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Informationsquellen sowie das Gedankengut Dritter wurden im Text als
solche kenntlich gemacht und im Literaturverzeichnis angeführt. Die Ar-
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Abstract

With the advances in satellite and sensor technology, a large amount of Earth Observa-
tion (EO) data are produced every day. The Earth Observation has inevitably arrived in
the Big Data era. The remote sensing image is a typical type of EO data. Remote sens-
ing images can be used for urban area study, climate change analysis, forestry study,
etc. To better manage and use large-scale remote sensing image data, it is necessary to
develop efficient image retrieval methods. Deep learning-based hashing methods can
generate binary codes by using deep hashing neural networks. The problem of these
methods is the unavailability of sufficient labeled images, which hinders the perfor-
mance of deep hashing neural networks. We propose novel methods using GANs to
address this problem. GAN is a generative model to model data distributions and is
made up of a generator and a discriminator. The two components play a minimax two-
player game. This thesis explores two ways to make image retrieval benefit from GAN.
One is to use GAN to generate images conditionally, thus enlarging the labeled dataset.
Enlarged labeled data can be used to train a supervised deep hashing for image retrieval.
The other is to use the discriminator of a GAN for unsupervised representation learning.
By adding a hash binary constraint and a semantic constraint, we can obtain an unsu-
pervised adversarial hashing network. This method can generate binary hash codes for
multispectral remote sensing images. Experimental results showed that GAN can help
improve hashing-based remote sensing image retrieval. The quality of the generated im-
ages and its effect on image retrieval are also analyzed. Conditional GAN can generate
very realistic remote sensing images. Images generated from unconditional GAN are
less realistic, but still keep some basic characteristics of the real images.
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Zusammenfassung

Mit den Fortschritten in der Satelliten- und Sensortechnologie werden täglich große
Mengen an Erdbeobachtungsdaten (Earth Observation, EO) erstellt. Die Erdbeobach-
tung ist unvermeidlich in der Big-Data-Ära angekommen. Fernerkundungsbild ist eine
typische Art von EO-Daten. Fernerkundungsbilder können für Stadtgebietsstudien,
Klimawandel-Analysen, Forststudien usw. verwendet werden. Um umfangreiche Fern-
erkundungsbilddaten besser verwalten und nutzen zu können, müssen effiziente Bild-
abrufmethoden entwickelt werden. Auf Deep Learning basierende Hashing-Methoden
können mithilfe des Deep Hashing Neuronales Netzwerks Binärcodes generieren. Das
Problem dieses Verfahrens ist die Nichtverfügbarkeit von ausreichend beschrifteten Bild-
datensätzen, die die Leistung des Deep Hashing Neuronales Netzwerk behindern. Wir
schlagen neuartige Methoden, die GANs verwendet, um dieses Problem zu beheben.
GAN ist ein generatives Modell zur Modellierung von Datenverteilungen und besteht
aus einem Generator und einem Diskriminator. Die beiden Komponenten spielen ein
Minimax-Spiel für zwei Spieler. Unsere Forschung untersucht zwei Möglichkeiten,
wie der Bildabruf von GAN profitieren kann. Eine Möglichkeit besteht darin, mit
GAN Bilder unter bestimmten Bedingungen zu generieren und so den beschrifteten
Datensatz zu vergrößern. Mit vergrößerten beschrifteten Daten kann ein überwachtes
Deep-Hashing für den Bildabruf trainiert werden. Das andere ist, den Diskriminator
von GAN für unüberwachtes Repräsentationslernen zu verwenden. Durch Hinzufügen
von binären Hash-Bedingungen und semantischen Bedingungen können wir ein unüber-
wachtes, kontradiktorisches Hashing-Netzwerk erhalten. Mit diesen Methoden können
binäre Hash-Codes für multispektrale Fernerkundungsbilder generiert werden. Experi-
mentelle Ergebnisse zeigen, dass GAN dazu beitragen kann, die auf Hashing basierende
Fernerkundungsbildersuche zu verbessern. Die Qualität der generierten Bilder und ihre
Auswirkung auf den Bildabruf werden ebenfalls analysiert. Bedingtes GAN kann wirk-
lich realistische Fernerkundungsbilder generieren. Bilder, die aus bedingungslosem
GAN generiert wurden, sind weniger realistisch, behalten jedoch einige Eigenschaften
realer Bilder bei.
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1 Introduction

1.1 Motivation

Remote sensing is a technology that uses aircraft- or satellite-based instruments to ob-
serve the objects on the earth by analyzing propagated signals, e.g., electromagnetic
radiation. With the development of the remote sensing technology, more and more re-
mote sensing images with the higher spectral resolution and the higher spatial resolution
are produced every day. According to [31], Sentinel satellites which are operated by the
European Space Agency can produce approximately 10 TB of Earth Observation (EO)
data per day. It is necessary to build an efficient and accurate remote sensing image re-
trieval system, which will benefit urban area study, forestry research, risk management,
etc.

Early remote sensing image retrieval methods mostly depend on manual tags, such
as geographical locations, visual descriptions, sensor types, waveband information, etc.
These text-based retrieval methods rely on manual annotations, which are expensive and
not always available. And the retrieval performance is highly dependent on the quality
of the manual annotations. Recent research on remote sensing image retrieval turns
to using content-based methods. In the content-based remote sensing image retrieval
system, the feature representation of the query image is computed and then compared
to the feature representations of all images in the archive. Feature descriptors are usu-
ally used to obtain these feature representations. Feature descriptors can be categorized
into two groups: handcrafted feature descriptors and data-driven feature descriptors.
Handcrafted features include local invariant features [71], morphological features [2],
textural features [26], etc. Data-driven features are obtained by utilizing machine learn-
ing methods. Hash learning (also known as learning to hash) is based on data-driven
features. In this method, a hash function is built to compute for each image the hash
codes. Hash lookup can find similar images rapidly using hash tables and hash codes.
Therefore, the retrieval accuracy and the retrieval speed can both be improved. A recent
study [41] using deep hashing neural networks (DHNNs) has achieved excellent results
on large-scale remote sensing image retrieval.

The generative adversarial network (GAN) is firstly proposed in [20]. It is trained us-
ing a two-player minimax game. A GAN is composed of a generator and a discriminator.
The generator learns to generate fake but realistic images from random low-dimensional
embeddings (noise vectors) to deceive the discriminator. The discriminator learns to dis-
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1 Introduction

tinguish between real images and generated images. They are alternatively optimized
for many iterations. GANs are widely used in image synthesis, data augmentation,
and image super-resolution. There is also some research focusing on using a GAN
to improve classification. In [52], the authors proposed deep convolutional generative
adversarial networks and used the discriminator as a feature extractor for the classifi-
cation task. Later in [16] and [13], a new structure of the GAN was proposed. They
added an encoder to the original GAN, which only has a generator and a discriminator.
Three components are trained in an alternative fashion, and the encoder proved to be a
competitive feature extractor compared to other weakly supervised learning approaches.
Similar to feature learning in the classification task, hash learning can also benefit from
the GAN. [6] proposed a method of adding a hashing stream and classification stream
to the original GAN to build a better hash function and achieve better image retrieval.
[62] used an architecture similar to VAE-GAN [37] and trained it using a binary con-
straint and a neighborhood similarity constraint on the latent code layer. [11] proposed a
method of adding semantic-preserving loss to BiGAN’s encoder part[13]. These meth-
ods show different ways of applying the GAN to the image retrieval task. Considering
the unavailability of sufficient annotations and multispectral characteristics of remote
sensing images, this thesis wants to explore efficient and accurate multispectral remote
sensing image retrieval methods based on the GAN. .

1.2 Objective

Remote sensing image data are usually very large. Manual annotation of such big data
is time-consuming and expensive. And different from natural images, remote sensing
images have much lower spatial resolution, which makes the annotation even harder. A
lack of sufficient labeled data can be an obstacle in applying deep learning to remote
sensing images. The GAN proves to be an effective method for learning the distribution
of the data[52] [13]. Then the initial idea is that we can use GANs to generate a large
amount of labeled remote sensing images based on a limited number of labeled images.
Generated images and real labeled images will then together serve as the training set to
learn a deep hashing neural network.

Remote sensing images have multiple bands: if we use transfer learning to extract the
features of remote sensing images from CNNs pretrained on other datasets, e.g., Ima-
geNet dataset, only the information stored in RGB bands is used. To make use of all
the information stored in all bands, we must train the neural network from scratch. [52]
[16] and [13] show that GANs can be used not only for modeling the data distribution
(generating images), but also for unsupervised representation learning. Representation
learning is closely related to image retrieval because the distance of different represen-
tations can be directly the similarity measure. In [11], an empirical study of adding
semantic-preserving loss to BiGAN[13] for image search was conducted. In this thesis,

2



1.3 Outline

we proposed a novel method called Unsupervised Adversarial Hashing for Multispec-
tral Images to achieve efficient and accurate retrieval of multispectral remote sensing
images. Our method can generate fake multispectral images and compute hash codes
for real multispectral images.

In summary, we will use GANs to increase the amount of labeled data to improve
supervised deep hashing for image retrieval as the first step. Then in the second step,
we will exploit the representation learning ability of GANs to achieve unsupervised
deep hashing for multispectral image retrieval.

1.3 Outline

This thesis is separated into six chapters. A short introduction of each chapter is given
below.

Chapter 2 introduces background knowledge from basic CNNs to complicated GANs.
The CNN is a widely used deep learning method for computer vision problems. Dif-
ferent layers of CNNs are introduced in this chapter. State-of-the-art CNN architec-
tures are compared. And backpropagation, an efficient weight updating method are also
explained in this chapter. Then the details of the GAN are introduced in the similar
way. Besides, we list and introduce several evaluation metrics of GANs. Five variants
of GANs, which are CGAN [46], DCGAN[52], ACGAN[47], VAE-GAN [37]and Bi-
GAN[13][16] are introduced in the last section of this chapter.

Chapter 3 introduces related work on image retrieval. Image retrieval methods can be
divided into two groups: text-based image retrieval and content-based image retrieval.
Content-based image retrieval (CBIR) makes use of visual information that can be di-
rectly derived from the image e.g. color, shape, texture, and other features. The details
of CBIR are provided in this chapter. The second section of this chapter introduces
some methods that prove to be effective in remote sensing image retrieval. In the last
section, some publications using GAN to improve image retrieval are reviewed.

Chapter 4 introduces the basic method of using different GANs to generate fake im-
ages, which are aimed at helping the training of supervised deep hashing. The loss
functions and network architectures are described in this chapter. We also give an intro-
duction of the dataset used in this thesis: EuroSAT [24]. Following that, the experimen-
tal details and final results are presented and analyzed.

Chapter 5 thoroughly describes a newly proposed method called Unsupervised Adver-
sarial Hashing for Multispectral Images. We show the difference between this method
and other GAN-based hashing methods. We also show how this method is implemented

3



1 Introduction

and how the network is trained. The multispectral version of the dataset, EuroSAT, is
introduced and visualized in this chapter. In the experiment part, a lot of experiments
have been done to show how each component in our methods helps to improve the im-
age retrieval performance.

Chapter 6 gives a summary of all the methods and experimental results. Two future
research directions are provided: finding the best band combination for image retrieval
and using other advanced GAN architectures.

4



2 Fundamentals of Deep Learning

Deep learning is one of the numerous machine learning techniques. Most of the deep
learning methods are based on neural networks. Deep neural networks can model how
the human brain works. Just like electrical stimulation being transmitted from one neu-
ron to another, information is propagated and processed from one layer to another in
our artificial neural networks. The ”deep” in ”deep learning” represents the great num-
ber of layers or the large depth of the neural networks. Modern deep neural networks
can have up to 152 layers, e.g., ResNet-152 [23]. The biggest advantage is that deep
learning methods can directly learn from data. Deep learning has already shown very
good performance in many fields, such as computer vision, speech recognition, machine
translation, and bioinformatics.

Deep learning can be categorized into two big classes: supervised learning and un-
supervised learning. Supervised learning demands labels as auxiliary information to
guide the learning process. Unsupervised learning can find patterns in the data with-
out label information. A typical example of unsupervised deep learning methods is the
Autoencoder [4], which tries to find an informative low-dimensional representation by
connecting an encoder and a decoder. The learning process is guided by the reconstruc-
tion loss.

Figure 2.1: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winner
methods and their corresponding top-5 error on classification task [22].
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In the computer vision field, CNNs present a big improvement compared to traditional
methods. As we can see in Figure 2.1, the top-5 classification error decreased by 36.43%
when the CNN-based method was first introduced in the famous ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [12] in 2012. After that, researchers proposed
various CNN architectures to further improve the results. And the number of layers
gets larger and larger. With the model getting deeper and more complicated, more
parameters in the model need to be learned. This tendency requires hardware devices
to have higher computation ability. The rapid development of high-performance GPU
with parallel architecture perfectly meets the demands of deep learning.

