/0.96 0.97/0.96
30 eff-sg-da-do3-ta3-to0-e3 0.88/0.88 0.88/0.88 0.92/0.91 0.92/0.91
31 eff-sg-da-do3-ta3-to0-e5 0.90/0.90 0.90/0.90 0.93/0.93 0.93/0.94
32 eff4-sg-da-do3-ta3-to0-e3 0.89/0.87 0.89/0.88 0.93/0.93 0.93/0.93
33 eff4-sg-da-do3-ta3-to0-e5 0.91/0.90 0.91/0.90 0.96/0.95 0.96/0.95
34 incv3-sg-da-do3-ta3-to0-e3 0.90/0.89 0.90/0.89 0.96/0.95 0.96/0.95
35 incv3-sg-da-do3-ta3-to0-e5 0.92/0.91 0.92/0.91 0.97/0.97 0.97/0.97

Explanations. h-inters20/30: hardness intersection score of pL averaged until epoch 20/30,
values computed for 20% hardest samples. spearm20/30: class-wise spearman rank correlation
for pL averaged until epoch 20/30. First value is related to self-consistency, while second value
is associated to consistency between original dataset and a subset of 75% its size.
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5 Informativeness of Samples

A common assumption in deep learning is the existence of a hierarchy of informativeness of
samples [46]. According to this understanding, easy samples are more similar to each other and
therefore more redundant than hard samples when learning from a dataset. In contrast, hard
samples are attributed with more diverse features and a higher informative value for generaliza-
tion. Good training results cannot be achieved without the contribution of these hard samples.
Hypothesis 3 formalizes this assumption. It is a necessary prerequisite for justifying the focus
on distinguishing hard from mislabeled samples in label noise research (see Hypothesis 1). The
following chapter investigates the truthfulness of Hypothesis 3 by analyzing the relationship
between sample difficulty and informative value.

5.1 Di�culty of Test Set

Before meaningful statements on the informative value of a sample can be made, it is essential
to better understand the test set in terms of difficulty, since the capacity of a method to gen-
eralize well is determined by it. Significant differences in the notion of difficulty between the
train and the test set may distort deductions from generalization performance on the test set. For
example, an easier test set compared to the train set could make hard samples disproportionately
more redundant, while a harder test set could make easier samples disproportionately more re-
dundant. In order to analyze the relationship in terms of difficulty between the train and the test
set, a joined hardness score is build. Specifically, the train and test samples are combined and
trained jointly following the procedure of the best subset consistent training desgin choices for
producing the hardness scores. Then, each class is divided into ten difficulty bins, according
to the respective class specific h-score ranking. For each difficulty bin, the fraction of samples
originally belonging to the test set is computed. Figure 5.1 shows the results for CIFAR-10
(left) , CIFAR-100 (middle) and TinyImageNet (right). It emphasizes that for the three datasets,

Figure 5.1: Joined h-scores of train and test set binned per class into ten difficulty categories for
CIFAR-10 (left), CIFAR-100 (middle) and TinyImagenet (right).
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5.2 Informative Value w.r.t. Test Accuracy

the train-test split is performed in a difficulty preserving manner. The deviation to the expected
number of test samples per bin is less than 30 per bin. Samples of each degree of difficulty are
proportionally distributed to the train and test set.

5.2 Informative Value w.r.t. Test Accuracy

In order to understand the contribution of samples of different degree of difficulty to the over-
all performance, we evaluate the test set accuracy on different subsets of the train set that are
product of holding out samples belonging to a certain interval of difficulty. In the following,
e.g., the set DHO60%�70%represents the subset of the train set that excludes all samples that are
harder than 60% of the samples of its respective class, but are easier than 30% of the samples
of its respective class. In other words, belong to the fourth easiest difficulty bin under a split of
10 bins. As a measure of difficulty we adopt the h-score under the best subset consistent train-
ing design choice and the c-score proposed by Jiang et. al [33]. For each dataset, we conduct
experiments for three different sizes of hold-out sets, namely intervals of 10%, 20% and 30%
of the data. To better comprehend the influence of samples of different degrees of difficulty, the

Figure 5.2: For the CIFAR-10 dataset, h-score for best setup with ResNet18 and SGD, set accu-
racy for train sets with hold-out intervals of 10% of the train set (left), 20% of the
train set (middle) and 30% of the train set (right).

