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Abstract

This thesis presents a novel metadata-guided sampling framework to improve the
content-based image retrieval (CBIR) performance of contrastive self-supervised
representation learning (CSSRL) methods. The proposed framework utilizes re-
mote sensing imagery’s freely available location metadata to cluster the data into
groups with higher similarity. These clusters are then used to guide the batch
assembly process with variable hardness. Assembling a batch from a single cluster
increases the batch hardness while sampling all images from different clusters
decreases the hardness. The conducted experiments show the effectiveness of
utilizing location information to guide the sampling process. Concretely, three
CSSRL methods — SimCLR, Barlow Twins, and BYOL — are investigated in detail.
The results demonstrate that the CBIR performance of these methods benefits
from easier batches. Besides investigating the effect of the proposed sampling
framework, the thesis critically evaluates the default augmentation pipeline of
these methods and proposes a pipeline tailored for the RS domain. The recom-
mended pipeline consists of resized cropping, rotating, Dihedral transformation,
and Gaussian blurring. The validity of the presented pipeline is experimentally
verified.
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Zusammenfassung

In dieser Arbeit wird ein neuartiges, metadatengeleitetes Samplingverfahren prä-
sentiert, das zur Verbesserung der inhaltsbasierten Bildabfrage (CBIR) von kontras-
tiven, selbstüberwachten Representation Learning (CSSRL) Methoden verwendet
werden kann. Das vorgeschlagene Framework nutzt dieMetadaten von frei verfüg-
baren Satellitenbildern, um die Daten in Gruppen mit höherer Ähnlichkeit zu un-
terteilen. Diese Cluster werden dann verwendet, um die Batch-Zusammenführung
mit variabler Härte umzusetzen. Die Zusammenstellung eines Batches aus einem
einzigen Cluster erhöht die Batch-Härte, während die Entnahme aller Bilder aus
verschiedenen Clustern die Härte reduziert. Die durchgeführten Experimente
zeigen die Wirksamkeit der Verwendung von Standortinformationen, um das
Samplingverfahren zu steuern. Konkret werden drei CSSRL-Methoden – SimCLR,
Barlow Twins, und BYOL – im Detail untersucht. Die Ergebnisse belegen, dass die
CBIR-Leistung dieser Methoden von einfacheren Batches profitiert. Neben der
Untersuchung der Auswirkungen des vorgeschlagenen Sampling-Frameworks,
wird in dieser Arbeit auch die standardmäßige Augmentierungspipeline dieser
Methoden kritisch bewertet und eine auf den RS-Bereich zugeschnittene Pipeline
vorgeschlagen. Die empfohlene Pipeline besteht aus Größenanpassung, Rotation,
Dihedral-Transformation und Gaußscher Unschärfe. Die Gültigkeit der vorgestell-
ten Pipeline wird experimentell verifiziert.
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1 Introduction to Remote Sensing (RS)
Content-Based Image Retrieval (CBIR)

Remote sensing (RS) images are a rich source of information for Earth surface
monitoring, permitting the development of various programs and studies. These
images can help in urban planning, weather prediction, disaster rescue, and cli-
mate change analysis [1–3]. Climate change applications such as glaciers tracking
[4], water quality studies [5], and global surface water occurrence mapping [6] use
satellites as an RS image source. The utilization of satellite imagery is becoming
increasingly popular.
One of the main reasons for the surging popularity of RS applications is the

availability of global, cheap, and convenient satellite imagery [7]. Some earth
observation (EO) satellite programs provide their data for free, such as the Landsat
[8] and the Sentinel series [9]. Tools like the Google Earth Engine [10], Copernicus
Open Access Hub [11], and the EarthServer [12] make it easy to interact and
download the relevant imagery for further processing. However, it may be hard
to find the relevant data, as satellite missions create an abundant amount of data.
The Sentinel-2 mission alone can produce over 1.6TBytes of raw compressed data
per day [9]. Therefore, it is crucial to have an easy interface to search for relevant
images in these immense archives.
If the relevant data for an EO application is defined by metadata, a simple

retrieval system is sufficient. The metadata could be a by-product, like the exact
location and acquisition date, of the sensed tile, or manually annotated keywords.
The system could compress and index the metadata and make it trivial to search
for specific locations or keywords.
A more complex retrieval approach is content-based image retrieval (CBIR),

where given a query image, similar images are returned, independent of the
images’ locations. CBIR methods require complex models but are not limited to
the simple, or labor-intensive metadata, resulting in the major adoption in the RS
IR domain [7].
Instead of relying on metadata-based image retrieval, content-based image

retrieval utilizes representation learning-based methods. Representation learning
refers to the process of learning a mapping from the input to a lower-dimensional
feature vector, which abstracts the input to the essential properties [13]. The
feature vector may embed information about the input image’s texture, shape, or
spectral properties. After converting the query to a feature vector, the resulting
vector is compared against all the archive images. The most similar images are
returned as a retrieval result, based on a method-specific similarity measure.
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1 Introduction to Remote Sensing (RS) Content-Based Image Retrieval (CBIR)

Figure 1.1: Remote sensing content-based image retrieval example. Image with
red border is the query image and the blue bordered ones are the
retrieved samples with similar content.

Fig. 1.1 shows a possible retrieval result of a RS CBIR system.

The first prominent RS CBIR methods utilized low-level features to encode the
images. Domain experts handcrafted feature descriptors that used texture [14],
shape [15, 16], spectral cues [17] or a combination of all these to generate the
searchable embeddings [18, 19]. Although hand-crafted for the RS domain, these
methods do not perform exceptionally well, as they are sensitive to noise or
illumination changes [2].

Inspired by the great success of convolutional neural networks in the computer
vision field [20–22], researchers adapted these architectures to the RS CBIR domain,
outperforming previous handcrafted low-level feature methods [1–3]. Convolu-
tional neural networks learn to encode high-level discriminative visual features
directly from the training data [23]. Although there is no need to handcraft low-
level feature descriptors, large amounts of data is necessary to train the model.
Most proposed state-of-the-art models require the training data to be manually
labeled, as they learn under a supervised regime.

Model Prediction LossData

Manual Labels

Update

Figure 1.2: Supervised Learning Diagram
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The general supervised learning procedure is visualized in Fig. 1.2. First, data
is fed to the model, then the model predicts an output, for example, the images’
category. The prediction of the model is compared to the correct labels or ground-
truth. The loss is then used to tell the model how wrong the prediction was
and is used to update the model’s parameters. This update step is the learning
part. Supervised learning is domain-independent and works with natural and RS
imagery. The main difference regarding the training loop is that natural imagery
often uses a single label, whereas RS uses multi-label annotations.
The need for multi-label categorization is due to the high spatial resolution of

the images. Each satellite image covers a vast area compared to natural imagery.
Although the first labeled RS archives started with a single high-level label [24],
most recent RS archives use a multi-label classification scheme to describe the
relevant categories for each image [25, 26]. With multi-label data, the model is
able to learn fine-grained class-discriminative features. A downside of these fine-
grained class-discriminative features is the possible introduction of a bias into
the model, as the learned encoders are optimized to be class discriminative and
not to capture class-shared or intra-class features well [27]. Fig. 1.3 compares the
original high-level single-label [24] against the finer multi-label [25] annotation
style of the UC Merced dataset.

(a) Single Label from [24]:
Tenniscourt

(b) Multi Labels from [25]:
Baresoil, Buildings,
Cars, Court, Grass,
Pavement, Trees

Figure 1.3: Example image from the UC Merced dataset shown with single [24]
and multi-label [25] annotations.

With the growing annotated benchmark archives, deeper and complexer su-
pervised state-of-the-art RS CBIR methods were introduced [1, 2, 25, 26, 28–30].
Although supervised methods dominate the leaderboard for RS benchmarks, they
require labeled archives. Even if recent RS archives cover multiple countries [26],
there is no guarantee that the model generalizes to other locations. For satellite
images, which produce Terabytes of data each day, the data acquisition is not
the main hindrance but the annotation process. Labeling the data is labor- and

3



1 Introduction to Remote Sensing (RS) Content-Based Image Retrieval (CBIR)

Model Prediction LossData

Update

Figure 1.4: Unsupervised Learning Diagram

cost-intensive and is currently recognized as one of the main challenges in the
general machine learning community [31, 32].

Semi-supervised techniques only require a fraction of the labels compared to
classic supervised methods [33] but are restricted to the classes from the labeled
subset. If some classes of the archive are unlabeled, manual intervention is re-
quired [3]. One method of learning with fewer labels is to train on weak labels
first and then finetune on the labeled archive [34]. These weak, or noisy, labels
are generated from unreliable sources, such as image titles or hashtags commonly
used on social media [35]. There are other variants, but most semi-supervised
methods require all relevant classes to be present in the true label set.

Unsupervised methods do not rely on any labeled data, neither for training
nor for finetuning on different archives. Some unsupervised methods are data-
independent and do not define a loss to update the model. Others learn from the
data and iteratively update the model, as shown in Fig. 1.4. As RS image databases
are one of the fastest-growing archives, it is crucial to minimize the manual work
and to investigate unsupervised methods for the RS domain. There are various
types of unsupervised methods, with contrastive self-supervised representation
learning becoming one of the most popular methods in the classic computer vision
domain [36–45]. Although some of these methods have been used and extended
to the remote sensing domain, little work has been done to widen the scope
of contrastive self-supervised representation learning to content-based image
retrieval for remote sensing imagery.

The thesis will investigate if these contrastive self-supervised methods are a
promising unsupervised CBIR training procedure for remote sensing images. Due
to significant differences between the natural and remote sensing domains, a
systematic re-evaluation of common suggestions — such as the augmentation
pipeline — is necessary. Furthermore, a method-independent metadata-guided
sampling framework is introduced. The proposed sampling framework is used to
test assumptions about the interaction among samples in batches of the underlying
contrastive method and improve overall retrieval performance.

4



The thesis is structured as follows: The upcoming Chapter 2 generally introduces
self-supervised representation learning and motivates contrastive self-supervised
learning as the relevant learning strategy. From the ever-growing field of con-
trastive self-supervised learning, three state-of-the-art methods (SimCLR, Barlow
Twins, and BYOL) from the natural image domain are presented in detail. Chap-
ter 3 motivates the necessity to re-evaluate the standard augmentation pipeline
for remote sensing data. Based on the unique properties of remote imagery, a new
augmentation pipeline is proposed. Inspired by recent work in the RS domain,
Chapter 4 motivates a novel metadata-based sampling framework and highlights
the possible use-cases and limitations. The sampling framework is tailored ex-
plicitly for contrastive self-supervised representation learning methods applied
to the remote sensing domain. Chapter 5 presents the underlying dataset for all
experiments and the specific experimental setup. The experimental results are
covered in Chapter 6. Finally, Chapter 7 concludes the thesis and presents possible
future work.

5





2 Self-Supervised Representation
Learning (SSRL)

Designing tasks that result in non-trivial models without requiring any labels is
the key challenge of unsupervised learning. The resulting model should detect
and differentiate objects from each other without being explicitly taught what
these objects are. Many different research directions try to accomplish this feat.
One of the most popular approaches is the self-supervised representation learning
(SSRL) training regime.
The following chapter will give a broad overview of the different self-supervised

learning strategies and then motivate and focus on the best-performing vari-
ant, contrastive self-supervised learning. Three state-of-the-art contrastive self-
supervised learning methods will be presented in detail, as these will be adapted
to the RS domain and optimized for CBIR.