GAN is firstly proposed in [20] as a method to estimate a generative model via an
adversarial process. In this method, a generative model G tries to capture the data dis-
tribution, while a discriminative model D tries to distinguish between the data from the
real distribution and the data from the G-modelled distribution. The training process is
like the minimax two-player game. After a lot of training steps, G and D will reach a
Nash equilibrium ideally. Experiments show that this framework can generate realistic
images. A lot of variants of GAN were proposed later to improve the quality of gen-
erated images. On the other hand, there is also some research trying to apply GAN to
other fields, such as representation learning [52, 16], image super-resolution [40], image
colorization [30] and image retrieval [12, 62].

In this chapter, we will introduce the CNNs and GANs in detail. Their structure
design, mathematical foundation, training tricks, and so on will be thoroughly described
and explained.

2.1 Convolutional Neural Networks

Figure 2.2: An example of CNNs: AlexNet [35].

The convolutional neural network is a popular deep learning technique in the com-
puter vision field because of its powerful ability to find patterns in images. And the
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CNN makes use of the hidden patterns in a hierarchical way. Low-level patterns are
recognized in the first several layers and then assembled to form high-level patterns.
The most important part of CNN is the convolutional layer.

In the traditional fully connected neural network (also called multilayer perceptron),
all the input data are fed into the first layer and do the dot production with weight and
bias matrix. After the activation function, all the outputs of one layer are fed into the
next layer. These layers are called fully connected layers or dense layers. Figure 2.3
shows a simple example of a fully connected neural network. For image data, a flatten
operation is necessary to convert a 2D image to a 1D vector as a preprocessing step.
The disadvantage of this method is that it dose not make use of spatial dependencies
and temporal dependencies (for video data) and treat pixels that are close or far away in
completely the same way as illustrated in Figure 2.4.

Figure 2.3: An simple example of fully con-
nected neural nnetwork.

Figure 2.4: Flatten operation.

Unlike the fully connected neural network, the convolutional neural network adds
convolutional layers to extract features hierarchically. The main idea of the convolution
operation is to use convolutional filters in small restricted areas (also called receptive
fields) from the input data. As a result, it can make use of the spatial or temporal struc-
ture of the data, thus extracting more informative features. What’s more, the reusing of
a filter in one layer can reduce the number of parameters drastically.

Nowadays, neural networks go deeper and deeper. Figure 2.2 presents the architecture
of AlexNet [35] which is the first winner that uses CNNs in the ImageNet Large Scale
Visual Recognition Challenge [12]. There are five convolutional layers in AlexNet.
The features extracted in the convolutional layers are getting less abstract with the data
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Figure 2.5: Features extracted in different convolutional layers [38, 73].

going toward the output. This phenomenon is illustrated in Figure2.5. The details of the
convolution operation will be introduced in 2.1.1.

The convolutional layer is inspired by how visual information is processed in the
human brain. The visual cortex is the part of the cerebral cortex that receives, integrates
and processes visual information relayed from the retinas. Neurons in the visual cortex
often only respond to the stimuli in a specific receptive field. And neurons in different
parts of the visual cortex respond to different stimuli. When the visual information is
passed from one area to another area in the visual cortex, the corresponding cortex area
is becoming more and more specialized [28].

In the following several subsections, the details of CNN components, different CNN
architectures, and training methods will be introduced.

2.1.1 Network Components

The usual CNN is composed of several different layers such as convolutional layers,
pooling layers, and fully connected layers. These layers have different functions and
are placed according to some fixed rules. It’s worth noting that not all CNNs have three
above-mentioned layers. The CNN denotes the neural network which has at least one
convolutional layer. For example, the fully convolutional neural network which only
has convolutional layers is used in [44] to do image semantic segmentation and in [9]
to perform object detection. Also, some networks include special operations, such as
residual blocks in ResNet [22] and transposed convolutional layers in the GAN [20]. We
will discuss the residual block in Section 2.1.2 and the transposed convolutional layer
in Section 2.2.1.
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2.1 Convolutional Neural Networks

Figure 2.6: The convolution operation. Figure 2.7: The padding operation.

Convolutional Layer

The convolutional kernel (also called the filter) plays an important role in the convolu-
tion operation. The convolutional kernel is basically a matrix. The value of each entry
of the matrix will be initialized and then updated during the learning process. When
doing the convolution operation, the kernel will shift from left to right and from top to
bottom on the image. At each shift step, the kernel matrix will be multiplied by the pixel
value matrix where the kernel is located at that step. The multiplication result will be
the value of the corresponding entry of the output matrix. Figure 2.6 illustrates how the
convolution operation is conducted.

The shape of a kernel is usually defined by width× height× depth in× depth out.
width and height determine the size of the kernel and also determine how large the
receptive field is. depth in and depth out denote the number of channels of the tensor
data. depth in is the same as the number of channels of the input data. depth out
decides the number of channels of the output data. We can also regard depth out as
the number of filters of one layer. In AlexNet, kernel size includes 11× 11 and 5× 5.
Later research [64] proposed to use two 3×3 kernels to replace one 5×5 kernel. This
replacement not only reduces the number of parameters but also helps in extracting
better features. Usually, the selection of the kernel size depends on the image data.

The stride decides how many pixels the kernel should move through every after a
shift step. The bigger the stride is, the smaller the size of the output data is.

Padding is used to adjust the input size to meet our requirements for the output size.
Padding will increase the width and height of the input data and assign values to these
newly added entries. Zero padding is the most widely used padding method. In some
case, nonzero padding or reflection padding is more reasonable and effective. As il-
lustrated in Figure 2.7, when there is a convolution operation between a 5× 5 image
and a 3× 3 kernel using stride 1, the size of the output data will still be 5× 5 if we
use padding. Otherwise, the size of the output data will be 3× 3. This is because the
entries on the edge are less processed than those in the center without padding. As a
result, some information may be lost during the forward pass. So the other advantage of
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Figure 2.8: The pooling operation. Figure 2.9: Different activation functions.

padding is reducing information loss.

Pooling Layer

Pooling layers are usually placed after convolutional layers. They can reduce the spatial
size of the data effectively as shown in Figure 2.8. Therefore, the number of parameters
in the network is reduced as well. There are different kinds of pooling layers: max
pooling, average pooling, L2-norm pooling, etc. The filter size and stride also apply to
pooling operation. The most commonly used pooling layer now is max pooling with
stride equaling 2 and filter size equaling 2 or 3.

Fully Connected Layer

The fully connected layer builds connections between all output neurons and all input
data as shown in Figure 2.3. The connection here means a calculation involving input
neurons, the weight matrix, the bias, and the activation function. In the mathematical
form, it can be formulated as Equation 2.1.

xk+1 = act(w∗xk +b) (2.1)

where act(·) denotes the activation function which will be introduced in the next sub-
section. w denotes the weight matrix. And b denotes the bias.

Fully connected layers are usually placed in the last several layers of a CNN. It will
process flattened tensor data and decrease the number of output until finally, the num-
ber of entries in the output vector becomes the same as the number of categories in a
classification task.

Activation Functions

Activation functions are motivated by the biological phenomenon as well. The dendrites
of a neuron will perceive the stimuli and carry the signal to the neuron cell body. When
the signals summed at the neuron cell body reach a specific threshold, the neuron will
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fire, sending the electrical signal along the axon. We model the firing rate with the
activation function.

Each activation function performs a fixed mathematical computation on the input
data. Most layers in CNNs include activation function as the last operation before the
output, like convolutional layers, fully connected layers and transposed convolutional
layers. Some commonly used activation functions are shown in Figure2.9

2.1.2 CNN Architectures

A convolutional neural network is composed of different layers which are introduced
in Section 2.1.1. By permuting the order of these layers, different architectures can
be constructed. [39] proposed a convolutional neural network, called LeNet-5, to au-
tomatically recognize handwritten characters from document images in 1998. Figure
2.10 shows the architecture of LeNet-5 which is composed of two convolutional layers,
two max pooling layers, and three fully connected layers. Recently more and more new
architectures have been designed and proposed. Several important architectures are pro-
posed in the ILSVRC [12] competition. There is a tendency that the architectures are
getting more complicated, and the networks are getting deeper. In these newly proposed
architectures, some innovative modification on the network structure can achieve great
improvement compared to the state-of-the-art. We will introduce some of them in the
following several paragraphs.

Figure 2.10: The architecture of LeNet-5 [39].

AlexNet

AlexNet [35] was the first winner that used the CNN-based method in ILSVRC. Its
architecture is shown in Figure 2.2. The architecture is very similar to LeNet-5. The
differences are that AlexNet has more convolutional layers and more filters at each layer
than LeNet-5.

It was also the first one to use ReLU as the activation function in the CNN. And it
firstly introduced local response normalization(LRN).
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VGG

VGG [60] was the runner-up method in the ILSVRC 2014 competition. It increased the
number of layers to 16 (VGG 16) and 19 (VGG 19). In VGG, all convolutional filters
have the size of 3×3 and the stride of 1. All pooling layers have the size of 2×2 and
the stride of 2. Compared with AlexNet, VGG Net uses a smaller filter size and a deeper
network. This design needs fewer parameters with an even deeper network due to the
smaller filter size. The advantage of the deeper network is that the deeper network can
model more nonlinearities.

Figure 2.11: Comparison between architectures of AlexNet and VGG Net.

GoogLeNet

GoogLeNet introduced a novel element to the network which is called Inception mod-
ule. So GoogLeNet is also called Inception v1. In an Inception module, convolutional
operations will be applied on the output of the previous layer in a parallel way as shown
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(a) Naı̈ve Inveption Module (b) Ineption Module

Figure 2.12: Inception Module used in GoogLeNet.

in Figure 2.12a. To reduce the number of parameters, they added several 1× 1 convo-
lutional layers which aim to reduce the number of channels. Many Inception Modules
are stacked to build the core part of GoogLeNet. There are two auxiliary classification
outputs in the middle layer to prevent the gradient from vanishing in lower layers.

There are improved versions of GoogLeNet (Inception v1): Inception v2 [29], Incep-
tion v3 [66] and Inception v4 [65]. Inception v2 added batch normalization to accelerate
the convergence. Inception v2 also replaced the 5× 5 filter in Inception v1 with two
3×3 filters. Inception v3 redesigned the Inception module using the smaller filter size
and rearranged the network. Inception v4 added residual connections to increase the
learning speed.

ResNet

ResNet[22] is proposed mainly to solve such a problem: in some cases, the result gets
worse when the convolutional neural network gets deeper,. But the deeper model should
be at least as good as the shallow model because the additional layers can be set as
identity mapping. The residual block addressed this problem by learning a residual
function with respect to the input. This process can also be regarded as a refinement step
to adjust the input feature map rather than build a completely new feature map. When
the feature map does not need refinement anymore, the learned residual gradually gets
close to zero which produce the identity mapping layer. Residual blocks are stacked to
build the whole architecture of the ResNet. When the network is very deep, an improved
residual block with 1× 1 filter for reducing the number of feature map channels is
proposed. Figure 2.13 illustrates the basic residual block and the improved residual
block.
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Figure 2.13: Residual block.

2.1.3 Training Method

Loss Function

The loss function is the objective function of the training process. It describes how good
your model (CNN) is at the expected task. The aim of the training process is to optimize
the loss function.

For the basic regression task, the mean squared error loss and mean absolute error loss
are two commonly used loss functions. For the classification task, the most common loss
function is the cross entropy loss. The cross entropy loss was initially used for binary
classification. By introducing one-hot encoding, the cross entropy loss can also be used
in multiclass classification. The cross entropy loss is calculated by:

Lcrossentropy =−
1
N

N

∑
n=1

[yn log ŷn +(1− yn) log(1− ŷn)] (2.2)

where yn denotes the real class, and ŷn denotes the predicted class.
The triplet loss is a new loss function for learning the similarity between images. It

was proposed in [8] and applied to face recognition where it achieves a big performance
improvement [57]. In this method, all training samples are used to build triplets accord-
ing to there labels. A triplet is made up of an anchor sample, a positive sample and a
negative sample. The triplet loss is calculated by:

Ltriplet =
N

∑
i
[|| f (xa

i )− f (xp
i )||

2
2−|| f (xa

i − f (xn
i )||22 +α]+ (2.3)

where f (·) denotes the trained model. xa
i denotes the anchor sample, xp

i denotes the
positive sample and xn

i denotes the negative sample. α is the margin between positive
and negative pairs.
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There are also a lot of other loss functions for specific purposes, like the adversarial
loss in the GAN and the binary loss in image hashing retrieval. We will discuss these
loss functions in the later related part.

Backpropagation

Backpropagation is a gradient descent approach using the chain rule in computing
derivatives. As shown in Figure 2.14, the forward pass processes the data hierarchi-
cally to obtain a prediction, and the backward pass uses the chain rule to compute the
derivatives of the loss with respect to the parameters in each layer.

Figure 2.14: Forwardpass and backwardpass in the neural network [69].