Figure 5.3: For the CIFAR-100 dataset, h-score for best setup with ResNet18 and SGD, test set
accuracy for train sets with hold-out intervals of 10% of the train set (left), 20% of
the train set (middle) and 30% of the train set (right).
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5 Informativeness of Samples

subsets are produced by a sliding window of hold-out sets. Each score represents the average of
five independent training runs of a ResNet18 on the same subset.

The h-score based results of CIFAR-10 and CIFAR-100 (see Figure 5.2 and Figure 5.3) do not
reveal any significant differences in test set accuracy between holding-out harder or easier sam-
ples. While the min-max differences of scores does not vary by more than 0.02, no consistent
pattern can be observed between holding out the same portion of samples inside a 10%, 20% or
30% hold-out interval. With respect to the test set accuracy, no hierarchy in informative value
can be observed between easier and harder samples for the datasets CIFAR-10 and CIFAR-100.
Further, the c-score based results for CIFAR-10 and CIFAR-100 coincide with these observa-
tions (see Appendix, Figure A4 and Figure A5). However, the results from TinyImagenet (see
Figure 5.4) show minor differences in informative value that can be consistently observed over
all three hold-out set sizes. The hardest samples have a slightly higher informative value than
the other samples. The bigger the hold-out set at the top end of the hardest samples, the lower
is the obtained accuracy on the test set in comparison to holding out other intervals of difficulty.
While holding out 10% of the hardest samples leads to a difference of about 0.02 in accuracy,
this difference increases up to 0.07 when holding out the hardest 30% of the data. Furthermore, a
similar trend of smaller magnitude can be observed for the easiest samples. However, any inter-
val of samples in the middle range of difficulty (20%-80%) did not reveal such effect. Instead of
a linear correlation of difficulty and informative value, the hardest and the easiest samples have a
slightly higher informative value than the rest of the samples for the TinyImagenet dataset. The
informative value of medium hard samples is lower and constant.

Figure 5.4: For the Tiny Imagenet dataset, h-score for best setup with ResNet18 and SGD, test
set accuracy for train sets with hold-out intervals of 10% of the train set (left), 20%
of the train set (middle) and 30% of the train set (right).

30



5.3 Informative Value w.r.t. Generalization

5.3 Informative Value w.r.t. Generalization

Studying the informative value of a group of samples by only observing the overall accuracy
score on the test set bears some limitations for conclusions about its impact to generalization.
Holding out an interval of samples belonging to a certain degree of difficulty in the train set
could result in a decrease of predictive power for test samples with similar hardness. If only
a minority of samples in the test set can be considered to be difficult (i.e., more diverse by its
representation), worse predictive power on these rare hard samples would not be visible in the
overall accuracy score. In contrast, a small decrease in predictive power for easier samples could
be easily observed due to an over representation of these samples in the test set. Since the h-
score is a relative metric of difficulty (e.g., different learning rates, dataset sizes, architectures
or epochs until averaged can lead to different magnitudes of pL), it is impossible to estimate the
exact amount of hard samples in relation to easy samples. In order to investigate whether the
above described situation occurs when evaluating the overall accuracy score on the test set, we
further differentiate the evaluation of the test set by evaluating the performance of the hold-out
models under different test set difficulty bins. Therefore, we make use of the h-scores of the test
set produced in Section 5.1. We conduct experiments on subsets with hold-out sets according to
a difficulty interval as described in Section 5.2, with the addition, that we evaluate each model
by different bins of difficulty of the test set. The results in Figure 5.5, Figure 5.6 and Figure 5.7
evaluate the hold-out models for five test set bins with increasing hardness. The train sets used
for this experiment comprise subsets with a hold-out set of 20% of the data. The lightest bars
correspond to holding out the easiest samples, while the darkest bars correspond to holding out to
the hardest samples. For CIFAR-10 and CIFAR-100 the hold-out models do not show different
predictive capacity between each other for different degrees of difficulty of the test samples. The
observation neglects the assumption that hard samples in the training curriculum are necessary to
make more accurate predictions for hard (rare) test samples, and hence, are more important for
generalization. In fact, the hardest samples from the train set of TinyImagenet do not improve
predictive power on the hardest samples from the test set (see Figure 5.7). Instead, the results
emphasize that the loss of generalization caused by holding-out the hardest samples of the train
set tends to happen for easier samples of the test set. For example, the model trained without