2.1 Introduction to SSRL

Instead of relying on labor-intensive human-annotated or noisy labels, self-su-
pervised methods generate pseudolabels. These pseudolabels are the result of a

Model Prediction

Data Pretext
task

Loss

Pseudolabels

Update

Provides
Task Data

Defines

Figure 2.1: Self-Supervised Representation Learning Diagram: The pretext task
defines how the pseudolabels are generated and may change the input
data of the model.

7



2 Self-Supervised Representation Learning (SSRL)

pretext task. The pretext task is a pre-designed challenge for the network that is
based on the data itself. By solving the pretext task, the model learns relevant
visual representations or features. Fig. 2.1 visualizes the training loop of a general
self-supervised method. The specific pretext tasks are very different from each
other and depend on the specific self-supervised method. For images, Jing and
Tian [46] defined the following three categories of self-supervised methods:

Generation-based methods: The model has to generate image data to match the
pseudolabel. For example, the pretext task could be to colorize a grayscaled
version of the input image. The corresponding pseudolabel would be the
original colored image. The model would have to predict the color data of
the original image given the grayscaled image.

Context-based methods: These methods define a pretext task with context features
derived from the input image itself or context similarity. The pretext task
could be to undo a randomly applied rotation to an input image. In this
scenario, the context is the spatial structure of the image. The pseudolabel
would be the exact amount by which the image was rotated.

Free semantic label-based methods: These methods bypass the manual annotation
effort by automatically generating ground truth labels. Tools that create
synthetic objects or scenes, such as game engines, are used to generate labels
for free. The training loop would be more similar to a supervised variant
with the main difference that the labels, or pseudolabels, were automatically
generated and that the input images are synthetic.

With the provided categorization, the general pros and cons of each
self-supervised method type can be reviewed: Game engines are able to pro-
duce true labels for realistic-looking images [47], but the domain gap between the
synthetic and real-world images causes generalization issues [46]. Free semantic
label-based methods are well-fit for domains where the data acquisition or ver-
ification is the bottleneck. For fields where the actual annotation process is the
prohibiting factor, the other pretext tasks are preferred.
Popular generation-based self-supervised methods require particular architec-

tures [48, 49]. These architectures are designed to solve the pretext task and be
directly applied to other images after training [46]. If the pretext task is to in-
paint parts of an image, the trained model will probably be used for the same
task. Usually, the goal is to optimize the image generation-task, and not to learn
generalizable representations for other tasks. Although some work has been done
to learn generalizable representation through generation-based methods [50, 51],
they are outperformed by context-based methods.
Context-based methods have recently gained popularity due to their superior

performance compared to other self-supervised methods and their unrestrictive-
ness regarding the underlying architecture. The supervisory signal of these pretext
tasks utilizes context similarity, spatial, or temporal structure.

8



2.2 Contrastive SSRL (CSSRL)

The first well-performing context-based methods used the spatial structure to
design pretext tasks, such as solving jigsaw puzzles [36, 52] or undoing random
rotations [39]. In order to solve these spatial structure tasks, the model has to in-
herently learn visual features to determine the correct arrangement or orientation
of objects.

During the design of pretext tasks, extra care must be taken to ensure that the
task is not too easy or too difficult. If the task is too ambiguous, the model will
have issues converging and learning valuable features [52]. The model may also
learn unusable features if a trivial solution that bypasses the original pretext task
can be learned [36].

The pretext task always has to be reviewed in the context of the specific appli-
cation domain. For example, due to the rotation-invariance and the high spatial
resolution of remote sensing imagery, undoing image rotations or solving jigsaw
puzzles are ill-posed problems as RS pretext tasks. Compared to spatial structure
tasks, the context similaritymethods are less restrictive regarding their application
domain.

The general idea of context similarity methods is to cluster the data into similar
groups. Each element of a group should be similar to all the other elements
and dissimilar to other groups [46]. The context similarity can be formulated
as a contrastive or predictive task. The latter tries to predict to which group an
input belongs, with the implication that these groups have to be generated in an
unsupervised manner [37, 38]. The need to explicitly group the data is one of the
reasons why contrastive pretext tasks are preferred. As the contrastive tasks do
not explicitly group the data, they are less restrictive regarding the design and can
usually be trained in an end-to-end fashion. Currently, contrastive self-supervised
methods dominate most unsupervised benchmarks.

Due to the leading performance of contrastive self-supervised methods in the
natural imagery domain, this self-supervised learning regime will be the main
focus point of the thesis. Another crucial reason is that learning by comparing
and grouping data should translate well to CBIR tasks.

2.2 Contrastive SSRL (CSSRL)

The thesiswill focus on contrastive self-supervised representation learning (CSSRL)
methods since they dominate various self-supervised learning benchmarks and
seem well fit for CBIR. The following section will formally introduce CSSRL and
provide a general framework to compare current state-of-the-art methods against
each other. Three CSSRL methods (SimCLR, Barlow Twins, and BYOL) will be
presented in detail, as these will be adopted to the RS domain and evaluated based
on their CBIR performance. They will also be used as baselines for the proposed
metadata-guided sampling procedures.

Contrastive tasks learn by applying a comparison among the input samples. The
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2 Self-Supervised Representation Learning (SSRL)

(a) Embedding before contrastive
loss update.
Blue dot is the reference image,
to which the green picture is the
positive and the red one the
negative pair.

(b) Embedding after contrastive
loss update. Positive and
reference are pulled closer
together, while negative image
is pushed further away

Figure 2.2: Visual contrastive loss update example on a sphere.

key idea is to maximize the similarity between samples from the same group and
minimize the similarity to other groups. The similar elements are also referred
to as positives and dissimilar ones as negatives. An example contrastive learning
step is shown in Fig. 2.2. Here, the similar samples are pulled closer together, and
the dissimilar ones are pushed further apart in a spherical embedding space.

For every input x ∈ X, where X := {x1, x2, . . . , x�} and � defines the dataset size,
a positive distribution >+ (·|x) and a negative distribution >− (·|x) can be defined.
Given an input x sampling from these distributions yield positive x+ ∼ >+ (·|x)
and negative x− ∼ >− (·|x) pairs. Usually, a contrastive method will contrast an
input against both positive and negative pairs.

How the similarity distribution is generated depends solely on the specific
contrastive method. Supervised contrastive methods may use the class-level in-
formation to define positive and negative pairs [53]. Images from the same class
would be defined as positives and from other classes as negatives.

As in the relevant self-supervised scenario, no label information is assumed; pos-
itive and negative pairs have to be selected differently. The predominent method
is to generate positive pairs through augmentation and defining the remaining
images as negatives [40–42]. Fig. 2.3 shows how an input imagemay be augmented
into different views to generate positive pairs. Fig. 2.3c is the positive pair to
Fig. 2.3b and vice versa. Note that some methods do not define a negative distri-
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2.2 Contrastive SSRL (CSSRL)

(a) Reference input image
from the archive

(b) Augmented positive
view 1

(c) Augmented positive
view 2

Figure 2.3: Visualization of positive view generation through image
augmentation.

bution and only contrast among positive pairs (only pull similar images closer
together).

The data has to be passed through a model to generate the contrastive embed-
dings. Fig. 2.4 visualizes the steps through a general contrastive self-supervised
framework. As previously mentioned, the input images are augmented first. The
specific augmentation operator B is sampled from an augmentation set ) for each
positive pair of an input x. The augmented views x̃∗ are passed through an encoder
network.
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Figure 2.4: Steps through a general contrastive self-supervised framework.

Formally, the non-linear encoder 4(x; \4) converts an high-dimensional input
image with � channels, a height of � and width of,

(
x ∈ R�,�,,

)
into a lower-

dimensional representation vector v ∈ R3 with the learnable parameter set \4. A
vector v in the feature space R3 is an abstraction of an input image to its essential
properties. These representational feature vectors are used for downstream tasks,
such as content-based image retrieval.

The feature vector v passes through a projection head ℎ(v; \ℎ) given by the
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2 Self-Supervised Representation Learning (SSRL)

parameter set \ℎ, transforming the input v into a metric embedding z ∈ R3′. The
metric embeddings z are combined with the group information in the contrastive
loss function to maximize the similarity between positive pairs.

The contrastive loss enforces high similarity among the features in metric space
by teaching the model to become invariant to irrelevant differences among the
positive pairs [13]. In the self-supervised scenario, irrelevant refers to the applied
data augmentation techniques.

The invariance to the applied augmentation techniques motivates the necessity
of a separate projection head ℎ. The projection head may remove unnecessary
information such as color or orientation information of an encoded object, as
the metric embeddings should not be affected by such transforms [41]. However,
these properties are often relevant for downstream tasks such as classification
or segmentation tasks. Instead of using both networks, the projection head ℎ
is dropped after the self-supervised training, and only the encoder 4 is used for
downstream tasks.

In the remaining chapter, the relevant state-of-the-art methods are presented.
These contrastive self-supervised methods form the foundation of the following
thesis. Firstly, these methods will be adapted to the RS domain and evaluated by
their CBIR performance. Secondly, they will be used as a baseline for the proposed
metadata-guided sampling strategies.

SimCLR
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Figure 2.5: SimCLR Framework [41]

Chen et al. [41] developed a simple framework for contrastive learning of visual
representations (SimCLR). A simple, yet competitive, contrastive self-supervised
method. The SimCLR framework is presented in Fig. 2.5. The framework generates
two augmented views for each input image (the positive pair) and defines the
remaining images of the batch as negative pairs. As a result, the number of
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2.2 Contrastive SSRL (CSSRL)

negatives is a lot larger than the number of positives.

The augmented images pass through the encoder and projection head networks
to generate themetric embeddings zi and zj for each input x of the batchwith size 1.
The positivemetric embeddings are pulled closer together, while the negative pairs
are pushed further away from each reference image. To calculate the agreement
between two embedding pairs, a variant of the noise contrastive estimate (NCE)
[54] is used:

�NCE(7, 8) = − log
exp (((7, 8)))∑21

9=1 19≠7 exp (((7, 9)))
, (2.1)

where ((·) is a similarity measure function. SimCLR uses the normalized-
temperature cross-entropy (NT-Xent) variant of the NCE loss, where the simi-
larity function is defined as the cosine-similarity divided by a scalar temperature
constant g [41]:

(NT-Xent(?, 9) =
z)k

‖z‖ · ‖k‖ ·
1
g
. (2.2)

Intuitively, the loss minimizes the distance between the normalized metric
embeddings that stem from the same input image and maximize the distance to
all the other images in the current batch.

The main contributions of the work from Chen et al. [41] was the discovery of
the importance of

• a non-linear projection head
• large batch sizes
• long training time
• a complex data-augmentation pipeline

Specifically, the requirement of strong data augmentations motivated the need
to re-evaluate different augmentation techniques for the RS domain.

Barlow Twins

A different recent state-of-the-art self-supervised method is the Barlow Twins
framework from Zbontar et al. [44]. The proposed framework can be seen in
Fig. 2.6. Structurally, the framework is quite similar to SimCLR. Two augmented
views are generated for each input image of the sampled batch and passed through
the same encoder and projection head.