2.2 Genrative Adversarial Networks

The GAN was initially proposed in [20] as an approach to learning a generative model.
The generative model can generate new data from a distribution in which the training
data lie. And the generative model tries to address density estimation problem which is
important for unsupervised learning. Some generative model methods give an explicit
density function: like PixelCNN [48], PixelRNN [49] and VAE [33]. However, the
generative adversarial network will not give an explicit density function but directly
generate new data from the density function. So we can say that the GAN learns an
implicit data distribution.

Even though the GAN is initially proposed as a generative model, some research has
also shown it can benefit unsupervised representation learning, semi-supervised learning
and supervised learning. GAN has a lot of different applications, e.g., image super
resolution, image colorization, text-to-image translation, etc.
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Figure 2.15: Illustration of a vanilla GAN.

2.2.1 GAN Architecture

A vanilla GAN is composed of a generator and a discriminator. Basically, the generator
and the discriminator are both deep neural networks.

The input of the generator is a noise vector and often sampled in the range [0,1] using
random uniform distribution. To generate an image from a noise vector, the network
of the generator is made up of several transposed convolutional layers (sometimes also
called deconvolutional layers, but this name is misleading because this operation is very
different from mathematical term deconvolution). Figure 2.16 shows the comparison
between the convolution and the transposed convolution.

(a) Convolution (b) Transposed convolution

Figure 2.16: Comparison between the convolution and the transposed convolution [15].
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The input of the discriminator is images, either real images from the dataset or fake
images generated from the generator. The discriminator is essentially a CNN with bi-
nary source prediction.

2.2.2 Training Scheme

The training of a generative adversarial network is similar to a minimax two-player
game. The objective function can be expressed as Equation 2.4

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.4)

where z denotes the noise vector, x denotes the real image, G(z) denotes the image
generated by the generator, and D(·) denotes the output of the discriminator which is
a likelihood in (0,1). The discriminator is trained to maximize the objective V (D,G)
while the generator is trained to minimize the objective V (D,G)

However, experiments show that using the above objective function can not optimize
the generator very well. Usually, another training strategy is used when we train the
generator. The new strategy tries to maximize the likelihood of the discriminator being
wrong instead of minimizing the discriminator being correct. The improved objective
functions are shown below:

1. Training the discriminator

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.5)

2. Training the generator

max
G

Ez∼pz(z)[log(D(G(z)))] (2.6)

2.2.3 Evaluation Metrics

To evaluate our GAN and the quality of generated images, visual comparison with real
images is not convincing enough. Many metrics for GAN evaluation have been pro-
posed. Here we introduce two commonly used metrics: Inception Score (IS) [56] and
Fréchet Inception Distance (FID) [25].

IS evaluates how dispersed generated images are across different classes and how
focused the prediction of one specific image is on one class. All generated images will
be fed into Inception v1 to get the prediction probability and then to compute the final
IS. Inception Score is calculated by:

IS(G) = exp(Ex∼pg[DKL(p(y|x)||p(y))]) (2.7)
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where DKL denotes Kullback-Leibler divergence which can measure the difference be-
tween two probability distributions as expressed in Equation 2.8.

DKL(P(x)||Q(x)) = ∑
x∈X

P(x) log
P(x)
Q(x)

(2.8)

FID evaluates the distance of feature embedding between real images and fake images
by considering their statistical characteristics. The last pooling layer of Inception v3 is
used as the coding layer for all generated images. The improvement of FID with respect
to IS is that FID takes both real images and generated images into consideration. IS
only considers generated images. Fréchet Inception Distance is calculated by:

FID(G) = ||mr−mg||2 +Tr(Cr +Cg−2(CrCg)
1/2) (2.9)

where (mr,Cr), (mg,Cg) denote the mean and covarience of the feature embedding of
the real images and generated images , respectively.

Higher Inception Score and lower Fréchet Inception Distance mean a better GAN and
better quantitative results of generated images.

2.3 Variants of GANs

After the first GAN paper [20] was published, GAN attracted more and more attention
from researchers around the world. GAN is an insanely active topic in deep learning
and the computer vision community. A lot of GAN variants were proposed and used
for different purposes. In this section, five representative variants will be introduced
and explained in detail. They are CGAN [46], DCGAN [52], ACGAN [47], VAE-GAN
[37], BiGAN [13].

CGAN

Compared with the vanilla GAN, CGAN which is short for ”conditional generative ad-
versarial network”, adds a condition input y to both the generator and the discriminator.
This modification is illustrated in Figure 2.17a with a yellow color. The condition in-
put y can be any kind of auxiliary information, such as class labels or data from other
modalities.

DCGAN

In vanilla GAN, MLP (Multilayer Perceptron) is used as the architecture of the discrim-
inator and the generator. The DCGAN paper [52] gives some tricks for a stable deep
convolutional GAN. In DCGAN, fully connected layers and pooling layers are replaced
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with convolutional layers and transposed convolutional layers. They use Batch Normal-
ization [30] to stabilize training by normalizing the input to make it have zero mean and
unit variance. In the generator, ReLU activation function is applied to all layers except
for the output, which uses Tanh. In the discriminator, Leaky ReLU activation function
is applied to all layers.

(a) CGAN (b) ACGAN

Figure 2.17: The structure of CGAN and ACGAN

ACGAN

Same as CGAN, ACGAN is also doing conditional image generation, in which fake
images are generated from a combination of the noise vector z and the condition infor-
mation y. But different from CGAN which takes y as one of the discriminator’s inputs,
ACGAN only takes images as the discriminator’s input. The output of the discrimina-
tor is a combined prediction on the source (real or fake) and class labels. ACGAN is
trained by optimizing the joint loss including adversarial loss and classifier loss. The
experiment shows that ACGAN-generated images have better global coherence.

VAE-GAN

VAE-GAN is a hybrid model of VAE [33] and GAN [20]. Figure 2.18a illustrates the
structure of VAE-GAN. The encoder takes a real image as the input and then outputs
its latent representation. The decoder (or the generator) takes the latent representation
as the input and then outputs a reconstructed image. The decoder also takes noise vec-
tors as the input and outputs fake images. The discriminator will distinguish between
reconstructed (fake) images and real images. The training goal is to make the recon-
structed images close to original images, make the discriminator not able to distinguish
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between real and fake images, and make the latent representations close to the normal
distribution.

(a) VAE-GAN (b) BiGAN

Figure 2.18: The structure of VAE-GAN and BiGAN

BiGAN

BiGAN is similar to VAE-GAN. But it separates the decoder and encoder to two blocks.
And the input of the discriminator is also different. Figure 2.18b illustrates the structure
of BiGAN. The decoder (or the generator) takes a noise vector z as the input and outputs
a generated fake image x′. The encoder takes a real image x as the input and output
its latent representation z′. Then the input and the output of both the generator and the
encoder will build a pair (x′,z) or (x,z′). The pairs serve as the input of the discriminator.
The discriminator distinguishes whether the pair is from the encoder or the generator.
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Image retrieval is also called image search, where the system can return similar images
when a query term is given. Most early traditional methods make use of metadata, such
as keywords, text, description, etc. Image retrieval will be conducted based on metadata
associated with each image. A new method called content-based image retrieval (CBIR)
has proven to be very efficient and accurate and demands less human work for prepro-
cessing. It makes use of the visual contents that can be derived from the image itself
[10]. Among all CBIR methods, hashing learning methods that represent each image as
binary hash codes gain a lot of attention. It can not only improve the retrieval accuracy
but also speed up the retrieval process.

Image retrieval is a hot topic in two different research communities which are the in-
formation management system community and the computer vision community. Early
methods based on metadata are mostly used by the former community and belong to a
big category: text-based image retrieval. The computer vision community mainly fo-
cuses on content-based image retrieval research. Deep learning is a novel method that
shows great improvement compared to traditional methods in many computer vision
fields. Recently, some researchers proposed that deep learning can be used to extract
features for image retrieval and an end-to-end deep learning-based image retrieval net-
work can be trained.

This chapter is divided into three parts: image retrieval methods, remote sensing im-
age retrieval and GANs for image retrieval. In the first part, a review on image retrieval
methods will be given. And different methods will be explained in detail and compared
with each other. In the second part, some remote sensing images’ characteristics are
introduced, and a review on remote sensing image retrieval will be given. In the last
part, some latest publications using GAN for image hashing or image retrieval will be
introduced.

3.1 Image Retrieval Methods

3.1.1 Text-based Image Retrieval

The text-based image retrieval dates back to 1970s. Usually, before the retrieval pro-
cess, all the images must be manually annotated with keywords, texts, descriptions, etc.
And the annotations include not only the content of the image, but also some auxiliary
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information, like image size, image format, shooting time and address, and camera info.
Then some text retrieval techniques will be used, e.g., bag of words approach, vector
space model, and Boolean search of words.

But there exist limitations in this method. The retrieval accuracy is highly dependent
on the quality of the annotation. And with the dataset getting larger and larger, manual
annotation becomes time consuming and expensive. Sometimes the dataset is so large
that it is impossible to give annotation to all images in it. On the other hand, annotation
is never complete. Some things in the image are hard to express or can be expressed
in different ways. The text-based image retrieval are not robust enough due to these
problems.

In some special cases, text-based image retrieval can also be done without annota-
tions. One case is to make use of the text present in the images [5]. This method
involves text detection, extraction, and optical character recognition. The text-based
retrieval is done on the extracted text. This case only applies to images with text in it,
like book cover images, document images, and TV news images. Another case is to do
automatic image caption. And then generated captions can be used for text-based image
retrieval.

3.1.2 Content-based Image Retrieval

Due to the rapid advances in information technology and digital imaging devices, nu-
merous images are produced in different fields. To make use of the information stored in
these images, an efficient image search system is necessary. Even though there existed
a lot of research on text-based image retrieval methods[7, 36], the manual annotation on
the large dataset is impractical and it’s hard to get the perfect annotation. These draw-
backs of text-based image retrieval hindered its popularity in dealing with large image
data and make content-based image retrieval (CBIR) gain more attention.

Figure 3.1: Illustration of content-based image retrieval.

In content-based image retrieval, visual contents derived from the image itself are
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used for image description and similarity comparison. Visual contents are usually called
features which include color, texture, shape, etc.

Color is a widely used feature for image retrieval. There are several different color
features: the color histogram, the color moments, and the color coherent vectors. The
color histogram method was firstly proposed in [63]. It makes use of the distribution of
different colors in an image. In the first step, the whole color range is divided into many
small color ranges (usually called bins). Then the number of pixels that fall in each
range will be counted. There are two versions of color histogram methods: the global
version and the local version. Their differences lie in different scopes to compute the
histogram. The global color histogram is the distribution from the whole image. The
local color histogram is the distribution in small patches, and then all the distributions of
patches are concatenated. Color moments [27] of a color distribution are similar to the
central moments of a probability distribution. The mean value, the standard deviation,
the skewness, and the kurtosis are computed as the color moments. These low-order
moments contain a lot of information that can be used to retrieve similar images. Color
coherent vector method classifies each pixel in a given color bucket as either coherent
or incoherent, based on whether or not it is part of a large similarly colored region. A
color coherence vector stores the number of coherent versus incoherent pixels with each
color [50]. The biggest advantage of color feature is its scale, translation, and rotation
invariance.

Texture features contain important information on the structural arrangement of a sur-
face and their relationship to the surrounding environment [21]. Early texture features
include statistics extracted from the co-occurrence matrix [21] and computational ap-
proximation texture features inspired by psychology studies [67]. Later when wavelet
transform was introduced in the 1990s, a lot of new texture representations were ex-
plored. [61] used statistics of wavelet subbands as the texture representation. The Gabor
filter is another widely used texture feature extraction method for image retrieval [45].
The Gabor filter is basically a group of wavelets of which each wavelet captures energy
at a specific frequency and a specific direction.

The shape feature is another important image content description method. Various
shape descriptors have been proposed in the last three decades. They can be categorized
into two groups: the contour-based shape descriptor and the region-based shape descrip-
tor. The former one only uses the contour to extract the features, while the latter one
uses the entire shape region [54]. A typical contour-based shape descriptor is the Fourier
descriptor. The Fourier descriptor uses the Fourier transformed contour as the feature
representation. Common region-based shape descriptors use the moment to describe
shapes. In [27], Hu selected seven moments that are invariant to transformations.

Although there exists numerous research on using the above mentioned features to
realize CBIR, the semantic gap is still an unsolved big problem. With the advances in
deep learning and its increasing popularity in computer vision community, extensive
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research effort has been devoted to bridging the semantic gap between those low-level
features and high-level semantic concepts perceived by the human [70]. Distance metric
learning for image retrieval is a deep learning based method which aims to learn an
optimal distance metric. The optimal metric minimizes the distance of similar images
and maximizes the distance of dissimilar images. Two constraints can guide the learning
process, the pairwise constraint or the triplet constraint. ImageNet, a large scale image
dataset, becomes a benchmark to test deep learning methods in computer vision. And
image retrieval can also benefit from those convolutional neural networks pretrained on
ImageNet. The first way is to use the output of last several fully connected layers as the
feature representation. The second way is to refine the last several layers using metric
learning methods. The third way is to retrain the whole network with a similarity loss.