Figure 5.5: For the CIFAR-10 dataset, Hold-out training sets evaluated on five different difficulty
bins of test set according to h-score for ResNet18 and SGD.
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5 Informativeness of Samples

the hardest samples achieves an accuracy of less than 0.07 for the 20% easiest samples of the
test set compared to other hold-out models, with increasing difficulty of the test sample bins the
difference in accuracy diminishes. In general, it becomes apparent that in none of the datasets
hard training samples provide additional informative value for classifying hard test samples. For
CIFAR-10 and CIFAR-100 holding out the hardest samples during training does not damage
generalization performance at all, i.e., the accuracy on different difficulty bins of the test set is
affected in the same manner as for other hold-out training sets. In contrast, for TinyImagenet
the decrease in performance is the most significant for easy test samples when holding out the
hardest train samples.

Figure 5.6: For the CIFAR-100 dataset, Hold-out training sets evaluated on five different diffi-
culty bins of test set according to h-score for ResNet18 and SGD.

For the

Figure 5.7: For the TinyImagenet dataset, Hold-out training sets evaluated on five different dif-
ficulty bins of test set according to h-score for ResNet18 and SGD.
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5.4 Influence of H-Score Ensembling on Correlation with Informative Value

5.4 Influence of H-Score Ensembling on Correlation with

Informative Value

A possible explanation for a nonlinear (TinyImagenet) and an uncorrelated (CIFAR-10, CIFAR-
100) relationship between the informative value and the h-score could lay in the fact that neural
networks can reach multiple local optima via different learning paths. Even though the scores
of the spearman rank correlation indicate a highly consistent learning order (see row 23 in
Tables 4.5-4.7), the variance of the iteration in which individual samples are learned in different
training runs might still spread a cluster of similar samples over multiple difficulty bins, such
that excluding individual difficulty bins does not exclude all information from one cluster. The
remaining samples still have enough capacity to represent the relevant features of the clusters
samples for generalization. The training design choices for the highest subset consistent h-score
include the ensembling of the h-score ranks of multiple training runs under the same setup. In
order to examine the variance of individual samples in different learning paths, we calculate the
difference of the min-max rank of samples per class for different training runs under the same
setup. The results for CIFAR-10, CIFAR-100 and TinyImagenet are shown in Figure 5.8, Figure
5.9 and Figure 5.10. Each bar of the chart represents the samples of the respective difficulty bin
according to the ensembled h-score and indicates the number of samples that have a min-max
difference in the ranks of five training runs that is smaller than 10% of the size of the class. For
CIFAR-10 it corresponds to being smaller than 500 (classes are of size 5000), for CIFAR-100
and TinyImagenet it corresponds to being smaller than 50 (classes are of size 500). The variance
in the learning paths of these samples is small enough that they appear in the same difficulty bin
consistently. The results for all three datasets show the same same tendency for both optimizer
AdamW (left) and SGD (right). While the learning paths tend to start with the same easy samples
and end with the same hard samples (most of them are learned inside the interval of one difficulty
bin), the differences in the ranks for medium hard samples is big enough to spread over multiple
difficulty bins. It can be potentially influence the indifference in informative value for medium
difficult samples. Another observation reveals that the difficulty of the dataset (w.r.t accuracy and
number of classes) lets the SGD optimizer produce less consistent results. The SGD optimizer
produces the highest consistency for CIFAR-10 and the lowest for TinyImagenet.

Figure 5.8: For the CIFAR-10 dataset, Min-max difference per sample class-wise in five h-score
ranks of the same training setup that is smaller than 10% of the class size, binned by
ensembled h-score. Left: ResNet18 and AdamW. Right: ResNet18 and SGD.
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5 Informativeness of Samples

Figure 5.9: For the CIFAR-100 dataset, Min-max difference per sample class-wise in five h-
score ranks of the same training setup that is smaller than 10% of the class size,
binned by ensembled h-score. Left: ResNet18 and AdamW. Right: ResNet18 and
SGD.