However, instead of comparing the similarity between the generated metric
embedding vectors directly, the empirical cross-correlation matrix between the
entire embedding matrices is calculated and compared against the identity matrix.
Minimizing the cross-correlation between the metric embedding matrices reduces
the redundancy within each representation vector and makes the embeddings
invariant to the applied distortions.
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2 Self-Supervised Representation Learning (SSRL)
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Figure 2.6: Barlow Twins Framework [44]

Formally, the following loss function is used:

LBT =
∑
9

(1 − C99)2 + _
∑
9

∑
:≠9

C29: , (2.3)

where _ is a positive scalar thatweights the relevance of the second term compared
to the first. C is the empirical cross-correlation matrix computed between the
embedding matrices Z7 and Z 8 that have a shape of 1× 3 ′, where 1 is the batch size
and 3 ′ the metric vector dimension. Each entry of the empirical cross-correlation
matrix is calculated with:

C9: =
∑

1 Z71,9Z 81,:√∑
1

(
Z71,9

)2√∑
1

(
Z 81,:

)2 , (2.4)

where 1 indexes the sample from the batch and 9 and : index the component of
the embedding matrix.

As the presented method does not compare the samples directly but the com-
ponents of the embedding vectors, there is no notion of negative pairs. Still, the
performance is heavily dependent on the applied augmentation techniques [44].
Note, even if there are no negative pairs, the samples in the batch itself are still
relevant, as the vector components are contrasted against each other.

The main benefits of the Barlow Twins framework compared to SimCLR are the
following:

• Works with smaller batch sizes
• Benefits from high-dimensional metric embeddings
• Higher scores in benchmarks than SimCLR
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2.2 Contrastive SSRL (CSSRL)

BYOL

The last investigated state-of-the-art CSSRL method is Bootstrap Your Own Latent
(BYOL). The BYOL framework is visualized in Fig. 2.7. In contrast to the previous
methods, BYOL does not use the same network for both branches. BYOL has
an online and a target network that have different parameter sets, indicated
by the index = and B respectively. The key idea is to train the online network
to predict the target network’s representation of the same input image under
different augmented views.
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Figure 2.7: BYOL Framework [43]

The BYOL method only contrasts positive pairs and does not define negative
pairs. The metric embeddings of the positive pairs are pulled closer together
without being compared to other samples, making it robust against small batch
sizes. An issue with this approach is that a trivial solution exists, where the
representations of both networks collapse to identical embeddings. To avoid
representational collapse, changes to the architecture were necessary. For one, a
predictor ? is added to the online network, and the target network is decoupled
from the optimizer update step, indicated by the stop-gradient (sg) head.

The online network is updated directly through the loss function, while the
target network is updated offline through a slow-moving average of the online
network’s parameters. For shorter notation, let \B := \B4 ∪ \Bℎ and \= := \=4 ∪ \=ℎ .
Concretly, the target network’s paramters is updated with:

\Bnew ← g\Bold + (1 − g)\= , (2.5)

where g ∈ [0, 1] is the target decay rate.

15



2 Self-Supervised Representation Learning (SSRL)

The loss for the online network is calculated with:

LBYOL =

 ?(z7)
‖?(z7)‖2

−
z 8
‖z 8 ‖2

2
2
. (2.6)

The main differences between BYOL and the previous CSSRL methods are:
• Higher scores in most benchmarks than SimCLR and Barlow Twins
• Less sensitive to batch size compared to SimCLR; more similar to Barlow
Twins

• Only contrasts positive pairs; little interaction between images in a sampled
batch

• Less sensitive to the specific data augmentation techniques used

All of these CSSRL methods share a similar augmentation pipeline that has been
optimized for natural images. As the augmentation pipeline is a crucial component
of contrastive self-supervised methods, the standard pipeline from the natural
image domain has to be reviewed in light of the remote sensing domain. These
methods will also be used as baselines for the proposed metadata-based sampling
strategies.
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3 Proposed Augmentation Pipeline for
CSSRL in RS

Augmentation techniques are crucial for contrastive self-supervised representa-
tion learning methods. In all previously presented self-supervised methods, the
data augmentation step is used to generate contrastive pairs given an input image.
Although there has been done some extensive research to find the most effective

augmentation techniques [41, 43], the experiments were done on natural imagery.
As remote sensing is a very different domain, the various augmentation techniques
have to be re-evaluated. The re-evaluation is also necessary as multi-spectral
imagery adds additional constraints to augmentation techniques.
In the remaining chapter, the following widely used augmentation techniques

are presented:
• Dihedral Transformation
• Rotation
• Gaussian Blurring
• Resized Cropping
• Brightness Shifting
• Contrast Shifting
• Saturation and Hue Shifting

The exact transformation formulation, as well as visual examples, are provided.
After reviewing these classic augmentation techniques for their use in the remote
sensing domain, the chapter will conclude the most promising multi-spectral
augmentation pipeline. Note that to be able to provide some example parameter
values, the input images are assumed to be normalized to a range between 0 and
1.

Dihedral Transformation

TheDihedral transformation is composed of rotations and reflections. The dihedral
group of images consists of four rotational and four reflection transformations. The
rotational transformations of an input image are 0°, 90°, 180°, and 270° rotations.
The reflection transformations are reflections along the G-axis, F-axis, lower-left
to upper-right diagonal (G = F) and upper-left to lower-right diagonal (G = −F).
Fig. 3.1 visualizes all Dihedral transformations given an input image.
The Dihedral transformation is quite interesting for aerial imagery, as these

types of images are rotation-invariant. A natural image scene usually has an
upright orientation, while bird’s-eye view images do not. Also, the exact spectral

17



3 Proposed Augmentation Pipeline for CSSRL in RS

Figure 3.1: Examples of Dihedral transformations. First row shows the rotation
(0°, 90°, 180°, and 270°) and the second row the reflection
transformations (reflection along G-axis, F-axis, G = F, and G = −F
diagonal).

reflectance values of the sensed scenes are untouched, which might be more
relevant for spectral-sensitive applications.

Positive pairs generated through rotation or reflection are semantically equiv-
alent and correct (meaning the spectral reflectance values are untouched). As a
result, the Dihedral transformation might be more valuable for contrastive self-
supervised representation learning in the remote sensing domain, as suggested in
the classic computer vision domain.

Rotating

The same argumentation applies to continuous rotation transforms. A Dihedral
transformation only rotates in discrete steps (multiples of 90°). A continuous
rotation transformation can rotate the image by any amount between 0° – 360°.
The main disadvantage is that it drops pixels near the corners and requires an
interpolation step if the rotation angle is not a multiple of 90°. Applying rotations
around 45°, 135°, 225°, and 315° to low-resolution satellite imagery introduces
noise and potentially unwanted artifacts. Fig. 3.2 demonstrates how a continuous
rotation drops information and adds noise to the reference image.

However, as rotation augmentation creates semantically identical positive pairs
for aerial imagery, the continuous rotation transformation might be vital for the
remote sensing domain. Carefully selecting the rotation values help to reduce the
amount of information dropped near the edges of an image.
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Figure 3.2: Examples of continous rotations ( 0°, 20°, and 45°). Note that pixels
near the edge are dropped and that the edge between the larger
color-boxes becomes blocky in the rotated variants.

Gaussian Blurring

Gaussian blurring does not apply a geometric operation on the whole image but a
convolution operation. The edges and colors of the input images are softened or
blurred with a discrete Gaussian kernel, as shown in Fig. 3.3.

Figure 3.3: Example of Gaussian blurring with the input image on the left and the
blurred image on the right.

Blurring has been shown to be helpful for contrastive self-supervised learning
[41, 43]. The semantic content of positive pairs generated through Gaussian blur-
ring is identical to the input image. The blurred pairs may help the model become
less dependent on edge detection and spectral value matching, which is favorable
for training generalizable models. The convolution operation modifies the un-
derlying spectral reflectance values but does so by taking a weighted average of
the local neighborhood. In conclusion, Gaussian blurring seems to be well-fit for
aerial and natural imagery.

Resized Cropping

Resized cropping zooms into a rectangular region of the input image and resizes
the crop back to the original dimensions. A couple of examples are visualized in
Fig. 3.4. The default area of the zoom/crop step is randomely chosen to be between
8% – 100% for each image [41, 43].
For natural imagery, even small crops tend to capture the relevant object or

parts of it. For example, if the input is a picture of a dog, a small crop might still
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3 Proposed Augmentation Pipeline for CSSRL in RS

Figure 3.4: Examples of resized cropping given an input image (most left image).

be able to capture class-relevant features such as the face, ears, or paws. Remote
sensing data is quite different in that regard. Due to the high spatial resolution of
each pixel, crops are likely to drop entire classes from input images. Similar to
how the first two crops of Fig. 3.4 drop the purple and black colors. Put differently,
the likelihood of resized crops changing the semantic meaning of a remote image
by dropping entire classes is comparatively high. However, low crops allow the
model to become scale-invariant and to see more variability in the input. The
higher variability may also counter possible short-circuit solutions, like histogram
matching [41]. Especially since the natural image domain results strongly suggest
using an aggressive resize crop augmentation strategy, the crop size will also be
kept low for remote sensing images.

Brightness Shifting

The brightness corresponds to the amount of light in a scene. Adjusting the bright-
ness can be formally described as adding a scalar V ∈ [−1, 1] to all pixel values
> ∈ [0, 1] of an image. The scalar V is applied to all channels equally. The effect of
different values for V can be seen in Fig. 3.5, where V < 0 decreases and 14B0 > 0
increases the brightness.

Figure 3.5: Examples of brightness shifting with V = −0.3, 0, and 0.3.

The channels ofmulti-spectral imagesmight have different value distributions. A
value of 0.1might be small for one channel and very large for the other. Therefore,
globally changing the spectral reflectance values might hurt spectral-based object
recognition, as it changes the semantic content of a multi-spectral image. Although
brightness shifting is often applied in the natural image domain, the performance
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ofmulti-spectralmodelsmight suffer from the augmentation technique. As a result,
brightness shifting should be excluded from the default augmentation pipeline
for multi-spectral images or only be applied with carefully selected values.

Contrast Shifting

Modifying the contrast of an image is equivalent to multiplying every pixel value
with a scalar U ∈ R+. Pixels are scaled towards the minimum (U < 1) or maximum
(U > 1) values and away from the mean.

Figure 3.6: Examples of contrast shifting with U = 0.3, 1, and 1.7.

For multi-spectral images, the issue is not that a specific U is multiplied to all
channels, but that the spectral-reflectance values themselves can become so dis-
torted that it hurts spectral-based recognition. Again, the semantic content of a
multi-spectral image might be altered. As a result, contrast augmentation should
only be appliedwith values close to 1 or be excluded from the default augmentation
pipeline for multi-spectral images.

Saturation and Hue Shifting

Saturation controls the amount of color in an image. With zero saturation, a
grayscale image is produced. Non-zero saturation values have no effect on neu-
tral colors such as whites, grays, and blacks. A couple of example saturation
transformations can be seen in Fig. 3.7.

Figure 3.7: Examples of saturation shifting by setting the saturation to 1.0, 0.0, 0.7,
and 1.4.
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3 Proposed Augmentation Pipeline for CSSRL in RS

To modify the saturation the input image is first converted to hue, saturation,
and value (HSV) space. In the HSV space one can also modify the hue of the image.
A couple of hue transformation examples can be seen in Fig. 3.8.

Figure 3.8: Examples of hue shifting.

The conversion to the HSV space is only defined for classic RGB images. As
a result, the saturation and hue augmentation techniques cannot be applied to
multi-spectral imagery. Note, that these augmentations are part of a popular
augmentation composition called color-jittering [41]. Color-jittering combines
brightness, contrast, hue, and saturation transforms into a single augmentation
technique. For multi-spectral images, the color-jitter augmentation simplifies to a
brightness and contrast transform.