Deep hashing neural network is an extension on deep metric learning for image re-
trieval. It learns binary hash codes for fast image retrieval [42].

3.2 Remote Sensing Image Retrieval

(a) Passive and active remote sensing (b) Sentinel-2B satellite[1]

Figure 3.2: Illustration of Remote Sensing technology.

Remote sensing is a term which refers to the use of sensors on the aircraft or satellite
to observe the objects on the earth based on propagated signals (e.g., electromagnetic
radiation). Depending on the source of the signal, remote sensing can be divided into
two categories: passive remote sensing and active remote sensing. As illustrated in Fig-
ure 3.2a, passive remote sensing instrument detects the radiation emitted or reflected
by the objects. Sunlight is a common source of radiation in passive remote sensing.
While active remote sensing instrument can emit radiation towards target objects by it-
self and then detect the reflected radiation. Some examples of passive remote sensing
technology are photography, infrared devices, and radiometers. Some examples of ac-
tive remote sensing technology are synthetic aperture radar (SAR) and light detection
and ranging (LiDAR). Remote sensing image analysis has attracted great interest in the
academic community because of its broad application, e.g., climate analysis, urban area
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study, forestry research, risk and damage management, water quality assessment, and
crop monitoring.

The advances in sensor development lead to higher spectral resolution and spatial
resolution of the remote sensing images. And as time goes by, more and more remote
sensing images are produced and stored every day. According to [31], Sentinel satellites
which are operated by the European Space Agency can produce approximately 10 TB of
Earth Observation (EO) data per day. We have already entered an era of remote sensing
big data (RSBD). It is necessary to build an efficient image retrieval system to manage
such a large amount of remote sensing data.

As we already mentioned, there are two kinds of image retrieval systems: the text-
based image retrieval system and the content-based image retrieval system. Remote
sensing image retrieval methods can also be categorized into these two groups.

Early remote sensing image retrieval methods mostly depend on manual tags includ-
ing geographical locations, visual description, sensor types, waveband information, etc.
These text-based retrieval methods are time-consuming. The manual annotations are
expensive and not always available. In addition, the retrieval performance is highly
dependent on the quality of the manual annotation.

Recent research on remote sensing image retrieval turns to using content-based meth-
ods. In the content-based remote sensing image retrieval system, the feature represen-
tation of the query image is computed and then compared to the feature representations
of all images in the archive. Finally, the system will output a ranking list where more
similar images lie in the higher position. Figure 3.3 is the flowchart of a content-based
remote sensing image retrieval system.

Figure 3.3: Illustration of content-based large scale image retrieval system.

Numerous feature descriptors have been designed for indexing remote sensing im-
ages. Feature descriptors can be divided into two types: hand-crafted feature descrip-
tors and data-driven feature descriptors. Hand-crafted features include local invariant
features [72], morphological features [3], textural features [26], etc. Data-driven fea-
tures are obtained by utilizing machine learning methods. This kind of features contains
complicated semantic information because of the learning process on the big data set.
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Hash learning method (also known as learning to hash) is based on data-driven features.
In hash learning, a hash function is built to compute the index of the hash table for
each image. Hash lookup is used to find similar images stored in the hash table rapidly.
Therefore, both the retrieval accuracy and the retrieval speed can be improved in hash
learning.

Deep learning is a very important member of machine learning family to learn the data
representation. Deep neural networks (DNNs) are a commonly used deep architecture of
deep learning. Deep learning has shown its potential to extract meaningful features and
to do accurate image classification. By making use of deep learning’s automatic feature
extraction ability, deep neural networks for image hashing can definitely benefit remote
sensing image retrieval. [41] proposed to construct a deep hashing neural network,
which is composed of feature learning part and hash learning part for remote sensing
image retrieval. [53] proposed to train a deep hashing neural network with transfer
learning methods. They used ImageNet-pretrained Inception network to extract features
from remote sensing images.

3.3 GANs for Image Retrieval

GAN is a newly invented machine learning method. It is a generative model that can
learn an implicit data distribution. The vanilla GAN is composed of a generator and a
discriminator. A lot of publications [47, 30, 46] have shown the realistic image synthesis
ability of the generator. The discriminator’s ability in representation learning is also
explored in [52, 13, 16]. GAN can help improve image retrieval task in these two
aspects.

In [18], the authors proposed a two-stage pipeline to learn deep hashing models. The
first stage was to generate fake images. In the second stage a deep hashing network
is trained on both real images and generated fake images. [51] proposed a generative
adversarial network with three streams on the discriminator’s output: an adversarial
stream, a classification stream, and a hashing stream. A joint loss was used to train
such a network. [19] proposed an unsupervised deep hashing method based on GAN.
In this method, the input of the generator is a random binary vector plus a random noise
vector. The discriminator tries not only to distinguish between real and fake images, but
also to recover the binary vector. [11] proposed a network similar to BiGAN which is
composed of a generator, an encoder and a discriminator. An extra semantic constraint
and an extra binary constraint are put on the encoder during the training process. The
encoder is used to generate semantic-preserving hash codes in the end.

In the following chapters, I will introduce my novel methods on how to apply GAN
to supervised hashing and unsupervised hashing for remote sensing image retrieval.
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4 Supervised Hashing Boosted by
GANs-Generated Images

GAN is initially proposed as a generative model that can learn the data distribution and
generate data from noise vectors. Nowadays, remote sensing image dataset is so big that
we can not give annotation to every image. Deep learning has proven to be effective at
feature extraction and accurate at object detection and classification. Deep learning can
also benefit hash learning methods for image retrieval. To overcome the problem of a
limited number of labeled data, we proposed a method using GAN to augment the data
by generating a large number of labeled fake images. And the generated fake images
will be used to train a deep hashing neural network together with real images.

In this part of the thesis work, I mainly made the following contributions:

• I implemented two GAN architectures for conditional image synthesis: Condi-
tional DCGAN and ACGAN. And thorough experiments were conducted to gen-
erate realistic fake remote sensing images.

• I implemented Inception Score and Fréchet Inception Distance to evaluate remote
sensing images generated from Conditional DCGAN and ACGAN.

• I used the transfer learning method to extract features from ImageNet-pretrained
Inception v3. The hashing neural network is trained to map the high-dimensional
features to low-dimensional hash codes. The training set is a combination of real
images and generated images.

4.1 Methodology

As shown in Figure 4.1, the proposed method has a two-stage pipeline. The first stage
is RSGAN (Remote Sensing image GAN) for fake remote sensing generation. The
second stage is deep hashing for remote sensing image retrieval. Two GAN architectures
are used and compared in RSGAN. Deep Hashing uses Inception Net pretrained on
ImageNet to extract features and then uses a deep hashing neural network to construct
binary hash codes.

I will first introduce RSGAN by showing their architectures and training methods.
Then I will introduce the deep hashing part and how deep hashing is used for image
retrieval.
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Figure 4.1: The framework of the proposed method: supervised hashing boosted by
GANs-generated images.

4.1.1 GANs for Remote Sensing Image Generation

Conditional GAN can generate class-specific images when the condition information is
given. The motivation here is to use conditional GAN to generate more labeled images,
which will solve the problem of a limited number of labeled data. Conditional DCGAN
and ACGAN are two important methods for conditional image synthesis and are adopted
in this thesis to generate labeled remote sensing images.

Conditional DCGAN

Conditional DCGAN is short for Conditional Deep Convolutional Generative Adver-
sarial Network. It is composed of a generator and a discriminator. The generator takes
random noise vectors plus the condition information, which is labels in our case, as the
input. It tries to generate images that can fool the discriminator. The discriminator takes
images and labels as input. It tries to distinguish between real images and fake images
generated from the generator.

Conditional DCGAN follows all guidelines proposed in [52] to make the training
process more stable. All pooling layers are replaced with convolutional layers (in the
discriminator) and transposed convolutional layers (in the generator). Batch normaliza-
tion is used to reduce internal covariant shift between layers. All fully connected hidden
layers are removed. The ReLU activation function is used in all layers of the generator
except for the output which uses Tanh. The Leaky ReLU activation function is used in
all layers of the discriminator.
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Suppose that we have the prior input noise distribution pz(z) and the condition in-
formation y. The generator builds a mapping from the noise distribution pz(z) to data
space G(z|y). The discriminator D(x|y) or D(G(z|y)|y) outputs a probability that the
input is from real data. The objective function of this two-player minimax game is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)|y))] (4.1)

A lot of experiments show that using an inverse objective function brings better opti-
mization for the generator. The improved loss functions used in the training process of
Conditional DCGAN are as follows:

LD = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)|y))] (4.2)

LG = Ez∼pz(z)[logD(G(z|y)|y)] (4.3)

The discriminator and the generator are trained to maximize LD and LG simultane-
ously in each iteration. The ’simultaneously’ here means that they are both optimized
one after the other in a specific iteration rather than one of them is trained for many
iterations to achieve the optimal state and then the other is trained.

ACGAN

ACGAN is short for Auxiliary Classifier Generative Adversarial Network. It is also
composed of a generator and a discriminator. The generator also takes random noise
vectors plus condition information as the input. It tries to generate realistic fake images
that can fool the discriminator. The discriminator takes only images as the input which
is different from Conditional DCGAN whose discriminator’s input is images plus labels.
The discriminator in ACGAN has two goals: one is to distinguish between real images
and generated images, the other is to predict the labels of the input image.

In ACGAN, we adopt almost the same architecture as Conditional DCGAN. All the
tricks that make GAN training stable are also used here. The input and the output of
the discriminator in ACGAN need to be adapted due to the added auxiliary classifier.
Figure 2.17 illustrates this difference clearly.

Suppose that we have the prior input noise distribution pz(z) and the condition in-
formation y. The generator builds a mapping from the noise distribution pz(z) to data
space G(z|y). The discriminator D(x) or D(G(z|y)) outputs a probability that the input
is from real data and the probability that the input belongs to different classes. They can
be formulated in the following way:

D(x) = (D(x)adversarial, D(x)classi f ier) (4.4)
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D(G(z|y)) = (D(G(z|y))adversarial, D(G(z|y))classi f ier) (4.5)

where (,) denotes concatenation. Therefore the loss functions are as follows:

LD A = Ex∼pdata(x)[logD(x)adversarial]+Ez∼pz(z)[log(1−D(G(z|y)adversarial))] (4.6)

LG A = Ez∼pz(z)[logD(G(z|y)adversarial)] (4.7)

LC = Ex∼pdata(x)[
M

∑
c=1

yc logD(x)classi f ier,c]+Ez∼pz(z)[
M

∑
c=1

yc logD(G(z|y))classi f ier,c]

(4.8)
where LD A and LG A are standard adversarial losses, and LC is the categorical cross
entropy loss for the classifier. yc which is 1 or 0 denotes whether or not the image
belongs to class c. And D(·)classi f ier,c denotes the category prediction on class c. D is
trained to maximize LD A +LC while G is trained to maximize LG A +LC.

Training Methods

Label smoothing, mini-batch training and Adam optimizer are used in the training pro-
cess.

Label smoothing is an effective strategy that can reduce the vulnerability of neural
networks to adversarial examples [56]. It replaces the 0 and 1 targets with smoothed
values 0.1 and 0.9. This strategy is only applied to the training of the discriminator.

Mini batch gradient decent is a trade-off between robustness to the noise and com-
putation efficiency. It splits all the data into a lot of small batches. In each iteration, a
small batch of data is used to train the neural network.

Adam optimizer is used to optimize the loss functions in each training step. Adam
is an algorithm for first-order gradient-based optimization of stochastic objective func-
tions, based on adaptive estimates of lower-order moments [32]. It combines the advan-
tages of AdaGrad [14] and RMSProp [68].

4.1.2 Deep Hashing for Remote Sensing Image Retrieval

After the training of GAN for remote sensing image generation is finished, GAN will
be used to perform conditional remote sensing image synthesis. On the one hand, the
labeled remote sensing image dataset can be enlarged. On the other hand, typical fea-
tures for each land-use class will be explicitly presented in the generated images. Then
generated images together with real images, both of which are labeled, will be fed into
the deep hashing network for hash learning.
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Network Architecture

Transfer learning is used to extract semantic features of remote sensing images. In this
thesis, Inception v3, which is pretrained on ImageNet, is used to extract features. We
design a three-layer fully connected neural network as deep hashing network. It can
map the high-dimensional semantic features to low-dimensional compact binary hash
codes.

Figure 4.2: The architecture of deep hashing network.

Loss Function

Three constraints are utilized to train our deep hashing network. Triplet loss is used to
ensure the short distance of similar images and the large distance of dissimilar images
in hash space. Binary loss is used to push each entry of hash codes close to 0 and 1.
Balance loss is used to ensure that each entry of hash codes have equal chances to be 0
or 1. This can avoid only part of the hash codes being really used in the optimization.