Figure 5.10: For the TinyImagenet dataset, Min-max difference per sample class-wise in five
h-score ranks of the same training setup that is smaller than 10% of the class size,
binned by ensembled h-score. Left: ResNet18 and AdamW. Right: ResNet18 and
SGD.

5.5 Conclusions

This chapter partially rejected Hypothesis 3 that assumed a correlation between the h-score of a
sample and its informative value. None of the three datasets showed a linear correlation. While
CIFAR-10 and CIFAR-100 do not show any correlation, the easiest and hardest samples of
TinyImagenet have marginally higher informative values than medium hard samples. The con-
clusions drawn from the experiments on the informative value are dataset depended and need to
be further distinguished.

CIFAR-10 and CIFAR-100, the two most common datasets for ablation studies on artificial label
noise, do not rely on hard samples more than on easy samples for good generalization perfor-
mance. Considering the fact that hard and noisy-labeled samples are learned simultaneously
at later stages of the training, a particular focus on learning from these hard samples is not
justifiable given the equal importance of easy and hard samples for generalization. In fact, in
opposition to Hypothesis 1, the results suggest that a particular focus on easy samples might

34



5.5 Conclusions

be more beneficial for good generalization performance, since samples learned at earlier stages
tend to be free of label noise while providing the same informativeness as any other sample. The
ability of semi-supervised learning methods that achieve compatible performance to fully super-
vised method by only using a small subset of the labels (see Table 6.1 in Chapter 6) suggests
retaining a mostly clean, easy subset could be more beneficial than being good in distinguishing
between hard and noisy-labeled samples for CIFAR-10 and CIFAR-100.

In contrast, the results on the informativeness of hard samples for TinyImagenet point towards
a different direction. Although the h-score does not provide a hierarchical ranking of impor-
tance for generalization, the 20% hardest samples are less redundant for generalization than
samples from any other difficulty interval. It suggests that structural differences in the nature
of the CIFAR datasets and TinyImagenet dataset exist. A lack of class diversity and dataset
complexity could be a possible explanation for the partial rejection of Hypothesis 3. Label noise
research would profit from introducing new benchmarks with artificial label noise induction on
more complex datasets than CIFAR-100, such as TinyImagenet or Imagenet. Currently, the only
datasets of higher complexity that are being studied in the literature contain label noisy naturally,
and are therefore only evaluated for one fix, but unknown noise rate that is estimated to be 20%
for WebVision [42] and 37.5% for Clothing1M [70].

While the development of noise robust methods for new benchmarks on more complex datasets
with varying artificial noise rates (e.g., TinyImagenet or Imagenet) could benefit from knowledge
about hard samples with higher informative value, the existing benchmarks on CIFAR-10 and
CIFAR-100 do not profit from explicit knowledge on hard samples. Due to the indifference of
informative value over all levels of difficulty, a focus on a clean subset combined with state-of-
the-art semi-supervised learning methods appears to be more promising. Chapter 6 integrates
the findings on the informativeness of samples into a modularized approach for competing with
state-of-the-art methods for existing benchmarks, CIFAR-10 and CIFAR-100.
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Robust Training