Proposed Augmentation Pipeline

The special properties of remote sensing images require modifications to the de-
fault augmentation pipeline. The default augmentation pipeline recommended by
Chen et al. [41] uses resized cropping, horizontal flipping, color-jittering (bright-
ness, contrast, hue, and saturation shifting), and Gaussian blurring.
As previously mentioned, the hue and saturation shifting transformations are

not well-defined for multi-spectral imagery. Due to the rotation invariance of
the remote sensing data, the Dihedral and the rotation transformation should be
added to the default augmentation pipeline. The main question is whether or not
to include the remaining color transformations (brightness and contrast shifting).
The issue is that color transformations might break the ability of the model to
identify objects based on their spectral reflectivity. Conversely, Chen et al. [41]
have shown that the color augmentation helps the model to not rely on histogram
matching to find the positive pairs. Since the main benefit of multi-spectral im-
agery is the ability to distinguish objects based on their spectral reflectivity, the
recommended pipeline does not include any color augmentation techniques. The
experimental results section will quantitatively evaluate the decision to exclude
color augmentations.
In summary, the following default augmentation pipeline for multi-spectral

imagery is recommended: resized cropping, Dihedral transformation, wotation,
as well as Gaussian blurring.
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4 Proposed Metadata-Guided Sampling
Framework for CSSRL in RS

Since contrastive self-supervised methods learn by comparing, the following chap-
ter will motivate and showcase the benefit of a novel metadata-guided sampling
framework. After introducing the general idea of utilizing metadata to guide
the sampling process and relating it to previous work from the RS domain, the
implications are discussed in detail.

4.1 Motivation

The key distinction among the CSSRL methods is what they compare and how they
learn from the comparison. As discussed in the previous chapter, the positive
pairs are usually generated through data augmentation techniques. An example
is shown in Fig. 4.1. How these views are then contrasted depends on the CSSRL
method.

Figure 4.1: Positive pairs example, where same colored images are defined as
positive pairs.

SimCLR generates a positive pair for each input image and defines the remaining
images in the batch as negative pairs. The distance to the positive pair isminimized,
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4 Proposed Metadata-Guided Sampling Framework for CSSRL in RS

while the distances to the negatives are maximized. An issue with this approach
is that a randomly sampled batch might have some false-negatives, from a label-
based viewpoint. For example, in Fig. 4.1 there are two “tennis court” images. The
false-negatives could reduce the overall performance or slow down the training
since the model is effectively learning wrong relations. Conversely, if the samples
in the current batch are too easy to distinguish, based on their color histogram,
for example, it might trivialize the learning step.

Since most contrastive methods relate all samples in a batch against each other,
the sampling proceduremight play a crucial role in the overall performance. Work
from the supervised contrastive domain supports the assumption, as research has
shown that smart sampling improves performance [55] and reduces the training
time [56]. Although it might be tempting to generate the hardest possible batches,
hoping themodel converges faster or learns fine-grained features, too hard batches
might hurt the overall performance. Schroff et al. [53] have shown that it is crucial
to choose the correct hardness level in order to maximize the benefit of contrastive
learning.

Themain obstacle of developing a smart sampling procedure for CSSRLmethods
is that no label information is available. Ideally, the sampling procedure should
not impose any restrictions on the underlying architecture and be independent of
the contrastive self-supervised learning strategy. The sampling framework should
be able to assemble batches with varying difficulty levels. Furthermore, as the RS
domain has almost unlimited access to data, a smart sampling framework should
scale well with the dataset size and not add memory constraints.

Inspired by Tobler’s first law of geography [57], the upcoming sampling frame-
work utilizes freely available metadata to guide the sampling procedure. Tobler’s
law states that everything is related to everything else, but nearby things are
more related than distant things. Most remote sensing imagery provides the exact
location and acquisition time of the sensed image as metadata. This metadata can
be used to cluster the data and then assemble batches by using different sampling
strategies that control the hardness. Fig. 4.2 shows the general workflow.

By default, the framework utilizes location information to cluster the input
data. According to Tobler’s law, the images within a cluster are more similar to
each other compared to images from other clusters. Note that Tobler’s law is
used as a weak signal and does not guarantee to group similar images together.
Tobler’s law does not state that spatially close images share the same labels but
could be interpreted to indicate that the labels within a cluster are less variable
than compared to the complete set. Also, two patches might be similar, even
if they do not share the same labels. They might share higher-order statistics
like similar temperature or spectral-reflectance distributions. Note that the term
similar heavily depends on the context.

After clustering the data, the only necessary modification to the training proce-
dure is to decide on a sampling strategy. Assembling a batch from a single cluster
(in-cluster sampling) translates to an approximately hard batch. Easy batches
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4.1 Motivation

Figure 4.2: Location-Guided Sampling Framework: Given location-metadata, the
input data is grouped into 2 clusters (here 2 = 5). These clusters are
used as input for the sampling strategy.

could be generated by taking a single sample from each cluster (mixed-cluster sam-
pling). Both of these approaches cause side effects that are thoroughly discussed
in the following sections.

The remaining chapter will present the clustering and sampling strategies in
detail after relating the framework to similar research in the remote-sensing
domain.
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4.2 Relation to Similar Work in RS Domain

The application of CSSRL frameworks in the RS community remains largely under-
explored [58] but is gaining popularity. Remote sensing papers utilizing contrastive
self-supervised learning strategies are becoming more popular due to advances
in the natural image domain. Newer works integrate the unique properties of
satellite imagery to improve performance further. However, the main focus point
of these papers is to pretrain general models that are then finetuned for down-
stream tasks such as classification or object recognition [59–61]. In contrast to
this work, they are not focused on the CBIR performance, nor are they focused
on a general sampling strategy. Still, there is some notable overlap between the
following papers and this thesis.

Jean et al. [59] implicitly use Tobler’s law to define positive pairs as image patches
that are very close to each other and negatives as far away patches. This approach
gives the specific location a very high relevance. Defining close patches as positive
pairs may produce many false positives if the data source has a large spatial
resolution. Generating positive pairs through image augmentation may be safer
and allows the model to become invariant to unwanted distortions. The close
patches are defined as patches that are within a specific radius of the source image.
As a result, the method does not work well with sparse regions. Also, the proposed
loss function is not easily adaptable to the current state-of-the-art CSSRL methods.

Kang et al. [60] further refined the idea by defining a new spatially augmented
contrastive loss and a momentum update-based optimization. The momentum
update-based optimization technique is based on a CSSRL framework from the
natural image domain ([40]). Due to the strong connection to a specific CSSRL
framework, the spatially augmented contrastive loss does not generalize well to
other, possibly better, frameworks. The augmentation pipeline consists only of
flipping, rotating, and the proposed spatial augmentation technique. The authors
are not utilizing or analyzing other commonly used augmentation techniques at
all.

Ayush et al. [61] have proposed a time-augmentation strategy and added a
location-prediction task to an existing CSSRL method. The authors cluster the
geographical data with 9-Means [62] into 2 groups and let the model simulta-
neously learn to predict the source location of the input. The performance im-
provement of the location prediction task is comparatively low compared to the
time-augmentation strategy. The authors limit the positive pair generation by
only allowing temporal augmentation, which is very unusual for CSSRL methods.
They make a strong assumption that the location is predictable from the images
themselves, which might introduce a stronger bias compared to a solution where
the location is only used as a weak signal. Also, their clustering strategy is ill-posed
for a global-scale dataset, which is reviewed in detail in the following section.

In conclusion, the current thesis focuses on the application in the CBIR domain
and proposes a method that is generally applicable to a wide variety of different
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contrastive methods. The only requirement is that samples within a batch are
contrasted against each other. Since the framework imposes minor restrictions
on the underlying method, it can be quickly adapted to novel CSSRL methods. The
framework is explicitly defined to work on global-scale datasets without negatively
impacting the training time.

4.3 Location-Guided Clustering

The main motivation for the location-guided sampling strategies is Tobler’s Law.
Tobler’s law states that nearby things are more related than distant things. After
clustering the data based on the locationmetadata, the clusters themselves contain
more similar samples than those from other clusters. Here, the location is used as a
weak signal for the similarity. Weak, since sampling from a single cluster does not
guarantee similar images and has no influence on the used loss function or how
positive or negative pairs are defined. The only requirement for the underlying
CSSRL method is that it must contrast images from different source images against
each other. There are no other restrictions regarding the underlying architecture
or method.

An unsupervised clustering algorithm is necessary to avoid human intervention
and to train in an end-to-end fashion. By clustering the data and not defining a
neighborhood radius, the preprocessing step is alsowell-defined for sparse regions.
Since the clustered data is location metadata, it is easy to visualize the results.
Although clustering large archives takes some time, the clustering step is done of-
fline and only has to be done once per cluster configuration. Compared to the time
spent training deep neural networks and searching for the best hyperparameters,
the time spent clustering is negligible.

Ayush et al. [61] clustered the dataset with the 9-Means [62] algorithm. In short,
the 9-Means algorithm works as follows:

1. Select 9 randommeans (usually random data points)
2. Assign each data point to the closest mean
3. Calculate the new mean for each cluster
4. Repeat the previous two steps until the assignments stop changing

Although the algorithm is popular and easy to understand, the application on
geographical data is ill-posed. Using 9-Means on data that is defined by the long-
and latitude coordinates implies that the earth is projected onto amap. The original
view against a projected view can be seen in Fig. 4.3. The projection allowsworking
with euclidean space-based algorithms, such as 9-Means, but introduces a couple
of issues.

A result of projecting the earth into the euclidean space is that the spherical
properties are lost. Algorithms cannot be aware of the wrap-around at the longi-
tudes −180° and 180° (Fig. 4.3b). Also, if the value of only one axis changes, the
actual distance heavily depends on the other value. An extreme case is if there
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(a) View from space (b) Projected view

Figure 4.3: View on earth from space vs. projected map.

are points near the poles and equator. Let point one be >1 = (0°#, 0°,) and point
two >2 = (0°#, 1°,). The actual distance is around 110km. For two different
points with the same long- but different latitude values: >∗1 = (80°#, 0°,) and
>∗2 = (80°#, 1°,) the distance shrinks to about 20km. The significant difference
between the euclidean distance in the projected space and the actual distance
could heavily distort the cluster results.

Applying 9-Means clustering to small geographical regions can provide valuable
insights into the data but is ill-fit for global scale clustering. Especially in the remote
sensing domain, with an abundance of available data, a clustering algorithm
should be chosen that will not distort the cluster results or introduce biases.

9-Medoids [63] allows to cluster data in euclidean and non-euclidean spaces,
such as the haversine space (spherical space) for example. Instead of calculating
the mean and generating data for each cluster, as 9-Means does, the 9-Medoids
algorithm selects the most centrally located point (medoid). An issue with this
algorithm is that it has a non-deterministic polynomial-time hardness and re-
quires heuristic approaches to apply the algorithm to real-world datasets. Still,
recent advances in research have considerably improved the performance of the
heuristic approaches and allow 9-Medoids to be used on global-scale datasets [64,
65]. Specifically, the latest publication from Schubert and Rousseeuw [65] will be
used as the basis for the location-based clustering step. The algorithm will use
the haversine space to accurately calculate the distance between satellite images.
Note that 9-Medoids is not restricted to the haversine space, and other data such
as the label information could also be used to cluster the data in hamming space.

To give the number of clusters a more meaningful abbreviation, the thesis will
use the variable 2 to define the number of clusters and not 9. After generating the
2 clusters, the next step is to sample from these. The choice of 2 has one simple
but essential implication. As the number of clusters 2 grows, fewer data points
are assigned to each cluster individually. Depending on the sampling strategy, the
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specific value of 2 might constrain possible sampling parameters.