Triplet loss is formulated in Equation 4.9:

Ltriplet =
N

∑
i
[|| f (xa

i )− f (xp
i )||

2
2−|| f (xa

i − f (xn
i )||22 +α]+ (4.9)

where f (·) denotes the trained model. xa
i denotes the anchor sample, xp

i denotes the
positive sample and xn

i denotes the negative sample. α is the margin between positive
and negative pairs. N denotes N group of triplets.

Binary loss is formulated in Equation 4.10:

31



4 Supervised Hashing Boosted by GANs-Generated Images

Lbinary =−
1
M

M

∑
i=1
|| f (xi)−0.51||2 (4.10)

where M denotes the number of images in a training batch. xi denotes the i-th image.
f (xi) denotes the output of the model which is the corresponding hash codes of the i-th
image. 1 denotes a vector with the same length as hash codes and all entries being 1.

Balance loss is formulated in Equation 4.11:

Lbalance =
1
M

M

∑
i=1

(
1
L

L

∑
j=1

f (xi) j−0.5)2 (4.11)

where L denotes the length of the hash codes. f (xi) j denotes the j-th entry of the hash
codes of the i-th image.

The joint loss is formulated in Equation 4.12:

L = Ltriplet +βLbinary + γLbalance (4.12)

where β and γ denote the weights of different loss functions. These two hyperparame-
ters can be obtained by cross validation.

Image Retrieval

After the training of the proposed deep hashing network, the hash codes of the images
in the archive are computed in advance. Each time a query image is given, it will firstly
be fed into Inception v3 to extract features and then the final hash codes are obtained by
feeding the extracted features to deep hashing network.

The Hamming distance is taken as the similarity measure between the hash codes of
different images. It is the number of bits at which two hash codes are different. The
smaller distance corresponds to the higher similarity between the original images.

The retrieval result is a ranking list in which the more similar images are in the higher
positions of the ranking list.

4.2 Design of Experiments

4.2.1 Dataset

EuroSAT [24] is a recently published remote sensing image dataset. This dataset gath-
ers multispectral images acquired by Sentinel-2A satellite over cities in 34 European
countries. The images have a total of 13 bands with the spatial resolution from 10m to
60m per pixel. The images are the cropped small patches with the size of 64×64. They
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Figure 4.3: Visualization of samples from different classes in EuroSAT. Only RGB
bands are shown here.

cover 10 land-use classes: Annual Crop, Forest, Herbaceous Vegetation, Highway, In-
dustrial, Pasture, Permanent Crop, Residential, River and Sea Lake. Each class contains
2000-3000 images. In total the dataset has 27000 images.

Two different versions of this dataset are provided by the authors: RGB version and
multispectral version. In this chapter, Supervised Hashing Boosted by GANs-generated
Images, only RGB bands of the remote sensing images are considered. So, the RGB
version of this dataset is used in the experiments.

I randomly sampled 100 images from each class to build the testing set which has
1000 images in total. Each image itself is a query image whose searching archive is the
remaining 999 images.

The remaining 26,000 images are taken as the training set. The training set is used
to train Conditional DCGAN and ACGAN. For the training set of the deep hashing
network, there are three cases:
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• The remaining 26000 images.

• The remaining 26000 images and 5000 images generated by Conditional DC-
GAN.

• The remaining 26000 images and 5000 images generated by ACGAN.

These three cases are compared to show the effect of adding GANs-generated images
to deep hash learning.

4.2.2 Implementation Details

GAN

The detailed network architectures of conditional DCGAN and ACGAN are shown in
Figure 4.4. The input of the generator is composed of a random noise vector and the
condition information. The noise vector is sampled from a uniform distribution in the
range [−1,1]100. The condition information is a one-hot vector with the shape (10,)
which represents the class label. For the discriminator in Conditional DCGAN, one-hot
condition vector is concatenated to the channel dimension of each pixel of the image.
For the discriminator in ACGAN, the output is a real or fake prediction and a class
prediction. The α in Leaky ReLU is 0.2.

Figure 4.4: The detailed architecture of the generator and the discriminator network in
Conditonal DCGAN and ACGAN.
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We set batch size as 64, learning rate as 0.0002, β1 and β2 in Adam optimizer as 0.5
and 0.999.

Deep Hashing

For deep hashing network, we set the batch size as 96. In a mini batch, images are from
two different land use classes. 64 images are from the first class to build the anchor data
and the positive data. 32 images are from the second class to build the negative data.
The learning rate is set as 0.0001. The β1 and β2 in Adam optimizer are set as 0.5 and
0.9 respectively.

4.2.3 Evaluation Metrics

GAN/Fake Image Quality

We evaluate Conditional DCGAN and ACGAN by evaluating the quality of fake images
generated from them. Two commonly used metrics for fake image quality evaluation
are Inception Score (IS) and Fréchet Inception Distance (FID). They can be calculated
by Equation 4.13 and Equation 4.14. They are both classifier-based evaluation metrics,
which means they feed fake images (plus real images if using FID) into a classifier and
compute the metric values based on the classifier’s outputs. The classifiers they use are
both Inception v2 pretrained on ImageNet. For a detailed explanation, please refer to
Section 2.2.3.

IS(G) = exp(Ex∼pg[DKL(p(y|x)||p(y))]) (4.13)

FID(G) = ||mr−mg||2 +Tr(Cr +Cg−2(CrCg)
1/2) (4.14)

For both Conditional DCGAN and ACGAN, 5000 generated images are used to com-
pute the IS and FID.

Image Retrieval

Mean average precision (MAP) is a widely used criterion to evaluate the performance
of the image retrieval task. MAP can be computed from Equation 5.18.

MAP =
1
|Q|

|Q|

∑
i=1

1
ni

Ni

∑
j=1

precision(R j
i )δ ( j) (4.15)

In this equation, Q denotes the set of all query images. ni is the number of images
similar to qi ∈ Q. Ni is the size of the ranking list. R j

i is the subset of ranked results,
which only includes the result from the 1-st to the j-th position in the ranking list.
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δ ( j) = 0 when the j-th retrieved image is not relevant to the query image. δ ( j) = 1
when the j-th retrieved image is relevant to the query image .

4.3 Experimental Results

The results will be analyzed in two aspects: image generation and image retrieval.

4.3.1 Analysis of Image Generation

We first visually compare the images generated from Conditional DCGAN and ACGAN
after they are trained for 100 000 steps. The results are shown in Figure 4.5. We can see
that they are both able to generate realistic images of a specific class when the condition
information is given. Visually, it’s hard to say which GAN definitely performs better.
Images generated from ACGAN look less blurry and have more details like textures or
shapes.

Figure 4.5: Visual comparison of fake images generated from Conditional DCGAN and
ACGAN.

Then we visualize the training process of Conditional DCGAN and ACGAN as illus-
trated in Figure 4.6. These images are generated by the corresponding model from the
beginning to after 50 000 training steps. We can see that Conditional GAN is faster to
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find the correct optimization direction and begin generating meaningful images. AC-
GAN is not stable in the beginning and only generate noise but can start to generate
good images after many training steps. And the final generation results have better
visual effects.

To fairly compare these two GAN architectures, we also give quantitative evaluations
using two commonly used evaluation metrics: Inception Score (IS) and Fréchet Incep-
tion Distance (FID). For IS, the higher value is better. For FID, the lower value is better.
We can see that ACGAN beat Conditional DCGAN in both criteria. This difference
comes from how the label information is used in both GAN. The label information in
Conditional DCGAN serves as the input of the discriminator. The label information in
ACGAN is used in the classifier loss function. This makes fake images more discrimi-
native and realistic.

Table 4.1: Quantitative comparison of fake images generated from Conditional DCGAN
and ACGAN.

IS FID
Conditional DCGAN 2.3521 188.9619
ACGAN 2.6371 170.8508

It’s worth noting that IS and FID posted here are much worse than those from the
state-of-the-art methods. [59] listed the IS and FID results of several different generative
methods. But it’s normal because IS and FID are classifier-based evaluation metrics.
That means they feed generated fake images into a classifier and calculate the metric
value based on the output of the classifier. And the classifier is Inception v2 pretrained
on ImageNet. This classifier is aimed for natural image visual recognition. Natural
images are quite different from remote sensing images. And the final output of the
classifier is the class of natural images which even may not include classes of remote
sensing images like forest and pasture.

Table 4.2: CIFAR10 experiments using different generative model. IS: higher is better.
FID: lower is better. [59]

model IS FID-5K FID
real images 11.33 9.4 2.1
SNGAN 8.43 18.8 11.8
WGAN-GP (10M) 8.21 21.5 14.1
WGAN-GP (2.5M) 8.29 22.1 15.0
DCGAN 6.69 42.5 35.6
PixelCNN++ 5.36 121.3 119.5
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(a) Conditional DCGAN

(b) ACGAN

Figure 4.6: The learning process of Conditional DCGAN and ACGAN on EuroSAT
remote sensing image dataset.
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4.3.2 Results of Image Retrieval

For image retrieval, MAP is used to evaluate the results. Table 4.3 shows the MAP of
top 100 results using the model trained on different training sets. When the hash code
length is 32 bits or 64 bits, GAN images can help improve the overall retrieval result.
Among all the experiments, the best result of 0.9404 is obtained when the model is
trained on real images plus ACGAN images.

Table 4.3: MAP@100 of image retrieval on testing set using different trained model.
Training Set 16bits 32bits 64bits
Only real images 0.9338 0.9357 0.9334
Real + C-DCGAN images 0.9189 0.9387 0.9372
Real + ACGAN images 0.9217 0.9404 0.9313

To have a closer look at how GAN images influence the retrieval, we also compare
the class-wise MAP results using the model trained on the different training sets. Table
4.4 and Table 4.5 show class-wise results and class-wise MAP changes using the model
trained on the different training sets with hash code length equaling 32. From Table
4.4 we can see that the lowest two MAP values exist in Highway and River these two
categories when the model is trained only on real images. From Table 4.5 we can see
that MAP values of these two categories are obviously improved when GAN images are
added to the training set. In other categories, MAP values get a relatively small increase
or decrease. The increase in these two categories leads to an increase on the whole
MAP.

Table 4.4: Class-wise MAP@100 of image retrieval on testing set using different trained
model.

Ann. For. Her. Higa. Ind. Pas. Per. Res. Riv. Sea. ALL
Real 0.9844 0.9678 0.9033 0.8110 0.9984 0.9665 0.8893 0.9991 0.8566 0.9801 0.9357
Real+C. 0.9519 0.9690 0.9123 0.8542 0.9676 0.9427 0.8854 0.9719 0.9415 0.0.9705 0.9387
Real+A. 0.9591 0.9674 0.9015 0.8378 0.9895 0.9636 0.8995 0.9805 0.9140 0.9908 0.9404

Table 4.5: The change of class-wise MAP@100 of image retrieval on testing set using
different trained model.

Ann. For. Her. Higa. Ind. Pas. Per. Res. Riv. Sea. ALL
Real - - - - - - - - - - -
Real+C. -3.29% +0.12% +0.99% +5.32% -1.09% -2.46% -0.44% -2.72% +9.92% -0.98% +0.33%
Real+A. -2.56% -0.04% -0.20% +3.29% -0.89% -0.30% +1.15% -1.86% +6.71% +1.09% +0.51%

We also provide the visualization of image retrieval on the river and the highway class
in Figure 4.7. We can see that the river and the highway images are easily confused by
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the model. No matter if the query image is from the river or highway class, the top-6
retrieved images are a mixture of river and highway images. On the other hand, we can
see that GAN-generated images really help the model achieve better retrieval results on
these two classes.

The explanation for this is that the GAN generates images by focusing on several
characteristics of that class. Most classes in EuroSAT have uniform colors or uniform
textures in the images. The river and the highway classes are more complicated. A river
or highway can be surrounded by different land use classes, like the agricultural land,
the residential area or the industrial area. When the GAN generates river or highway im-
ages, the surrounding land use class may be neglected and only the parallel lines’ shape
is emphasized. So, when the deep hashing model is trained on these shape emphasized
fake images, it can learn better features and therefore generating more representative
hash codes for image retrieval.

In the end, we show the retrieval results of the best model on all classes in Figure 4.8.

4.4 Conclusion

In this chapter, I address the problem of a limited number of labeled images with GAN-
based data augmentation. Two GAN architectures are used for conditional image syn-
thesis. ACGAN proves to be better than Conditional DCGAN on remote sensing image
generation.The generated images are very realistic with a lot of similar characteristics
to real images.

Because conditional GAN is used here, generated images can be regarded as labeled
images. The training set can be enlarged by combining real images and generated im-
ages. During the experiments, we found that GAN focuses more on generating distinct
characteristics of images for each class. Thus, these fake images can help deep hash
learning neglect unimportant parts in the images. From all the experimental results and
all the analysis, we can conclude that images generated by GAN can improve deep hash
learning and improve image retrieval performance. The improvement mainly comes
from the improvement on hard images (images with more complicated contents, like
river and highway remote sensing images in our case).
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4.4 Conclusion

(a) Visualization of the retrieval result on a random selected River image.