This section incorporates the observations of sample informativeness into label noise research by
illustrating the effectiveness of semi-supervised learning methods under label noise. In particu-
lar, a naive two-stage approach for learning from noisy-labeled data is proposed. The observed
constant informative value of samples independent of its difficulty for CIFAR-10 and CIFAR-
100 indicates a rejection of Hypothesis 1. Due to the equal relevance of samples, the identifi-
cation of hard samples, which can be easily mistaken with noisy-labeled samples, appears to be
redundant. Instead, considering recent advancements in semi-supervised learning, selecting an
easy and therefore mostly clean subset that is interpreted as labeled during training of a semi-
supervised method seems to be a more effective approach to noise robust learning. Table 6.1
compares state-of-the-art results of supervised and semi-supervised methods with noise robust
approaches evaluated under 20% label noise. State-of-the-art methods under partial supervision
achieve higher accuracy with less than 20% of the labels than noise robust methods under 20%
label noise (i.e., 80% clean samples). If the results on sample informativeness are transferable to
semi-supervised settings, Table 6.1 emphasizes that semi-supervised learning techniques trained
with easy, mostly clean samples play a crucial role for achieving competitive results under label
noise. In order to show the superiority of partial supervision, we follow the naive approach of
using the proposed h-score rankings to identify easy (i.e., less noisy) samples that are forwarded
to a semi-supervised learning method. In particular, due to the lowest relative noise rates among
the easy samples (see Figure 4.13), we identify easy samples by h-scores that are produced by an
EfficientNetB4 optimized with SGD. The SSL backbone is chosen to be EnAET [66], a former
state-of-the-art method. Limited computational resources impeded the use of superior methods

Table 6.1: Comparison of supervised, semi-supervised and noise robust state-of-the art methods
for CIFAR-10 and CIFAR-100.

Method CIFAR-10 CIFAR-100
SL SSL (4k) Noise (20%) SL SSL (10k) Noise (20%)

EffNet-L2+SAM [19] 99.7 - - 96.1 - -
LaplaceNet [55] - 97.1 - - 78.9 -
FlexMatch [74] - 96.1 - - 81.1 -
EnAET [66] - 95.8 - - 73.1 -
ELR [44] - - 92.1 - - 74.7
DivideMix [40] - - 96.1 - - 77.3
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such as FlexMatch [74] that were developed more recently.

The lack of benchmarks under artificial label noise for TinyImagenet prevents meaningful con-
clusions from evaluating the 2-stage approach for this dataset. Therefore, this thesis only follows
the standard benchmarks in label noise research and evaluates the proposed approach for CIFAR-
10 and CIFAR-100. Further considerations regarding the divergent results of TinyImagenet for
sample informativeness and its implication for label noise research are discussed in Chapter 7.

6.1 Experiments with CIFAR-10 and CIFAR-100

The scores of the proposed approach reflect the best result of a broad grid-search with respect
to the optimal amount of samples that are considered as labeled during semi-supervised train-
ing. Due to limited computational resources the results are reported for only one training run
per noise rate. The results have to be understood as an illustration of the potentials of semi-
supervision under label noise rather than an empirically optimized method towards the final
task of noise robustness. Further, it has to be taken into account that the backbones of the
methods are similar but not equal. The non-SSL methods used a ResNet34 backbone [26], the
SSL-based methods used a PreAct-ResNet18 [27], while the EnAET is designed to work with
a WResNet28-2 [73]. Figure 6.2 shows that our proposed naive two-stage approach is able to
outperform any non-SSL noise robust method. The higher the label noise the better our pro-

Table 6.2: Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 with sym-
metric label noise. The results are obtained from the respective paper. The methods
SL and ELR are non-SSL, the methods ELR+ and DivideMix are SSL-based. The
subscripts under our approach describe the selected amount of samples interpreted as
labeled and the corresponding relative noise rate among them.

Dataset Method Symmetric Label Noise
20% 40% 50% 60% 80% 90%

CIFAR-10

SL [67] 89.3 87.1 - 82.8 68.1 -
ELR [44] 92.1 91.4 - 88.9 80.7 -
ELR+ [44] 95.8 - 94.8 - 93.3 78.7
DivideMix [40] 96.1 - 94.6 - 93.2 76.0
Ours 96.5 95.7 95.1 94.1 87.5 9.6
(labels / relative noise rate) (40k / 2%) (30k / 5%) (25k / 7%) (10k / 2%) (5k / 19%) (5k / 91%)