To provide some real-world values, Table 4.1 shows some statistics about the
clustering strategy applied to the BigEarthNet-S2-Summer archive. The statistics
highlight that the difference between the smallest and largest cluster is quite large
and that it heavily depends on the number of clusters 2. After clustering the data,
the images can be sampled in a smartway. Note that the dataset will be introduced
in detail in the following chapter.

Table 4.1: Example Cluster Statistics: Given the number of clusters 2, the
minimum, maximum, mean, and the relative difference between the
maximum and minimum value are displayed.

number of clusters 2 min max mean relative max/min difference

10 3470 8197 6559 2.4
16 1048 8197 4099 7.8
64 356 1813 1024 5.1
128 72 937 512 13.0
256 72 473 256 6.6
512 57 226 128 4.0

4.4 In-Cluster Sampling

One sampling strategy that can be applied after clustering the data is in-cluster
sampling. Here, the current batch that is used to update the model only contains
images from a single cluster. The in-cluster sampling strategy is visualized in
Fig. 4.4. According to Tobler’s law, sampling from a single cluster should give more
similar images and, therefore, create harder batches. If the contrastive task is too
easy, then the benefits of creating harder batches would be a decreased time until
convergence and higher final performance.

The hardness is be controlled over the area a cluster covers. Larger clusters
would generate approximately easier batches, while smaller ones would generate
harder batches. However, there are a couple of restrictions regarding the previous
clustering step. The main issue is that the number of images per cluster should
never subceed the batch size. Otherwise, images would be present multiple times
in a batch, leading to an ill-posed pretext task. SimCLR, for example, defines all of
the remaining images in the batch as a negative pair and the other augmented
view as a positive pair. If the identical image is augmented multiple times, it is
impossible to identify the correct pairs since there are now multiple solutions.

Since the 9-Medoids algorithm does not partition the data into equally large
clusters, particular focus should be put onto the smallest cluster. Note that clusters
that are too small cannot be simply merged since they do not necessarily have
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Figure 4.4: In-cluster sampling visualization. Given location-based clusters, only
sample patches from one cluster per batch.

to be spatially close to each other. A simple solution would be to decrease the
batch size, but depending on the underlying algorithm, it may hurt the overall
performance [41]. Looking at the example values provided in Table 4.1, the largest
possible batch size for 2 = 16 is only 1048. For comparison, the SimCLR paper
recommends batch sizes starting around 2048.
A different side-effect of the in-cluster sampling strategy is that patches from

smaller clusters are sampled more often compared to the larger clusters. The
impact largely depends on the specific choice of 2 and the underlying dataset. The
imbalance can be evaluated by looking at the cluster-size distribution. Note, an
imbalance towards smaller clusters (sparser regions) may be beneficial for some
use-cases as these rarer regions would be oversampled.

In conclusion, the in-cluster sampling strategy samples all similar images from
a single cluster. The cluster size, which is indirectly controlled via the number of
clusters, influences the approximate hardness and largest possible batch size. Note
that the framework allows updating the clusters during training. An advanced
sampling strategy could start with few but large clusters and gradually increase
the hardness by increasing the number of clusters.

4.5 Mixed-Cluster Sampling

The complementary approach ismixed-cluster or interleaved sampling. Instead
of creating the complete batch from a single cluster, the batch is assembled from
multiple clusters. The mixed-cluster sampling strategy is visualized in Fig. 4.5 The
idea is to generally produce easy batches, or batches with a large dissimilarity, by
ensuring that each patch is far away from all the other patches. In contrast to the
in-cluster sampling strategy, the mixed-cluster variant does not restrict the batch
size. The number of clusters 2 can be simply defined as the batch size 1.
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Figure 4.5: Mixed-cluster sampling visualization. Given location-based clusters,
sample a single patch per cluster to assemble the batch.

Although, as previously discussed, many small clusters introduce a bias towards
sparser/smaller regions. For large batch sizes, the smallest cluster could collapse to
only a few images. In the extreme case, a cluster might only contain a single image.
As a result, that specific image would be present in all batches. Even if the mixed-
cluster strategy does not restrict the batch size, large batch sizes could lead to
strongly oversampled small regions that could negatively impact the performance.
Special care should be taken when large batch sizes are considered. Looking
back at Table 4.1, the mixed-cluster strategy is well defined for 9 = 512, whereas
the in-cluster sampling method would be limited to a batch size of 57, which is
relatively low. Note that one could also sample multiple images per cluster, but
that would hurt the primary goal of sampling patches that are all far away from
each other.

Themixed-sampling strategy is well-fit for contrastive tasks that are too hard and
require easier batches. The strategy is also favorable for self-supervised strategies
that benefit from a larger variance within batches.

4.6 Key Points of Proposed Metadata-Guided Sampling

Framework

The main motivation for the location-guided sampling strategies is Tobler’s Law.
After clustering the data based on the location, two proposed sampling strategies
can be utilized. The in-cluster sampling strategy is better suited to increase the
hardness of the batches compared to the classic random sampling. The main issue
with this approach is that the batch size may be strongly limited due to the number
of available images in the smallest cluster. Although, the effect heavily depends on
the specific dataset and the choice for 2. In the setting of CSSRL methods, the batch
size will probably be comparatively small. The mixed-cluster variant is designed
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to create easier or more variant batches. The batch size is indirectly limited by
the cluster size but is generally a lot larger compared to the in-cluster strategy.
In both cases, only the location metadata is used. The framework could easily

be extended to include temporal information as well. The temporal information
could be used to pre-split the data, further increasing the similarity among samples
in the clusters. The different sampling variants could also be combined to create a
complex sampling strategy. One could start with easy batches to train the model
faster and then finetune the model by only creating hard batches at the end of the
training.
Both variants use the same cluster results. The clusters only have to be calculated

once for a specific number of clusters and are generated independently of the
neural network training procedure. The effect on the overall training time is
negligible. During training, there is no performance overhead. A general issue
with the approach is that it assumes a large archive. The batch size will probably
be too restricted on smaller datasets, and the methods could negatively impact
performance if sparse regions are heavily oversampled. However, since there is
an abundant amount of data in the RS domain and most CSSRL methods require
large datasets to function properly, the dataset size should not be an issue.
Both strategies will be applied to all of the previously introduced CSSRLmethods

(SimCLR, Barlow Twins, and BYOL). The only requirement to benefit from the
smart sampling procedure is that the views from different images have to be
contrasted against each other. Since both SimCLR and the Barlow Twins method
contrast different images against each other, they should benefit from the smart
sampling methods. The sampling methods were mainly motivated for SimCLR,
but it should also translate to the Barlow Twins method, even if the Twins contrast
feature vector components and not image views per se. BYOL only explicitly
contrasts positive pairs and should not perform better due to a different batch
hardness. However, as the proposed sampling strategy also oversamples sparse
regions, it might affect retrieval performance and is worth investigating. Before
moving on to the experimental results, the underlying dataset and the general
experimental setup are presented in detail.
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One of the largest remote sensing archives, BigEarthNet-S2, was chosen as the
main dataset for the experimental analysis of the thesis. The following chapter
will start with a general introduction of the archive, the typical applications of
the various multi-spectral bands, and introduce the two class-nomenclatures. The
chapter will continue to present four popular retrieval metrics and discuss their
implicit biases. The chapter concludes with the specific experimental setup used,
such as model architecture, hyperparameter values, and implementation details.

5.1 The BigEarthNet-S2 Archive

Sümbül et al. [26] released the first large-scale remote sensing BigEarthNet archive
in 2019. The original version, BigEarthNet-S2, consists of sensed tiles from the
Sentinel-2 satellite. With the Sentinel-2 satellite as a data source, thirteen spectral
bands with different spatial resolutions were available, from which all but one
band were included in the BigEarthNet-S2 archive. Fig. 5.1 visualizes the spectrum
of each band grouped by their spatial resolution. The spectrums range from
visible (380nm – 700nm), near-infrared (700nm – 1100nm) to short-wave infrared
(1100nm – 3000nm) light.

The low-spatial resolution 60m bands are designed for aerosol (B01), water-
vapour (B09) and cirrus cloud (B10) detection. Sümbül et al. [26] not included
band B10 as B10 provides no surface-level information [66].

The 20m bands in the near-infrared range (B05, B06, B07, B8A) are vital for
differentiating vegetation from other objects. The remaining 20m bands in the
short-wave infrared spectrum (B11, B12) are helpful for snow, ice, and cloud
discrimination [9].

The high spatial resolution bands B04, B03, and B02 are the classic red, green,
blue (RGB) channels. The last 10m resolution band, B08, covers a broader spec-
trum than B08A but is less resistant against water vapor contaminating the spectral
reflectance. As some applications suffer from possible contamination, the nar-
rower, lower spatial resolution band B08A was added. To cover all use-cases,
both bands were included, even if they overlap in the sensed spectrums [67]. The
combination of these spectrums results in images with twelve channels, compared
to the classic three RGB channels.

Due to the different spatial resolutions of the twelve bands, the pixel dimensions
are not identical. Every patch covers a region of 1200m×1200m. Given the spatial
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Figure 5.1: Spectral Bands from Sentinel-2 Satellite [9, Figure 3.5].

resolutions of 10m, 20m, and 60m the respective width/height dimensions are
120px, 60px, and 20px.
To visualize the sensed region, the bands can be visualized individually as shown

in Figs. 5.2a to 5.2c, or the RGB bands can be combined to produce a true-color
representation (Fig. 5.2d).

(a) B02 (10m band) (b) B05 (20m band) (c) B09 (60m band) (d) True-color image
(B04, B03, B02)

Figure 5.2: Example Patch Visualizations: Figs. 5.2a to 5.2c show individual bands
interpolated to the same width/height; Fig. 5.2d combines the three
RGB bands to produce a true-color image

BigEarthNet-S2 provides 590 326 of such patches from ten countries in Europe.
Fig. 5.3 visualizes the exact regions of the sensed tiles. 61 707 of these patches are
mostly covered by seasonal snow and 9280 by clouds.
Sümbül et al. [26] suggest removing these for scene classification and image
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5.1 The BigEarthNet-S2 Archive

Figure 5.3: Distribution of BigEarthNet patches.

retrieval. Typical for remote sensing benchmarks, the BigEarthNet archive is
a multi-label dataset. There are two proposed class-nomenclatures with either
the original 43 or recommended 19 classes. The relation of both of these class-
nomenclatures are shown in Table A.1. The recommended class-nomenclature
drops 11 labels, resulting in 64 classless patches that have to be removed from the
archive. Fig. A.1 shows example images that contains the respective class label for
the 19 class-nomenclature.

Using the 19 class-nomenclature, one can plot all patches that contain a specific
label on a map. Visualizing all patches that contain the “Agro-forestry areas” label,
as done in Fig. 5.4a, highlights that the location metadata can provide valuable
information about the possible content of a patch. For labels like “Urban fabric”,
as shown in Fig. 5.4b, the value of utilizing the location metadata is less obvious.
The “Urban fabric” patches seem evenly distributed, but compared to all patches
(Fig. 5.3), there are excluded regions. Zooming closer into the image, as shown in
Fig. 5.4c, one can see that the urban patches focus around specific regions. The
visualizations shown in Fig. 5.4 support the use of the location information as a
weak signal for similarity.