(b) Visualization of the retrieval result on a random selected Highway image.

Figure 4.7: Visualization of the improvement of image retrieval performance on river
and highway class after using GAN-generated images.

41



4 Supervised Hashing Boosted by GANs-Generated Images

Figure 4.8: Visualization of the image retrieval result. From each class, one image is
random selected as the query image. The best model is chosen here: training
set includes real images and ACGAN images; Hash code length is 32 bits.
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for Multispectral Images

With the advances in imaging technology and internet technology, more and more im-
ages are produced and stored. Image search and indexing are important in data man-
agement to efficiently make use of the information stored in these images. Hash-based
approximate nearest neighbor search attracts a lot of attention. It can not only reduce
the storage cost but also speed up the retrieval process.

Traditional hashing methods use hand-crafted features and learn a mapping from the
high dimensional space to the binary hash space but also maintains the similarity. Deep
learning is changing the whole computer vision community with its incredible power
of bridging the gap between low-level features and high-level semantic concepts. Deep
learning also brings learn-to-hash research to a new stage.

Supervised hashing uses pairwise similarity loss or triplet loss to guide the hash func-
tion learning process. But it requires label information of the data. Manual labeling is
time consuming and impractical when the dataset is very large. Unsupervised hashing
methods are proposed to solve these problems. Some unsupervised hashing methods
use the deep autoencoder to learn hash codes [34, 55]. These methods build an encoder
neural network as the hash function. And the decoder neural network tries to reconstruct
the original images from encoder’s output, the hash codes. Other methods learn hash
codes by maximizing their representation capacity [17] or enforcing rotation similarity
[43].

Remote sensing images have far more bands than natural images. If we apply hashing
methods designed for natural images directly to remote sensing images, all other bands
except RGB bands are neglected. Most information in remote sensing images is lost,
which will have a side effect on the retrieval performance.

Different from Chapter 4 where GAN is used only for image generation, we explore
how to directly use GAN for hash learning in this chapter. Research in [52, 13, 16]
already shows that GAN is useful for representation learning. Representation learn-
ing is closely related to semantic hash learning. In this chapter a novel method called
Unsupervised Adversarial Hashing for Multispectral Images is proposed to address the
problems of unavailability of a large amount of labeled data and lost information of
neglected bands in multispectral images.

In this part of the thesis work, I mainly made the following contributions:
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• I implemented a GAN for multispectral remote sensing image generation. And
I used the learned discriminator to extract low-dimensional representations for
multispectral remote sensing image retrieval.

• I designed a novel GAN-based unsupervised semantic hashing method. This
method adds a semantic constraint and a hash constraint to the vanilla GAN for
multispectral remote sensing image hashing.

• I conducted thorough experiments to prove the effectiveness of three strategies:
considering multiple bands of multispectral images, using semantic similarity in-
formation, using GAN for representation learning.

• I analyzed the quality of generated images and its influence on the retrieval per-
formance.

5.1 Methodology

In this section, I will introduce my methods step by step. In the first part, I will introduce
how to use the unsupervised representation learning ability of the GAN for RGB image
retrieval. In the second part, I will introduce how to make use of multiple bands of
multispectral images in GAN-based image retrieval. In the third part, I will introduce
my novel method for unsupervised semantic hashing on multispectral remote sensing
images. In the last part, I will introduce how to build the semantic similarity matrix to
guide the learning process of unsupervised semantic hashing.

5.1.1 GAN for Image Retrieval

We use a slightly modified GAN as the starting point to show how GAN can be used for
image retrieval.

A vanilla GAN is made up of a generator and a discriminator. The generator gener-
ates fake images from random noise vectors to fool the discriminator. The discriminator
learns to distinguish between real images and images generated from the GAN. The
generator in the vanilla GAN generates images in an unconditional way, which means
images are generated only from noise vectors without the assistance of label informa-
tion.

The discriminator is basically a convolutional neural network for binary source clas-
sification. The last several layers of the discriminator are fully connected layers. We
take the output of the last but one layer as the image feature representation. As shown
in Figure 5.1, in the training process, the discriminator can learn a useful representa-
tion before the final binary output, and in the retrieval process, the discriminator is used
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as a feature extractor. The similarity measure for the extracted features is the cosine
distance.

Figure 5.1: Illustration of image retrieval based on GAN.

The loss functions of this GAN are:
1. Training the discriminator

LD = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (5.1)

2. Training the generator

LG = Ez∼pz(z)[log(D(G(z)))] (5.2)

The generator and the discriminator are optimized to maximize these two loss functions.

5.1.2 GAN for Multispectral Image Retrieval

When taking multiple bands of remote sensing images into consideration, the GAN
follows almost the same architecture as the GAN used for RGB images. The only
difference is that the output layer of the generator and the input layer of the discriminator
need to be adapted to multiple bands. The output of the last but one layer will be used
as the feature representation for later image retrieval.
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Figure 5.2: GAN architecture used for multispectral images.

5.1.3 GAN for Unsupervised Semantic Hashing

Network Architecture

As shown in Figure 5.2, the feature representation obtained in the last but one layer of
the discriminator is non-binary. The exact values of this representation depend on which
activation function is used in that layer. Usually, Leaky ReLU is used as the activation
function of all the layers in the discriminator. As shown in Figure 5.3, output values can
be very large in Leaky ReLU. The storage of such a feature representation takes much
space. And the similarity computation is also slow, which will influence the retrieval
speed.

To overcome this problem, we propose a novel method by redesigning the GAN ar-
chitecture as shown in Figure 5.4. The redesigned network adds a new stream after the
last but one layer of the discriminator. That means the last but one layer will have two
data flow directions: one is to a binary source prediction through a fully connected layer,
the other one is to a hash binary representation through another fully connected layer.
The hash stream uses Tanh as the activation function for the output layer, because Tanh
can restrict the output values between -1 and 1. And the binary constraint will further
push the hash codes close to -1 and 1.

It’s worth noting that we use (−1,1)l to replace so-called binary codes (0,1)l in the
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Figure 5.3: Left: Leaky ReLU activation function. Right: Tanh activation function

training process. It would never be a problem because (−1,1)l and (0,1)l can be easily
transformed to each other.

To further improve the method, we add a semantic constraint on the output hash
codes. The semantic constraint is used to keep the high-level semantic similarity in the
hash space. The way to apply this constraint is optimizing a semantic loss based on
semantic similarity matrix (SSM). More details of the semantic similarity matrix (SSM)
are introduced in Section 5.1.4.

Training Method

The generator and the discriminator are trained simultaneously. They are both updated
at every iteration step. Adam optimizer is used to perform gradient-based optimization.
Three constraints form the objective functions for the generator and the discriminator.

Adversarial Loss: As mentioned before, the discriminator and the generator play
a two-player minimax game. Adversarial loss makes the generator generate realistic
images and the discriminator accurately distinguish between generated images and real
images. The generator and the discriminator will finally reach a Nash equilibrium. Even
though the discriminator is designed for source prediction, it can extract meaningful
representations in the last several layers. The initially proposed loss functions for the
generator and the discriminator have the same form of expression, but with completely
opposite optimization direction. The improved version has different forms, but with the
same optimization direction. The adversarial loss for the generator and the discriminator
are shown in Equation 5.3 and Equation 5.4.

LGA =−Ez∼pz(z)[log(D(G(z)))] (5.3)
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Figure 5.4: GAN architecture used for Unsupervised Adversarial Hashing for Multi-
spectral Images.

LDA =−Ex∼pdata(x)[logD(x)]−Ez∼pz(z)[log(1−D(G(z)))] (5.4)

where x denotes the real image, z denotes the random noise vector, G(z) denotes the
generated image from the random noise vector z, and D(·) denotes the image source
prediction, from the real data or the generated data.

Binary Loss: Even though Tanh activation function can restrict each entry of the hash
codes in the range (−1,1), some entries may lie in the middle of this range, which can
hinder the accuracy. Binary loss will push the codes close to -1 and 1. This loss is
formulated in Equation 5.5.

Lb =−Ex∼pdata(x)||H(x)||2 (5.5)

where x denotes the real image and H(x) denotes the hash codes of x. H(·) is made up
of part of the discriminator and a hash-specific fully connected layer.

Semantic Similarity Loss: From the unsupervised semantic similarity matrix (which
will be introduced in Section 5.1.4), we can know the estimated similarity value between
any two images from a high-level semantic perspective. We use semantic similarity
loss to enforce the hash codes to preserve semantic information by keeping semantic
similarity. The semantic similarity loss is formulated in Equation 5.6.

Ls = Exi∼pdata(x),x j∼pdata(x)||
H(xi)∗H(x j)

l
−Si, j||2 (5.6)
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where l denotes the hash code length, xi and xj denotes random two real images, H(xi)
and H(xj) denotes the hash codes of xi and xj, and Si, j denotes the semantic similarity
value of xi and xj.

Gathering all these three constraints, the joint loss functions for the generator and the
discriminator are shown in Equation 5.7 and Equation 5.8. The binary constraint and
the semantic constraint are only applied to real images when training the discriminator.
In each training step, Adam optimizer minimizes LD and LG one after the other.

LG = LGA (5.7)

LD = LDA +w1 ∗Lb +w2 ∗Ls (5.8)

Ablation Study

Ablation study can help us know the importance of the adversarial part in our network
architecture. We removed the adversarial structure from the proposed method. The
remaining part is a deep hashing neural network (DHNN) which takes multispectral im-
ages in and outputs hash representations. The three loss functions mentioned in Section
5.1.3 will be reduced to two loss functions: the semantic loss and the binary loss.

Figure 5.5: Illustration of the ablation study. The network on the right is named as
DHNN MS.

In the results analysis section, we name the method with adversarial structure re-
moved as DHNN MS.

5.1.4 Semantic Similarity Matrix

[11] proposed building an unsupervised semantic similarity matrix (SSM) to guide the
hash learning. The motivation behind this is that a lot of very deep neural networks
do pretty well in visual recognition on natural images. And these neural networks pre-
trained on large-scale image dataset ImageNet are off-the-shelf. We can directly use
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transfer learning to extract high-level semantic features from remote sensing images.
These semantic features are of high dimension, so it’s not suitable to do image retrieval
directly based on these features. But they can guide the hash learning process and make
the hash codes become more representative and preserve semantic information.

The first step of building the SSM is to extract features. [11] used the outputs of
the last but one layer of ResNet v2-152 as semantic feature representations of images.
I improved this by proposing a method combining semantic spatial features and non-
semantic spectral features. Even though ResNet v2 ranks first in ILSVRC competition,
it’s not sure if it can extract good features from remote sensing images as well. I try
another very deep neural network pretrained on ImageNet which is called Inception v3
to extract semantic features.

Non-semantic spectral features are also called color features. I listed three color
feature extraction methods in Table 5.1. The raw color method directly flattens the
image into a feature vector. The color histogram method uses the distribution of colors
as the feature. In the global color histogram method, each channel will get its histogram
by counting the number of pixels whose value falls in a specific spectral interval. In the
local color histogram method, each channel will be divided into many small patches, and
color histogram is calculated in these small patches. Color histograms from all patches
from all channels are concatenated to build the feature vector. The local color histogram
method can store not only spectral information but also some spatial information.

When fusing the semantic spatial feature and non-semantic spectral feature, a weight
value is necessary to balance possible different scales of these two features as shown in
Equation 5.9.

f eature f use = ( f eaturespectral,η ∗ f eaturespatial) (5.9)

where (,) denotes the concatenating operation, η is the weight value to balance scale
difference between spectral features and spatial features.

The second step of building SSM is calculating similarity values based on features
obtained in the first step. For this step, we adopt the same method proposed in [11].
This method is based on k-neareast neighbor (kNN) search. Two-stage kNN searches
are conducted to refine the similarity matrix building result.

The first kNN search uses the cosine distance as the distance metric. The first K1
neighbors are regarded as similar images. The initial similarity matrix is built from
Equation 5.10.

(S1)i, j =

{
1, if x j is in K1-NN of xi

−1, otherwise
(5.10)

After the initial similarity matrix is built, the other kNN search is used to refine
it. The idea behind the second kNN is that similar images have more same neigh-
bors. The distance metric here is the number of the different neighbors. (S1)i =
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Table 5.1: Different spectral features. h denotes the height of the image. w denotes the
width of the image. c denotes the number of channels of the image. n bins
denotes the number of intervals which the whole spectral range is divided
into. n patches denotes the number of patches which a images is divided
into.

((S1)i,1,(S1)i,2, ...(S1)i,N) is the similarity vector which represents the similarity of xi
and xn|Nn=1. Then the number of different neighbors of xi and x j is also the Hamming
distance between (S1)i and (S1) j. The first K2 neighbors are regarded as similar images.
The second refined similarity matrix is built from Equation 5.11.