CIFAR-100

SL [67] 70.4 62.3 - 54.8 25.9 -
ELR [44] 74.7 68.4 - 60.1 30.3 -
ELR+ [44] 77.6 - 73.6 - 60.8 33.4
DivideMix [40] 77.3 - 74.6 - 60.2 31.5
Ours 78.1 74.8 72.9 70.0 53.9 20.9
(labels / relative noise rate) (40k / 3%) (30k / 7%) (25k / 9%) (20k / 12%) (10k / 36%) (2k / 60%)
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posed method is in comparison to the state-of-the-art approaches of this kind, ELR [44] and
SL [67]. In particular, the effect is visible for the more complex dataset CIFAR-100 consisting
of more classes and less instances per class. Comparing the results with the best noise robust
methods that comprise semi-supervised techniques, it becomes apparent that the naive approach
is competitive. It outperforms state-of-the-art results under 20% label noise for both CIFAR
datasets, and under 50% label noise for CIFAR-10. However, with increasing noise rates the su-
periority of the methods DivideMix [40] and ELR+ [44] (an SSL enhanced version of the basic
framework) is observable. Nonetheless, while the selection procedure of the clean subset is not
optimized towards noise robustness and more powerful SSL backbones exist, the results suggest
that a key component of modern noise robust methods are semi-supervised learning techniques.
In fact, the results emphasize that the key challenge of noise robust learning is to distinguish
easy from noisy-labeled samples. A particular identification of hard samples is not necessary.
Instead, the task of identifying easy, clean samples without confounding them for noisy-labeled
samples plays a crucial role for final performance of semi-supervised methods.
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7 Conclusion and Discussion

By taking into account sample-based hardness scores, this thesis provided a new perspective on
learning with noisy labels. In particular, the hypothesis that noise robust methods need to be
able to distinguish hard from noisy-labeled samples in order to achieve state-of-the-art results
was investigated. As one of the necessary conditions, it was proven that samples can be ranked
consistently according to their difficulty in implicit curricula of neural networks. However, the
second condition that the informative value of a sample correlates with its degree of difficulty
was partially rejected. While datasets CIFAR-10 and CIFAR-100 did not show any correlation
between sample difficulty and informativeness, the more complex dataset TinyImagenet showed
a non-linear correlation. For TinyImagenet it was found that the easiest and the hardest samples
are associated to higher informative value for generalization performance than medium hard
samples. The implications for noisy label research derived by the observations of this thesis are
of two kind.

For methods evaluated on the standard benchmarks CIFAR-10 and CIFAR-100 hard samples do
not contribute more to generalization than easy samples. Considering the propensity of neural
networks to learn hard and noisy-labeled samples simultaneously at later stages of the training,
a particular focus on hard samples is not justifiable by higher informativeness. Instead, identi-
fying easier samples that tend to be less noisy seems to be more beneficial. Hypothesis 1 was
rejected for these datasets. Further, the observed indifference in informativeness emphasizes
current trends in noise robust learning that make use of semi-supervised learning techniques by
considering hard and noisy-labeled samples as unlabeled [40] [44] . Following the observations
on sample informativeness for CIFAR-10 and CIFAR-100, this thesis illustrated the effective-
ness of semi-supervised learning methods in noise robust training. A naive two-stage learning
approach that used the established h-scores for clean (i.e., easy) sample detection combined with
a semi-supervised learning method that interpreted the easy samples as labeled and the hard sam-
ples as unlabeled was proposed. With no explicit strategy for noise robustness it outperformed
any non-SSL noise robust approach and produced competitive results in comparison to state-of-
the-art SSL-based approaches. The results further underline the superiority of semi-supervised
approaches for solving the task of noisy labels for CIFAR-like datasets.

On the other hand, the results of informativeness of hard samples in TinyImagenet suggest that
with increasing dataset complexity, sample difficulty has an impact on its informativeness. How-
ever, these trends affect both very easy and very hard samples. To better understand these dy-
namics, more complex datasets such as ImageNet need to be studied in label noise literature. The
first indications of structural differences in between easier datasets like CIFAR-10 and CIFAR-
100 and TinyImagenet suggest that current standard benchmarks for ablation studies in noise
robust learning are not sufficient. Complex datasets like Imagenet need to be additionally stud-
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ied under varying artificial noise rates. If the observation of higher informativeness of easy and
hard samples can be transferred to Imagenet, a re-evaluation of the learning dynamics of state-
of-the-art methods might be necessary.