For the following experiments, the recommended 19 class-nomenclature is used.
To reduce training time and to remove possible side-effects of seasonal changes,
the default configuration will only use patches from the summer season. This
specific subset will be referred to as BigEarthNet-Summer. The original training,
validation, and test split is repurposed to define the training, query, and archive
splits for the CBIR benchmark. The original training split is also used to train the
model. The validation split is defined as the query and the test as the archive
split. Each image of the query split will be used to retrieve a predefined number
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(a) Visualization of patches
containing “Agro-forestry areas”

(b) Visualization of patches
containing “Urban areas”

(c) Visualization of patches
containing “Urban areas”
(Zoomed into Ireland)

Figure 5.4: Visualization of BigEarthNet patches containing specific labels.

of samples from the archive. How the retrieval performance is quantified is
described in the following section.

5.2 Evaluation Metrics

To quantitively evaluate the image retrieval performance, the following widely-
used image retrieval metrics for multi-label benchmarks were chosen [68, 69]:

• precision
• mean Average Precision (mAP)
• weighted mean Average Precision (wmAP)
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• normalized discounted cumulative gains (NDCG)
The following paragraphs will show how these metrics are defined and highlight

their pros and cons. After introducing the various metrics, the primary metric for
the following experimental results evaluation is chosen.

Precision

In the general information retrieval domain, precision is defined as:

precision =
relevant retrieved results

total number of retrieved results
. (5.1)

In the context of single-label image retrieval, a relevant result to an input/query
image with the label : would be an image with the same label :. For example, if the
input to the image retrieval system is an image with the label “Dog”. The system
then returns two images, one with the label “Cat” and one with the label “Dog”.
The precision score would be 0.5, as the returned images contain one relevant
result from two.
For multi-label benchmarks, one has to define relevant first. Commonly, a result

is relevant if the multi-label result shares any labels with the query image [68].
Formally, every multi-label image � has an associated label set !. A similarity score
between two multi-label images can then be defined as the number of shared
labels:

A(?, 7) =
��!? ∩ !7

�� . (5.2)

A relevant retrieval result would correspond to A(?, 7) > 0.
In CBIR benchmarks, the scores for various numbers of retrieved images are

reported and inspired the notation precision@9, where 9 defines the number of
retrieved images froman archive setA. The precision score can then be formulated
as:

precision@9(?) =
∑9

7=1 1A(?,7)>0

9
, (5.3)

where 1A(?,7)>0 is an indicator function defined as:

1A(?,7)>0 =

{
1, if A(?, 7) > 0
0, otherwise.

(5.4)

To better evaluate the performance of a retrieval system, the precision metric is
usually averaged over all queries of a predefined query-setQ. The overall precision
on a query archive Q is then defined as:

overall precision@9(Q) = 1
|&|

|& |∑
?=1

precision@9(?) . (5.5)
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One of the main disadvantages of the precision metric in a multi-label scenario
is the relevance definition. As only a single label must be shared among the query
and retrieved image, the score might be ill-fit for complex imagery with many
labels per image. A high precision score might hide underlying issues and not
reflect human expectations.

Figure 5.5: CBIR examples with precision = 1. The first row shows a retrieval
system that matches all labels from the query image, the second row
shows a system that only matches a single label from the query image.

See Fig. 5.5 for example: The red bordered query image contains the following la-
bels: “Mixed forest”, “Complex cultivation patterns”, “Inland Waters”, and “Urban
Fabric”. Both image retrieval systems have the same precision score of 1, as each
retrieved image contains at least one overlapping label. The first system returned
scenes with an identical label set, while the second system only retrieved patches
that contain the “Mixed Forest” label. Quantitively, both systems perform identical
according to the precision score, while the first system performs qualitatively
better.

An arguably different disadvantage is the invariance to the retrieval order. If the
retrieval order should be considered relevant or not depends on the application. If
the retrieval system is used for preprocessing or batching data and feeding it into
a different order-invariant system, the retrieval order is not relevant. If, however,
the system has a human interface, then the order might become crucial. A user
might be inclined to not search through all retrieved images to find the best match,
especially if 9 is large. The images at the end of the retrieval queue would become
less likely to be examined [70].

The last disadvantage of the precision score is that 9 cannot become larger than
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the smallest minority class. If there are only a few images of a specific class in the
archive, the precision score might misrepresent the performance of the retrieval
system.
Assume that there are only two images with a specific class : in the archive, but

the archive contains thousands of other images. Setting 9 = 10 and using a query
image with the class :, the precision score will never be higher than 0.2, even with
an ideal retrieval system.
The precision score is easy to understand and compare but has to be critically

evaluated if there are small minority classes or if the retrieval order is relevant.
Furthermore, themulti-label similarity is strongly simplified andmight lead to high
values with qualitatively low performance. Especially for complex imagery such
as remote sensing data, simply defining a single overlapping label as a relevant
image might be too trivial.

Mean Average Precision

The mean Average Precision (mAP) is not identical to the overall precision score
described in Eq. 5.5. mAP is defined as:

mAP@9(Q) = 1
|Q|

|Q |∑
?=1

AP@9(?) . (5.6)

Using the indicator (Eq. 5.4) and precision definition (Eq. 5.3), AP@9(?) is given
with

AP@9(?) = 1∑9
7=1 1A(?,7)>0

9∑
7=1

1A(?,7)>0 × precision@7 (?) . (5.7)

For shorter notation, one can define #rel :=
∑9

7=1 1A(?,7)>0. Putting it all together,
mAP can then be written as:

mAP@9(Q) = 1
|Q|

|Q |∑
?=1

1
#rel

9∑
7=1

1A(?,7)>0 × precision@7 (?) . (5.8)

Average precision calculates the mean precision scores from the first to the 9-th
retrieved images, whilemasking the non-relevant images. Due to the averaging
procedure, mAP is less sensitive to the exact value of 9 compared to the classic
precision score. Masking non-relevant images also allow the metric to become
less sensitive to small minority classes.
Assume that there are only two images with a specific class : in the archive,

but the archive contains thousands of other images. Setting 9 = 10 and using a
query image with the class :, the average precision score can still become 1, in
contrast to the classic precision score. For the average precision score to become
1, the non-relevant images have to be at the end of the retrieval queue. The metric
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implicitly drops all non-relevant images at the end of the retrieval queue while
giving higher weights to the retrieved images in the beginning.

Still, the metric has no knowledge of the remaining archive set. If a potential
retrieval system only returns images with very high similarity confidence and
then continues to return irrelevant images, the metric could become unexpectedly
high. Tuning a system to the mAP metric could hide a bias where the system skips
samples with lower confidence.

Also, for complex multi-label imagery defining a single matching label as an
equally relevant image compared to a retrieved image that matches all labels
might be not ideal. The relevance issue is inherited from the precision score.

Weighted Mean Average Precision

The weighted mean Average Precision (wmAP) score tries to encode similarity
information among multi-label images better. The wmAP metric is based on the
mAP and the average cumulative gain (ACG) metric [70]. The ACG score directly
utilizes the similarity measure from Eq. 5.2 to allow for non-binary relevance
values. These similarity values are then simply averaged to calculate the ACG
score:

ACG@9(?) = 1
9

9∑
7=1

A(?, 7) . (5.9)

To calculate the wmAP score the ACG from Eq. 5.9 replaces the precision metric in
Eq. 5.8 which leads to the following definition:

wmAP@9(Q) = 1
|Q|

|Q |∑
?=1

1
#rel

9∑
7=1

1A(?,7)>0 × ACG@7 (?) . (5.10)

Like mAP, wmAP does not evaluate the remaining archive and cannot determine
a possibly better retrieval order. In contrast to mAP, wmAP better integrates the
multi-label information as it allows retrieved images to have varying degrees of
relevance. Complex retrieval results give higher scores to query images with many
labels.

Although the ACG allows for better encoding of relevant images, it introduces
new issues. The overall score is not bound by 1 anymore and is biased towards
many-label images. The maximum value is dependent on the underlying label
distribution. The value itself has little meaning without any information about
the underlying dataset. As a result, the wmAP score can only be compared against
runs with identical query and archive splits.

The bias towards many-label images results from giving images with many
labels a higher relevance than images with fewer. Correctly retrieving images
for queries with 19 labels, for example, has a more significant influence on the
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overall score than correctly retrieving images for queries with only three labels.
To objectively evaluate a content-based image retrieval system, preferring specific
image instances over others is an undesirable property.

Normalized Discounted Cumulative Gains

A different popular retrieval metric is the normalized discounted cumulative
gains (NDCG) score [71]. It is based on the discounted cumulative gain (DCG)
metric, which adds an order-based discount factor to ACG (Eq. 5.9). An order-
based discount factor gives the retrieved images in the front of the queue a higher
priority than those in the lower ranks. Mistakes further down the queue are not
penalized as much, as the relevance of those images is lower. The commonly [72]
used DCG definition is:

DCG@9(?) =
9∑
7=1

2A(?,7) − 1
log2(1 + 7)

. (5.11)

To make the DCG scores comparable to other query results and not dependent on
the data distribution, a normalization step is added to define the NDCG metric for
a single query ?:

NDCG@9(?) = DCG@9(?)
min (IDCG@9(?), 1) , (5.12)

where IDCG is the ideal discounted cumulative gain of the complete archive set
that encodes the highest possible discounted cumulative gain score. Note that the
IDCG score needs to have a lower bound of 1 to ensure that NDCG is well-defined
even if there are no matching images in the archive set.

Due to the normalization, the NDCG metric is cross-query comparable and can
be extended to the entire query set:

NDCG@9(Q) = 1
|&|

|& |∑
?=1

DCG@9(?)
min (IDCG@9(?), 1) . (5.13)

The NDCG metric is bound by the number 1 and can be easily compared with
different query/archive splits. The score takes the retrieval order into account and
has full knowledge of the archive, as the highest possible DCG value is used as a
normalization factor. As a result, the value of 9 is not bound by any class, nor is
the value biased towards many-label images.

One could argue that the NDCGmetric requires too many compute resources for
vast archives. However, with the ever-increasing capabilities of modern hardware
and software that allow for out-of-memory calculations [73], NDCG scores for
archives with millions of entries can be quickly calculated.
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An arguable disadvantage of NDCG,which is also sharedwith all of the presented
metrics, is the use of the similarity definition from Eq. 5.2. The provided similarity
definition only considers the intersection between the label sets of the query and
archive image. There is no penalty if one label set is considerably larger than
the other. An appealing alternative would be to define a new similarity function,
where the label sets are ordered multi-hot encoded vectors, and � defines the
logical XNOR operation:

A(?, 7) =
∑
(!∗? � !∗7 ) . (5.14)

Although a thorough analysis of the proposed similarity measure is not in the
scope of the thesis, it should be noted that it is crucial to keep the implications and
biases of the used metrics in mind when evaluating benchmark results.
Compared to the other image retrieval metrics, the NDCG score has the most

advantages for complex multi-label imagery such as satellite data. The NDCG
metric does not simplify the multi-label information, as precision or mAP do.
NDCG is not biased towards many-label images, in contrast to wmAP. It evaluates
the performance with respect to the best possible results from the archive and
produces easy to evaluate and compare values between 0 and 1.
Therefore, the NDCG will be regarded as the primary metric to evaluate the

performance of the following experiments. The other metrics will also be included
in the evaluation. However, the NDCG will serve as the core indicator of content-
based image retrieval performance for remote sensing data.

5.3 Default Experimental Setup

Tominimize the differences between the following experiments and the recommen-
dations from the previously proposed CSSRL methods, the main neural network
architecture will be the residual network (ResNet) [21].