(S2)i, j =

{
1, if x j is in K2-NN of xi

−1, otherwise
(5.11)

The final semantic similarity matrix is obtained by doing element-wise AND opera-
tion on S1 and S2 as shown in Equation 5.12. When two images are regarded as similar
in both similarity matrices, they can be set as similar in the final similarity matrix.

Si, j =

{
1, if (S1)i, j = 1 and (S2)i, j = 1
−1, otherwise

(5.12)
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5.2 Design of Experiments

5.2.1 Dataset

Multispectral Remote Sensing Image Dataset

As mentioned in Chapter 4, EuroSAT [24] is a recently published remote sensing image
dataset whose images come from the Sentinel-2A satellite launched by the European
Space Agency (ESA). Two different versions of this dataset are provided by the au-
thors: the RGB version and the multispectral version. The RGB version is used in the
experiments described in Chapter 4. However, in this chapter, the multispectral version
is used to test the proposed novel image retrieval method.

The dataset covers 10 land use classes: Annual Crop, Forest, Herbaceous Vegetation,
Highway, Industrial, Pasture, Permanent Crop, Residential, River and Sea Lake. Each
class contains 2000-3000 images. In total, the dataset has 27 000 images.

The spectral bands of images in EuroSAT include visible, near-infrared (NIR), and
short-wavelength infrared (SWIR) spectrum. The details of spectral bands are shown
in Table 5.2. All the bands are acquired in three different spatial resolutions:10m per
pixel, 20m per pixel and 60m per pixel. Bands with lower resolution can be upsampled
to 10m per pixel using cubic-spline interpolation. The public multispectral version of
the EuroSAT dataset is already upsampled using this interpolation method.

Visualization of RGB bands of EuroSAT images is already shown in Figure 4.3, Sec-
tion 4.2.1. Here I visualize all bands of multispectral images from EuroSAT in Figure
5.6 and Figure 5.7. The first image in each row is of the RGB visible bands. The re-
maining 13 images in that row come from B01, B02, B03, B04, B05, B06, B07, B08,
B08A, B09, B10, B11 and B12. Two images are randomly selected from each class to
be visualized.

Preprocessing

Radiometric resolution is a measure of the ability of an imaging system to record dif-
ferent levels of brightness or tone. According to [58], the radiometric resolution of
Sentinel-2 is 12-bit. This gives a potential range of brightness levels from 0−4095. But
in experiments, I found there exist some pixels in some images whose pixel values are
greater than 4095. This is probably due to the noise or other artefacts. The normaliza-
tion on the dataset is necessary and can be done following Equation 5.13. Those values
greater than 4095 will be set as 4095 in the preprocessing step.

Pi, j,c =
min(pi, j,c, 4095)

4095
(5.13)

where i denotes the horizontal coordinate, j denotes the vertical coordinate and c de-
notes the channel/band. pi, j,c denotes the pixel value before normalization in position

52



5.2 Design of Experiments

Figure 5.6: Visualization of multispectral remote sensing images in EuroSAT. The first
column includes RGB images and other columns include single spectral im-
ages from different bands. Two images are randomly sampled from classes:
Annual Crop, Forest, Herbaceous Vegetation, Highway and Industrial.
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Figure 5.7: Visualization of multispectral remote sensing images in EuroSAT. The first
column includes RGB images and other columns include single spectral im-
ages from different bands. Two images are randomly sampled from classes:
Pasture, Permanent Crop, Residential, River, Sea Lake.
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Table 5.2: All 13 bands of multispectral images in EuroSAT. The band name, the pur-
pose, the spatial resolution and the central wave length are listed here.

Band Purpose Spatial Resolution Central Wavelength
m nm

B01 Aerosol detection 60 443
B02 Blue 10 490
B03 Green 10 560
B04 Red 10 665
B05 Vegetation classification 20 705
B06 Vegetation classification 20 740
B07 Vegetation classification 20 783
B08 Near infrared 10 842
B08A Vegetation classification 20 865
B09 Water vapor 60 945
B10 Cirrus 60 1375
B11 Snow / ice / cloud discrimination 20 1610
B12 Snow / ice / cloud discrimination 20 2190

(i, j,c). Pi, j,c denotes the pixel value after normalization in position (i, j,c)

Only 10 bands whose spatial resolution is 10m per pixel or 20m per pixel are taken
into consideration in our experiments. Because other three bands’ spatial resolution is
too low, which is only 60m per pixel. And the other reason is that these low-resolution
bands are used for detecting aerosols, water vapor, or cirrus in the atmosphere.

Different from experiments in Chapter 4 whose testing set (as query set and archive
set) is very small with only 1000 images, the dataset splitting here is more reasonable,
and more close to the real situation of large scale remote sensing image retrieval. 100
images are randomly sampled from each class to form the query set. The remaining
images form the archive set. Meanwhile, 500 images per class are randomly sampled in
the archive set to build the training set. Table 5.3 clearly shows how the dataset is split.

Table 5.3: Illustration of dataset splitting.
Query Set 1000 (100*10)

Training Set 5000 (500*10)
Archive Set 26000 (Traininng set is also included)
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Table 5.4: The detailed architecture of the generator and the discriminator. l denotes the
code length. c denotes the number of images channels.

Operation Kernel Strides #Kernel BN Nonlinearity Output

G - (l,1) input
Linear + Reshape 512 3 ReLU (4,4,512)

Transposed Convolution 5×5 2×2 256 3 ReLU (8,8,256)
Transposed Convolution 5×5 2×2 128 3 ReLU (16,16,128)
Transposed Convolution 5×5 2×2 64 3 ReLU (32,32,64)
Transposed Convolution 5×5 2×2 c 7 Tanh (64,64,c)

D - (64,64,c) input
Convolution 3×3 2×2 32 3 Leaky ReLU (32,32,32)
Convolution 3×3 1×1 64 3 Leaky ReLU (32,32,64)
Convolution 3×3 2×2 128 3 Leaky ReLU (16,16,128)
Convolution 3×3 1×1 256 3 Leaky ReLU (16,16,256)
Convolution 3×3 2×2 256 3 Leaky ReLU (8,8,256)

Flatten (8×8×256,)
Output Part refer Table 5.5

5.2.2 Implementation Details

Network Architecture

In the experiments, three GANs were used and compared. The main bodies of these
GANs have the same architecture as shown in Table 5.4. The input of the generator is
the noise vector sampled from a uniform distribution in the range [−1,1]l . If the input
of the discriminator is a RGB image, then c = 3. If the input of the discriminator is a
multispectral image, then c = 10.

The difference between these three GANs lies in the different architectures of the
discriminator’s output part, as shown in Table 5.5. The GAN for RGB images and
the GAN for Multispectral images actually have the same architecture. Their output
parts are also the same and are made up of three consecutive fully connected layers.
The output of the last but one layer is taken as the non-binary feature representation for
image retrieval task. The GAN for Unsupervised Adversarial Hashing for Multispectral
Images also has three fully connected layers, but not in a consecutive way. The first fully
connected layer’s output which has the shape (1024,) will be fed into two parallel fully
connected layers. One is for generating binary hash codes for retrieval. The other is for
source prediction.
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Table 5.5: The Output Part of GAN and GANUAHM.

Model Input Operation BN Nonlinearity Output

GAN RGB / GAN MS
(8×8×256,) Linear 3 Leaky ReLU (1024,)
(1024,) Linear 3 Leaky ReLU (l,) non-binary
(l,) Linear 7 Sigmoid (1,)

GANUAHM

(8×8×256,) Linear 3 Leaky ReLU (1024,)
(1024,) Linear 3 Tanh (l,) binary
(1024,) Linear 7 Sigmoid (1,)

Hyperparameters

I set batch size as 64, learning rate as 0.0001, β1 in Adam optimizer as 0.5 and β2 in
Adam optimizer as 0.999. The α in Leaky ReLU is 0.2. w1 and w2 in joint loss Equation
5.8 are 0.1 and 0.1. η in feature fusion Equation 5.9 is 6. K1 and K2 in SSM building
Equations 5.10 and 5.11 are 500 and 300.

Image Retrieval

In GAN RGB and GAN MS, the feature representation is non-binary. When a query
image is given, its feature representation is firstly obtained by using the trained discrim-
inator of the GAN. Then the cosine distances between this feature representation and
all feature representations in the archive are calculated using Equation 5.14. Finally, a
ranking list will be given as the retrieval result.

cDisi, j =
F(xi)F(x j)

|F(xi)||F(x j)|
(5.14)

where F(xi) denotes the feature representation of image xi.
For GANUAHM, the feature representation is binary because Tanh is used as the acti-

vation function and a binary constraint is used during the training. During the retrieval
process, query image’s binary representation is obtained using GANUAHM firstly. Than
(−1,1)l representation is turned into real binary code (0,1)l . The Hamming distance,
which can be calculated in Equation 5.15, is used as the distance metric. Finally a
ranking list will be given as the retrieval result.

hDisi, j =
l

∑
k=1

δ (F(xi)k,F(x j)k), where δ (a,b) =

{
0 a = b
1 a 6= b

(5.15)

57



5 Unsupervised Adversarial Hashing for Multispectral Images

5.2.3 Evaluation Metrics

Semantic Similarity Matrix

As mentioned before, the semantic similarity matrix for the training set is built in an
unsupervised way. SSM is evaluated on two metrics: accuracy and IoU (Intersection
over Union).

The accuracy evaluates the percentage of entries in SSM which give the correct sim-
ilarity value. It can be calculated as Equation 5.16.

Acc =
∑

N
i=0, j=0[(Si, j ∗ (Sgt)i, j +1)/2]

N2 (5.16)

where Si, j denotes the similarity value of the i-th image and the j-th image from SSM,
(Sgt)i, j denotes the similarity value of the i-th image and the j-th image from ground
truth.

IoU evaluates the similarity between estimated SSM and ground truth SSM. It can be
calculated as Equation 5.17.

IoU =
|set(S = 1)∩ set(Sgt = 1)|
|set(S = 1)∪ set(Sgt = 1)|

(5.17)

where set(S = 1) denotes the set of SSM’s entries where the similarity value is 1.

Image Retrieval

For image retrieval, I also use the evaluation metric, MAP, that is used in Chapter 4.
MAP, which is short for Mean Average Precision, is a commonly used metric to evaluate
the image retrieval performance. It can be computed from Equation 5.18.

MAP =
1
|Q|

|Q|

∑
i=1

1
ni

Ni

∑
j=1

precision(R j
i )δ ( j) (5.18)

In this equation, Q denotes the set of all query images. ni is the number of images
similar to qi ∈ Q. Ni is the size of the ranking list. R j

i is the subset of ranked results,
which only includes the result from the 1-st to the j-th position in the ranking list.
δ ( j) = 0 when the j-th retrieved image is not relevant to the query image. δ ( j) = 1
when the j-th retrieved image is relevant to the query image . In the experimental
results part, we use MAP@100. This means Ni = 100. MAP is calculated only on the
first retrieved 100 results.

TopN-Precision is another commonly used evaluation metric for image retrieval. It
is just the precision of the first N retrieved images and can be calculated from Equation
5.19. In the experimental results part, Top20-Precision is used.
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TopN-Precision=
#Relevent Retrieved Images

#All Retrieved Images
=

#Relevent Retrieved images
N

(5.19)

Different from MAP or TopN-Precision these numerical metrics, Precision-Recall
Curve is a commonly used graphical metric of image retrieval systems. The precision
and the recall are calculated as Equation 5.20 and Equation 5.21. The curve shows how
the precision and the recall change when retrieving different number of images.

Precision =
#Relevent Retrieved Images

#All Retrieved Images
(5.20)

Recall =
#Relevent Retrieved Images

#All Relevent Images
(5.21)

In our experiments, we calculate the precision values and recall values every after
500 retrieved images and then plot the final Precision-Recall Curve.

5.3 Experimental Results

5.3.1 Semantic Similarity Matrix Comparison

Here the semantic similarity matrix building results using the original method [11] and
the improved method proposed in this thesis are compared. The training set has 5000
images with 500 images from each class. To better visualize the SSM building results,
images in the training set are arranged according to their class. Images from the same
class will be placed in consecutive 500 entries of the list. The visualization of the ground
truth SSM is displayed in the lower left of Table 5.6. The originally proposed method
used Resnet v2 to extract high-dimensional features for SSM building. Its results are
shown in the second column of Table 5.6. The improved method uses high-dimensional
features extracted from Inception v3 combined with local color histogram features to
build the SSM. Its results are shown in the last column of Table 5.6. The last row of the
table shows the visualization of the built SSMs using different methods.

We can see that for semantic spatial feature extraction, Inception v3 achieves better
results than Resnet v2. It’s interesting because Resnet v2 beats Inception v3 in natu-
ral image recognition task. I attribute this phenomenon to two possible reasons. The
first possible reason is that remote sensing images and natural images are very different.
Some remote sensing images have just uniform colors like Sea Lake images in Eu-
roSAT. Some remote sensing images have uniform distributed textures like Herbaceous
Vegetation images or Residential images in EuroSAT. The second possible reason is
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Table 5.6: Semantic Similarity Matrix results comparison.

that features extracted from those pretrained deep neural networks are perfect for clas-
sification. Perfect classification features don’t promise perfect features for similarity
evaluation or image retrieval.