A main direction of future works includes the optimization of the proposed two-stage approach.
For example, the semi-supervised stage could be optimized towards noise robustness by replac-
ing the clear split between labeled and unlabeled samples by a continuous approach that consid-
ers samples as partially labeled and unlabeled at the same time. Such hybrid soft-assignments
could be tied to sample difficulty eventually converging to fully unlabeled samples for samples of
very high difficulty. Further improvements could be achieved by replacing the semi-supervised
learning backbone EnAET [66] with superior approaches like FixMatch [58] or SimCLR [11],
that was initially developed for representation learning. Limiting computational resources im-
peded an application of these methods. On the other hand, the clean sample detection module
could be enhanced by various techniques. As Chen et al. [12] show, most of the memorization
of noisy labels happens in the final softmax layer. Inspired by the prediction depth proposed by
Baldock et al. [4], additional information for detecting clean samples could be derived by elab-
orating information from the activations of the hidden layer in neural networks. Furthermore, a
comprehensive study of a wider range of network families, optimization procedure and regular-
ization strategies could lead to improved h-score rankings for selecting easy samples. Another
possible technique to improve the selection of easy and clean samples, in particular under high
noise rates, consists of an iterative self-cleaning procedure on the subset of easy samples. As
Figure 4.12 (left) emphasizes, under 20% label noise the h-score is able provide a clear decision
boundary between clean and noisy-labeled samples. A self-cleaning procedure under high noise
rates would start with building an initial h-score ranking over the full dataset. Then, a new h-
score is produced for the easiest samples only, ideally leading to a better separation of clean and
noisy-labeled samples for the subset due to a smaller rate of label noise. Now, at each iteration,
while the hardest (mostly noisy-labeled) samples are filtered out from the subset, a small fraction
of samples belonging to the next highest difficulty bin from the initial h-score ranking is added.
The construction of new h-scores on the updated subset follows. This procedure can be repeated
until empirically determined thresholds are reached. Another improvement of the clean sample
detection module could be achieved by a procedure which we call duplicate-sample trick. Ad-
ditional information for selecting clean samples may be derived by adding copies of samples
with a new label that is assigned to the most probable class next to the annotated class. It is
assumed that newly added duplicates with correct labels will be learned at earlier stages than
their noisy-labeled counterparts. By comparing the h-score rank distance of sample-pairs, clean
and noisy labels can be identified. This procedure may be applied for samples gathered around
the decision boundary between the clean and noisy subset (labeled and unlabeled respectively)
passed on to the semi-supervised method.

The other direction of follow up works relate to structures and regularities in computer vision
datasets. Besides in-depth studies on the differences between CIFAR datasets and more com-
plex datasets, further experiments on individual class distributions and representativeness could
provide a more fundamental understanding of which class properties impede respectively favor
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generalization. A particular interesting aspect of the informativeness of samples belonging to
TinyImagenet that is worth investigating, relates to the observation that, while hard samples have
a higher informative value than samples of other degrees of difficulty, their main contribution
to better performance is realized on easy samples. A deeper comprehension of this phenomena
might reveal interesting insights on class representation hierarchies in deep neural networks,
the notion of a difficult sample and its relevance in deep learning curricula. Generally, under-
standing common benchmark datasets better can have positive impacts on the development of
architectures or regularization and optimization procedures in deep learning.
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Appendix

Figure A1: For the CIFAR-10 dataset, The distribution of clean and noisy-labeled samples to
difficulty bins under different noise rates for EfficientNetB4 and SGD optimizer.

49



Appendix

Figure A2: For the CIFAR-100 dataset, relative noise rates among top K% easiest samples ac-
cording to h-score. Left: under 40% label noise. Right: under 80% label noise.

Figure A3: For the TinyImagenet dataset, relative noise rates among top K% easiest samples
according to h-score. Left: under 40% label noise. Right: under 80% label noise.

Figure A4: For the CIFAR-10 dataset, c-score for best setup with ResNet18 and SGD, set accu-
racy for train sets with hold-out intervals of 10% of the train set (left), 20% of the
train set (middle) and 30% of the train set (right).
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Figure A5: For the CIFAR-100 dataset, c-score for best setup with ResNet18 and SGD, set ac-
curacy for train sets with hold-out intervals of 10% of the train set (left), 20% of the
train set (middle) and 30% of the train set (right).
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