Figure 5.6: Skip Connection Visualization (Image from [21])

He et al. [21] proposed the use of skip connections, shown in Fig. 5.6. These skip
connections allow building deeper models without decreasing the performance
while keeping the number of parameters and computation complexity the same.
Since the initial proposal of the ResNet architecture, research has improved the

initial architecture by adding new [74, 75] or tweaking [76] existing components.
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However, to compare results with a wide range of previously published papers,
most CSSRL methods evaluate their model on the original ResNet architecture.
For the same reason, the chosen optimizer is the Adam optimizer [77] with cosine
annealing after 75% of the total epochs. The default configuration for the following
experiments is: lr = 1 × 10−3, V1 = 0.9, V2 = 0.99, and Y = 1 × 10−5. These values
were chosen after running a hyperparameter grid search on smaller subsets.

The default augmentation pipeline is motivated in Chapter 3 and consists of:

• Dihedral Transformation
• Rotation
• Gaussian Blurring
• Resized Cropping

The specific values for the various augmentation techniques are identical to the
proposed values from Chen et al. [41]. Concretely this means that the blur kernel
size is 10% of the original image width/height rounded up to an uneven number.
The resulting kernel size is 13px×13px for the BigEarthNet dataset. The blur factor
is randomly sampled for each image from the uniform distribution f ∈ [0.1, 2.0].
The resized crop augmentation crops a randomly sized part (from 8% to 100%
in area from original image) with a random aspect ratio (between 3/4 and 4/3).
The rotation transformation randomly rotates the input between 0° and 45°. Each
augmentation technique, except for random cropping, is applied to each branch
with a probability of 50%. Note that the symmetric augmentation probabilities
are used for SimCLR, Barlow Twins, and BYOL.

Althoughnot part of the recommended augmentation pipeline, themulti-spectral
color-jittering augmentation (composition of brightness and contrast transforma-
tion; see Chapter 3) defines a unified hyperparameter max_lighting. The exper-
imental results chapter will evaluate the effect of the simplified color-jittering
augmentation and requires the unified hyperparameter max_lighting. The max_-
lighting parameter is bound between [0, 1] and defines the relative strength of the
brightness and contrast transformation. A value of 0 is equal to no transformation
applied at all and a value of 1 to the maximum brightness/contrast transformation.
From the available twelve multi-spectral channels, all but the two low-resolution
60m channels were used.

The default batch size is set to 512, which is low compared to the recommenda-
tions from the proposed CSSRL methods. The small batch size was chosen to easily
allow testing of larger and more complex architectures and, more importantly, for
better comparisons between the standard and guided sampling experiments. The
experiments were run for 41 epochs to keep the overall training time low, even if
the general CSSRL recommendation is to train for hundreds of epochs [41, 43, 44].
The experimental results chapter evaluates the impact of the comparatively small
batch size and training time.

The metadata-guided sampling strategy experiments investigate the effect of
10, 16, 64, 128, 256, and 512 clusters. The general statistics of these cluster con-
figuration were presented in Chapter 4 Table 4.1. The 128, 256, and 512 cluster

43



5 Dataset and Experimental Setup

configurations were mainly chosen as recommended values for the mixed-cluster
sampling strategy. As the mixed-cluster sampling strategy derives the batch size
from the number of clusters, the 512 cluster configuration allows to directly com-
pare the results of the default and mixed-cluster sampling strategy without being
constrained by the cluster sizes.
Fig. 5.7 visualizes the cluster results for 128 and 512 clusters. The visualization

shown in Fig. 5.7b could suggest that 512 clusters may be too fine-grained. The
smaller cluster configurations (128 and 256) allow the cluster sizes to increase and
group the data into softer, more general clusters.

(a) 128 clusters (b) 512 clusters

Figure 5.7: BigEarthNet-Summer cluster visualizations with 128 and 512 clusters.

These cluster configurations can also be used to create hard batches with the
in-cluster sampling strategy. The main issue is that the batch size is constrained
to 72 or 57 patches, which might hurt the performance of the CSSRL methods.
The cluster configurations with 10, 16, and 64 clusters group the data into larger
clusters without too heavily restricting the batch size. The visual results are
presented in Fig. 5.8.
The code for the proposed metadata-guided sampling strategy, as well as the

code for all of the following experiments, is available at https://git.tu-berlin.
de/rsim/self-supervised-cbir-with-smart-sampling. The code is build on-top
of the fastai library from Howard and Gugger [78] and the self_supervised
library from Turgutlu et al. [79]. Part of the thesis’ code has been merged up-
stream for broader impact of the current work (see https://github.com/fastai/
fastai/pull/3252, https://github.com/fastai/fastai/pull/3255, and https://
github.com/KeremTurgutlu/self_supervised/pull/19).
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5.3 Default Experimental Setup

(a) 10 clusters (b) 64 clusters

Figure 5.8: BigEarthNet-Summer cluster visualizations with 10 and 64 clusters.
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Every experiment evaluates the NDCG,mAP,wmAP, and the precision performance
for the first 9 = 5, 9 = 10, 9 = 20, …, 9 = 100 retrieved images. These specific
valueswere copied from Sümbül andDemir [80]. Note that the chosen BigEarthNet-
Summer archive is big enough not to constrain the precision or mAP score. For
both of these metrics, the highest possible value remains 1.0/100%.

Aside from using metrics, it would be possible to evaluate the qualitative perfor-
mance. The main issue is that it is only feasible to review a small fraction of the
retrieved samples due to the query and archive split size. Furthermore, due to
the high complexity of satellite imagery, it is not easy to evaluate the performance
by visual inspection. To better support the argument, two retrieval results are
shown in Fig. 6.1 without stating which model is a randomly initialized and which
a self-supervised trained model1. Due to the issues with the qualitative evalua-
tion method, the following chapter will only focus on evaluating the quantitative
performance of the presented CSSRL methods.

6.1 Analysis of Investigated CSSRL Methods

All presented CSSRL methods — SimCLR, Barlow Twins, and BYOL — are tested
with their recommended projection head and the proposed augmentation pipeline.
A supervised and a randomly initialized model were benchmarked in addition to
the presented CSSRL methods for a more general comparison. The score for each
IR metric can be seen in Fig. 6.2.

As expected, the supervised model performs the best, and the randomly initial-
ized model performs the worst. Since the supervised model can directly learn
from the ground-truth labels, it is able to learn finer features. The relatively
high performance of the randomly initialized model is due to the convolutional
structure, which gives a strong prior on the input signal [37]. Note, these results
highlight that the precision and mAP scores are generally high (close to 1.0) for
complex multi-label datasets and that even a randommodel can get scores over
90%.

There seems to be no CSSRL method that is out-performing the others. Looking
at the NDCG results, SimCLR performs best for few retrieved images, while BYOL
takes the lead if more than twenty images are retrieved.

1 Fig.6.1aistheSimCLRtrainedmodelandFig.6.1bistherandomlyinitializedmodel
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(a) Retrieval System A (b) Retrieval System B

Figure 6.1: Example retrieval results of a randomly initialized and a
self-supervised trained model. The first column shows the query
images, followed by the five most similar retrieval results. Which
retrieval system corresponds to the randomly initialized and which to
the self-supervised one is not shown to highlight the qualitative
similarity between both systems.

It is important to note that the labels of the retrieved images have a large effect
on the NDCG score, especially if only a few images are retrieved. As a result, the
NDCG score for fewer images may fluctuate from run to run. With this in mind,
BYOL seems to be the favorable CSSRL method, which is in line with the results
from the natural image domain [43].

Since most experiments show a high correlation between the precision, mAP,
and wmAP scores, only the precision and NDCG scores will be presented. Lim-
iting the results to two metrics per experiment reduces the visual noise. The
complete benchmark results are available at https://git.tu-berlin.de/rsim/
self-supervised-cbir-with-smart-sampling. Experimental results that mainly
support conclusions or add little value from previous experiments have been
added to Appendix B.

The previous results used the recommended augmentation pipeline for remote-
sensing images proposed in Chapter 3. Since augmentation strategies play a crucial
role in CSSRL methods, the proposed pipeline needs to be critically analyzed.

The general issue with hyperparameter-based analysis is that the experimental
setup quickly suffers from a combinatorial explosion. The strategy from Chen
et al. [41] was applied to limit the number of experiments to a feasible amount.
Every experiment only changes a single hyperparameter or disables/enables a
specific augmentation strategy of the proposed augmentation pipeline.
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Figure 6.2: Default benchmark results with the presented CSSRL methods (Barlow
Twins, BYOL, SimCLR), a randomly initialized model, as well as a
model trained with supervision.

Simplified Multi-Spectral Color-Jittering

The CSSRL methods may suffer from the missing color-jittering augmentation.
Experiments from the natural image domain have shown that SimCLR may apply
histogrammatching to find the correct positive pairs if no color-jittering is applied
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[41], leading to subpar performance. As described in Chapter 3, the closest multi-
spectral composition to SimCLR’s color-jittering is a combination of brightness and
contrast augmentation. The effect of varying simplified color-jittering strengths
on the SimCLR method can be seen in Fig. 6.3 (all metrics are shown in Fig. B.1).
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Figure 6.3: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with SimCLR method and different
max_lighting values.

The precision score is best when no color transformation is applied and gets
worse with stronger color augmentations. The NDCG score indicates that the first
thirty retrieved images are much more accuratewhen no color augmentation is
applied but becomes worse when more images are retrieved. However, the NDCG
score strongly fluctuates between runs. Either the NDCG score is comparatively
high for smaller amounts of retrieved images and gets worse for larger amounts,
as seen in Fig. 6.3, or the performance benefit for fewer retrieved images is smaller
but higher for all different retrieval settingswhen no color augmentation is applied.
The fluctuation only happens for the NDCG score; the precision, mAP, and wmAP
scores worsen for stronger color augmentations. These fluctuations are only
present in the SimCLR experiments and are reviewed in more detail later.

The Barlow Twins and BYOLmethods paint a more concrete picture. The Barlow
Twins results are shown in Fig. 6.4 (complete results in Fig. B.2) and the BYOL
results in Fig. 6.5 (complete results in Fig. B.3). For both of these methods, the
color augmentation transformation considerably hurts the overall retrieval per-
formance. In general, these results indicate that the initial recommendation of
not using any color augmentation techniques for CSSRL methods in the remote
sensing domain is correct.
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Figure 6.4: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with Barlow Twins method and different
max_lighting values.
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Figure 6.5: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with BYOL method and different
max_lighting values.

Dihedral Transformation

The proposed augmentation pipeline strongly recommends applying a Dihedral
transformation since remote sensing images are rotation invariant. The experi-
mental results do not fully align with the initial assumption. BYOL and SimCLR
slightly favor a Dihedral transformation (see results in Figs. B.4 and B.5), while the
Barlow Twins method takes a significant performance hit, as shown in Fig. 6.6.

The relatively weak benefit for BYOL and SimCLR suggests that either the ran-
dom 45° rotation suffices, or that the rotation invariance is not too relevant to
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Figure 6.6: Dihedral transformation results with Barlow Twins method.

generate good contrastive pairs. The strong negative impact of flipping and ro-
tating on the Barlow Twins’ retrieval performance is unexpected and requires
further investigation. A pointer for further investigation is sketched in Fig. 6.7,
which shows that the Barlow Twins method performs best when no Dihedral
transformation is applied but performs worse when neither the rotation nor the
Dihedral transformation is used.
In general, the Dihedral transformation should be included in the CSSRL pipeline

for RS imagery. Since rotational invariance is a fundamental property of remote
sensing data, the model should almost always learn this property. The major
exception is the Barlow Twins method, which seems to suffer from the Dihedral
transformation. A possible explanation for the low benefit for SimCLR and BYOL
could be that the rotation invariance is not too relevant due to the high correlation
between query and archive split. The effect of randomly rotating the query or
archive images could be investigated to test this assumption further.