For spectral features, the local color histogram performs much better in similarity
estimation as shown in the table. When we fuse features extracted from Inception v3
and color histogram features, we can build a much better semantic similarity matrix than
only considering one type of the feature.

5.3.2 Results of Image Retrieval

Overall Results

Image retrieval is evaluated using MAP as the metric. The experiments are conducted
on three different feature lengths: 32, 64, 128. Table 5.7 and Table 5.8 shows the
MAP values using different models and different code lengths. In the table, GAN RGB
or GAN MS denotes the method using the discriminator of GAN to extract features
from RGB images or multispectral images. GANUAHM denotes the proposed method of
Unsupervised Adversarial Hashing for Multispectral Images. DHNN MS denotes the
network from GANUAHM with adversarial structure removed, which is used for ablation
study to know the importance of adversarial learning in the proposed method. It’s worth
noting that GANUAHM outputs approximate hash codes which lie in the range [−1,1]
and are not binary actually. Using sign function can make the outputs binary. Image
retrieval results on both approximate non-binary codes and binarized hash codes are
tested and listed in Table 5.7 and Table 5.8.

We can see that in all three tested code lengths there exists a tendency for both
MAP@100 and Top-20 Precision to increase from GAN RGB to GAN MS and from
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Table 5.7: MAP@100 of image retrieval using different models and different code
lengths.

Code length 32 64 128
DHNN MS (bin) 0.2752 0.2842 0.2720
GAN RGB (non-bin) 0.5184 0.5287 0.5480
GAN MS (non-bin) 0.5655 0.5915 0.6002

GANUAHM
(non-bin) 0.6510 0.6575 0.6810
(bin) 0.6470 0.6556 0.6785

Table 5.8: Top20 Precision of image retrieval using different models and different code
lengths.

Code length 32 64 128
DHNN MS (bin) 0.1542 0.1808 0.2283
GAN RGB (non-bin) 0.5113 0.5217 0.5398
GAN MS (non-bin) 0.5603 0.5221 0.5980

GANUAHM
(non-bin) 0.6393 0.6452 0.6734
(bin) 0.6367 0.6432 0.6705

GAN MS to GANUAHM. It proves the effectiveness of two strategies, considering multi-
ple bands and adding the semantic constraint. The proposed GANUAHM always achieves
the best image retrieval result.

In the ablation study, we compare the results from DHNN MS and GANUAHM. And in
both MAP@100 and Top20 Precision criteria, GANUAHM achieves much better results
than DHNN MS. We can conclude that adversarial loss helps the hash learning.

We also plot the Precision-Recall Curve of these methods in Figure 5.8. The proposed
GANUAHM achieved the best results. And the results of GAN MS is slightly better than
that of GAN RGB, which shows the effectiveness of considering multiple bands od
remote sensing images again.

Class-wise Results

To better understand the improvement of image retrieval in each specific class. We
show the class-wise MAP results using different models in Table 5.9. MAP values
are calculated when query images are from only one class. These classes are Annual
Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop,
Residential, River and Sea Lake.

We can see that the proposed GANUAHM achieves the best results in all classes. We
can also find that the improvement in some class are very big like Annual Crop and
Industrial. In some classes like Highway or Pasture, there are just small increases.
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(a) (b) (c)

Figure 5.8: Precision-Recall Curve of image retrieval using different models and differ-
ent code lengths.

Table 5.9: Class-wise MAP of image retrieval using different models. Code length is
128.

Ann. For. Her. Higa. Ind. Pas. Per. Res. Riv. Sea.
GAN RGB 0.4325 0.8267 0.4940 0.2528 0.8161 0.5655 0.4348 0.5367 0.3418 0.7793
GAN MS 0.5201 0.8557 0.5256 0.2554 0.5960 0.6543 0.5393 0.5078 0.5724 0.9747
GANUAHM 0.6377 0.9245 0.5730 0.2713 0.8887 0.6557 05816 0.5551 0.7103 0.9873

When we analyze Table 5.6 and Table 5.9 together, this phenomenon can be attributed
to the incorrectness of SSM in some classes.

Visualization of the Retrieved Images

To explicitly show the image retrieval results using different models. Figure 5.9 is the
visualization of image retrieval results. Three images were randomly selected as the
query images. 9 retrieved images at 0, 50, 100, 150, 200, 250, 300, 350, and 400 of
the ranking list are demonstrated. We can also see the improvement from GAN RGB
to GAN MS and from GAN MS to GANUAHM. It’s worth noting that some images
in the retrieved list look a little different, e.g., the last several images in the third row
when the query image is industrial. Even though they look different from the query
image, they are still correctly retrieved. This is because the third row shows the result
using GANUAHM and semantic guidance is introduced in this method. The semantic
similarity matrix helps the proposed method achieve better results in the semantic level.

5.3.3 Analysis of Image Generation

The images generated by three different unconditional models from this chapter and
one conditional model from Chapter 4 are shown in Figure 5.10. These images are 36
images from a 64-image batch generated by GAN’s generator. We can easily see that
conditional GAN generates much better and more realistic fake images. Unconditional
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Figure 5.9: Visualization of image retrieval results using different models. The first col-
umn shows the query images. From the second column to the last column,
images at 0, 50, 100, 150, 200, 250, 300, 350, 400 of the retrieved ranking
list are shown. In each group of three rows, the first row shows the results
using GAN RGB, the second row shows the results using GAN MS and the
third row shows the results using GANUAHM.
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Figure 5.10: Fake images generated by different models.

GAN can only generate approximate colors, textures and basic shapes. We can not
recognize which class each image generated by unconditional GAN belongs to. It’s
worth noting that GAN MS and GANUAHM can generate multispectral images which
will be visualized later. Shown here are just RGB bands of generated multispectral
images to make them comparable with images generated from the conditional DCGAN
and GAN RGB.

This image quality difference between conditional GAN and unconditional GAN is
reasonable. The bad quality of remote sensing images generated by unconditional GAN
can be attributed to two reasons: big internal variance and unavailable condition infor-
mation. EuroSAT images have a variety of different appearances as shown in Figure
5.11. We can see that some images have almost no texture and have just one color. The
examples are images from Sea Lake and Forest classes. Meanwhile, some images have
more complicated textures and shape characteristics. The examples are images from
Highway and Residential classes. Unavailable condition information (which are labels
in conditional DCGAN and ACGAN) means learning a universal model to model the
whole distribution of remote sensing images. It is more difficult than learning class-
specific model in conditional DCGAN and ACGAN.

Figure 5.11: A minibatch of real images from the training set.

GAN MS and GANUAHM can generate fake multispectral images and we already see
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Figure 5.12: Visualization of non-RGB bands of generated multispectral images.

the RGB bands of the generated multispectral images in Figure 5.10. The visualization
of other bands of generated multispectral images is shown in Figure 5.12. We can see
that these generated bands are not so realistic and do not have too much recognizable
things in the images. Nevertheless, they still learn some basic characteristics like colors
or basic textures. We can see from Figure 5.12 that GAN does well in modeling the real
images in the aspect of colors.

All the results show that images generated from unsupervised GAN are not very
realistic, no matter in RGB bands or other bands. This is caused by two reasons: internal
variance of the dataset and unavailable condition on the model. But generated images at
least capture some basic characteristics of real images: color ranges, basic textures and
basic shapes.

5.3.4 Correlation between Image Retrieval and Image Quality

Image generation and representation learning are two different tasks that a GAN can do.
And they are done in different parts of the GAN. Image generation is the generator’s task
and representation learning is the discriminator’s task. In this chapter, we address the
image retrieval problem with the GAN’s representation learning ability. Here we want
to explore the correlation between fake image quality and image retrieval performance.

Firstly, the training process of GAN MS is shown in Figure 5.14. The generated
images (RGB bands) and image retrieval performance evaluated on MAP are explicitly
demonstrated in these two figures. And the evaluation is done every 2500 training steps.
It’s worth noting that MAP here are MAP@ALL or MAP@26000.

Mode Collapse: Mode collapse means the generator can only generate limited diver-
sity of modes even with various inputs.

We can see that the training will fail after some steps. Before the training fails, the
generated images after 5000 training steps are better than those after 2500 training steps
but lead to worse image retrieval performance (lower MAP). After 7500 training steps,
the generator can not generate realistic images. To some degree, the generator just
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Figure 5.13: Analysis of image quality and image retrieval.

generates noise. But the image retrieval performance doesn’t decrease too much and
increases again after some training steps. These two facts show that image retrieval and
image quality have no obvious correlation.

GAN is made up of a generator and a discriminator. Figure 5.13 shows the analysis
of the correlation between image quality and image retrieval. There exists a two-player
game between G and D. The game is around real or fake images. There is no direct cor-
relation between image quality and image retrieval performance. On the other hand, the
ideal final state of GAN training is a Nash equilibrium. This state means the generator
can generate very realistic images. The best feature for retrieval is different from the
best feature for source prediction. Therefore better image quality doesn’t mean better
features for retrieval. Besides, even when training fails, the discriminator can still be
able to learn to extract good features and achieve better image retrieval performance.

5.4 Conclusion

In this chapter, I addressed unsupervised hashing for image retrieval with a novel GAN-
based method. Even though there exists some research using GAN for hashing, my
work is the first to make use of multiple bands from multispectral remote sensing im-
ages. Thorough experiments proved the effectiveness of three strategies of the proposed
method: using GAN for representation learning, taking multiple bands of remote sens-
ing images into consideration, and adding a semantic similarity constraint.

Image generation is the basic function of a GAN. The proposed GAN-based hash-
ing can generate fake remote sensing images as well. And what’s more, the proposed
method can generate multispectral images. Through image quality analysis, we find that
images generated from unsupervised GAN are less realistic than images generated from
conditional GAN. Nevertheless, they still capture some characteristics not only in RGB
bands but also in other bands of multispectral images. These less realistic fake images
can still help the representation learning of the discriminator.

GAN is suitable for unsupervised representation learning. The discriminator in GAN
can be used to extract features for image retrieval. The quality of generated images and
the performance of image retrieval have no direct correlation.
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Figure 5.14: Illustration of the change of image quality and image retrieval during the
training process.
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6 Conclusion and Future

6.1 Conclusion

In this thesis, we try to address the problems of a large amount of data with a limited
number of labels in the remote sensing image retrieval task. We proposed GAN-based
methods as solutions. The GAN, which is short for generative adversarial network, is
a recently proposed generative model to model the data distribution in an implicit way.
A GAN is made up of a discriminator and a generator. The GAN can help us with the
problems in remote sensing data in two different directions. The first direction is to use
conditional GAN to generate more remote sensing images with labels. The generated
images can help the training of the deep hashing neural network for image retrieval.
The second direction is to use the unsupervised representation learning ability of the
discriminator for hash learning. These two directions are based on two different com-
ponents of the GAN: the generator and the discriminator. For this reason, the research
of this thesis is divided into two sub-topics:

• Supervised Hashing Boosted by GANs-generated Images

• Unsupervised Adversarial Hashing for Multispectral Images

In the first direction, we successfully built conditional DCGAN and ACGAN for
remote sensing image generation. The generated images resembled real images. We
evaluated the images generated from the two GANs mentioned. The images generated
from ACGAN beat images generated from conditional DCGAN in two widely used
metrics, IS and FID. And we combined generated images and real images to build a
larger labeled training set. The best image retrieval performance was achieved when
adding images generated from ACGAN to the training set.

In the second direction, we built unsupervised GAN to do representation learning for
image retrieval. Firstly, we tested using the discriminator of the GAN to extract fea-
ture representations directly. The cosine distances were calculated based on extracted
features for the similarity ranking. We improved the vanilla GAN by considering mul-
tiple bands of multispectral remote sensing images and adding a semantic constraint.
These adjustments proved to be effective on image retrieval performance. In the end,
we analyzed the quality of the images generated from the unconditional/unsupervised
GAN model. They were worse than images generated from conditional GAN, but still
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captured some characteristics not only in RGB bands but also in other bands of mul-
tispectral images. We also analyzed the correlation between fake image quality and
image retrieval performance. We concluded that they have no direct correlation.

6.2 Future Work

Even though we show that GAN can really help us with the problems in remote sensing
image retrieval, there is still some improvement space. We provide two directions for
future research in this section.

Our experiments use all bands with the spatial resolution of 10m per pixel and 20m
per pixel. Future work can be focused on exploring different band combinations for
image retrieval. Exploring the instance-aware band combination for image retrieval is
also a meaningful topic.

We designed our GAN based on the vanilla GAN architecture. A lot of more com-
plicated GAN architectures have been proposed nowadays. Future work can also be
focused on applying those advanced GAN architectures like BiGAN or VAE-GAN to
remote sensing image retrieval.
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