Gaussian Blurring

Gaussian blurring behaves similarly to the Dihedral transformation. SimCLR and
BYOL both prefer Gaussian blurring, as shown in Figs. B.6 and B.7, while the Barlow
Twins (Fig. 6.8) favor no blurring at all. Although Zbontar et al. [44] have used
the same Gaussian blurring configuration in the original publication. Gaussian
blurring seems to give minor improvements for SimCLR and BYOL but requires
some tuning for the Barlow Twins. Either by completely disabling blurring or
by investigating if smaller blur strengths or kernel sizes help to improve the
performance. However, blurring does not force the model to learn any desirable
properties, such as the Dihedral transformation enforces rotation invariance.
Blurring increases the input variability and, potentially, makes the resulting model
less reliant on edges. If higher performance is achievable without blurring, it is
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Figure 6.7: Effect of rotation and Dihedral transformation on the Barlow Twins
method.

an equally valid consideration.
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Figure 6.8: Gaussian Blurring results with Barlow Twins method.

Resized Cropping

A possibly questionable design decision done in the default augmentation pipeline
was to set the minimum size of the crop before resizing to 8%. Due to the high-
spatial resolution of each pixel, smaller crops are likely to drop entire classes
from input images. The desired effect on the model is to allow it to become scale-
invariant and to introducemore variability to the input. The higher variabilitymay
also counter possible short-circuit solutions, like histogram matching. Another
reason to consider allowing smaller crops is that the results from the natural
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image domain strongly suggest doing so.
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Figure 6.9: Resized cropping results with Barlow Twins method and different
minimum crop sizes.
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Figure 6.10: Resized cropping results with BYOL method and different minimum
crop sizes.

The experimental results shown in Figs. 6.9 and 6.10 support the choice of small
crop sizes. The Barlow Twins and the BYOL methods perform considerably worse
with larger crop sizes. The SimCLR results (see Fig. B.8) also generally favor smaller
crop sizes. However, similar to the color-jittering experiments, SimCLR produces
inconsistent results and, generally, prefers larger crops if more than thirty images
are retrieved. Still, the overall recommendation is to use smaller crop sizes for
CSSRL methods, as suggested in the initial augmentation pipeline proposal.
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Investigating SimCLRs Instability

As previously mentioned, the SimCLR results fluctuate relatively strong compared
to the Barlow Twins or BYOL method. To gain more insight into the training
dynamics, the training was stopped every ten epochs to calculate the retrieval
scores over time. Comparing the NDCG scores over time from all three CSSRL
methods shows that the issue is not caused by training for a relatively short amount
of time. The Barlow Twins and BYOL method generally get higher NDCG scores
the longer the training runs with diminishing returns.
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Figure 6.11: Intermediate NDCG scores for SimCLR, BYOL, and Barlow Twins
during training.

SimCLR, on the other hand, starts to perform worse after twenty epochs of
training if more than ten images are retrieved. Conversely, the scores for five to
ten retrieved images strongly increase. The high scores for few retrieved images
indicate that the model is overfitting specific views. Due to the strong correlation
between the query and archive split of the BigEarthNet dataset, there is a high
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likelihood of very similar images in both splits. SimCLR seems to learn patch-
specific features that do not generalize well. These features allow the model to
find strongly correlated images, leading to a good performance if only a few images
are retrieved. When more images are retrieved, the effect of non-generalizable
features becomes apparent and reduces the overall result.

This hypothesis would explain the fluctuations seen in the SimCLR experiments.
Some runs start to overfit early, while others seem to overfit later. Over fitted
methods lead to strong performance for few retrieved images, but low perfor-
mance whenmore images are retrieved, and why strong augmentation techniques
help SimCLR perform better when more images are retrieved. The performance
does not necessarily improve due to the better fit of the augmentation pipeline in
general, but because it offsets the over-fitting effect.

SimCLR could suffer from the relatively small batch size of 512. However, the
results shown in Fig. 6.12 do not fully support this argument. Larger batch sizes
help stabilize the results in some experiments and reduce the effect of overfitting
but do not solve the underlying issue. At the end of the training with 2048 patches
per batch, as shown in Fig. 6.12b, the model starts to overfit, and the scores for
9 > 20 start to decrease and collapse. Furthermore, the overall scores are generally
not higher for larger batch sizes. A non-increasing performance for larger batch
sizes is in contrast to results from the natural image domain.
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(a) Batch size = 512 (default)
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(b) Batch size = 2048

Figure 6.12: Intermediate NDCG scores for SimCLR with different batch sizes.

Since the SimCLR results are unstable and do not seem to overfit in all experi-
ments, another possible solution is to use a different optimizer. A better optimizer
would be a variant that helps to avoid early local minima and encourages explo-
ration. To test the assumption, the Adam optimizer was replaced with a novel
synergistic optimizer: Ranger21 [81]. The NDCG scores over time can be seen in
Fig. 6.13.

The results support the assumption that the Ranger21 optimizer helps to avoid
the overfitting issue. The NDCG scores for 9 > 10 with the Ranger21 optimizer
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Figure 6.13: Intermediate NDCG scores for SimCLR with default Adam and
Ranger21 optimizer.

converge more smoothly and do not worsen over time. Note that the scores for
9 < 10 are lower than the Adam optimizer scores. However, since the model from
the Adam optimizer is overfitted, it is to be expected that a more general model
performs worse for few retrieved images. Especially if the query and archive
split are heavily correlated, as it is the case for the current BigEarthNet split. In
general, the SimCLR results are much more stable with the Ranger21 optimizer.
With the new optimizer, the previous contradictory results for SimCLR are also
fixed. The SimCLR color-jittering and resized-crop results are now in line with
BYOL and the Barlow Twins results. As shown in Fig. 6.14, adding any type of color
augmentation greatly hurts the overall performance, as well as large crop sizes as
shown in Fig. 6.15.

The class imbalance in the dataset combined with the way SimCLR contrasts the
samples might explain the tendency of SimCLR to overfit. The current training
split of the BigEarthNet-Summer dataset contains 65 599 patches with 3766 unique
labels combination, which might indicate a high variability. However, of these
3766 label combinations 1627 exist once and 9970 (≈ 15%) belong to the largest
class combination, which only consists of the “Marine Waters” class.

This specific class imbalance could be devastating for the SimCLR training pro-
cess. If a batch contains many semantically similar samples, such as the “Marine
Waters” class, SimCLR might not be able to find the correct positive pairs due to
the high correlation between water patches, or it learns water-specific features
that do not generalize well. Both of these scenarios could lead to the observed,
unstable behavior of SimCLR.

BYOL only contrasts positive pairs against each other andwill probably be biased
towards the largest class, but it should not trivialize the learning procedure. The
Barlow Twins method does not contrast samples directly against each other but
optimizes the cross-correlation between the metric embedding matrices. Both of
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Figure 6.14: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with SimCLR method + Ranger21 optimizer
and different max_lighting values.
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Figure 6.15: Resized cropping results with SimCLR method + Ranger21 optimizer
and different max_lighting values.

these optimization methods seem to stabilize training even with imbalanced data.

Effect of Ranger21 on Barlow Twins and BYOL

The Ranger21 optimizer also had beneficial effects on the Barlow Twins method.
The baseline results have improved considerably, as shown in Fig. B.9. This might
be due to the new stability against the Dihedral transformation (see Fig. B.10). In
contrast to the results with the Adam optimizer, the Ranger21 results perform
almost identical with/without Dihedral transformation. However, the Barlow
Twins still prefer no blurring at all, as depicted in Fig. B.11. The overall perfor-
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mance of BYOL decreases when the Ranger21 optimizer is used (Fig. B.12). The
performance gap can be reduced when the Ranger21 optimizer is run for more
epochs to compensate for the slower convergence speed of the Ranger21 optimizer
compared to the Adam optimizer.
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Figure 6.16: Intermediate NDCG scores for BYOL with default Adam and Ranger21
optimizer.

The results shown in Fig. 6.16 indicate that the BYOL and Ranger21 combination
benefits from longer training runs but is generally lower than the Adam coun-
terpart. Longer training runs or further tuning the optimizer’s hyperparameter
values might close the Ranger21 and Adam optimizer gap. In general, the bene-
fits of the Ranger21 optimizer outweigh the drawbacks. Especially the stability
improvements related to SimCLR are crucial for further analysis. Hence, the
Ranger21 optimizer is used for all the following experiments.

Since the performance of SimCLR heavily depends on how the patches within
a batch relate to one another, SimCLR has a high potential to benefit from the
previously proposed metadata-based sampling framework from Chapter 4. The
following section will investigate the effects of the proposed sampling framework
on the different CSSRL methods. The experimental results from this section have
shown that the initially proposed contrastive data augmentation pipeline for
remote sensing imagery works very well with the presented CSSRL method. The
recommended pipeline will be used for all of the remaining experiments. Even
though the Barlow Twins prefer no Gaussian blurring, using the same pipeline for
all methods minimizes possible side effects.
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6.2 Analysis of Proposed Metadata-Guided Sampling

Framework for CSSRL

The main motivation for the proposed metadata-based sampling framework from
Chapter 4 is to tune to the batch hardness. According to Tobler’s first law of
geography, the proposed in-cluster sampling strategy generally increases the batch
hardness, while the mixed-cluster sampling strategy reduces it.
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Figure 6.17: SimCLR in-cluster sampling results with 2 clusters and the batch size
in parenthesis.

Increasing the batch hardness has an increasingly negative effect on SimCLR, as
shown in Fig. 6.17. The significant performance dropwith ten clusters (and a batch
size of 512) indicates that the sampled batches are too hard. A contra-argument
could be that themodel requiresmore time to learn finer features due to the higher
similarity among the patches within a batch. The progression results shown in
Fig. B.13 disprove the assumption.

Decreasing the batch hardness by applying the mixed-cluster sampling strategy
may improve the overall performance of SimCLR, as shown in Fig. 6.18. The
retrieval performance is consistently higher with 512 clusters and therefore 512
patches per batch. The models trained with fewer clusters overfit to limited views
and generally perform worse than the reference result. These results support
the previous conclusion that batch size plays an essential role in the stability
of SimCLR. The sampling strategy alone is not able to alleviate the overfitting
issue. However, the proposed metadata-guided sampling strategy can improve
the overall retrieval performance.

The results of the Barlow Twins method paint a similar picture. The in-cluster
sampling strategy consistently hurts the overall retrieval performance, as shown
in Fig. 6.19. Increasing the number of clusters worsens the penalizing effect of
higher similarity within batches.
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Figure 6.18: SimCLR mixed-cluster sampling results with 2 clusters.
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Figure 6.19: Barlow Twins in-cluster sampling results with 2 clusters and the
batch size in parenthesis.

By mixed-sampling the clusters and creating batches with a higher variability,
the performance generally increases, as shown in Fig. 6.20. These results support
the initial assumption that the Barlow Twins method benefits from the mixed-
sampling strategy, even though the method contrasts feature vector components
and not the image views per se. Note that the retrieval performance is highest
with 256 clusters and not with 512. The high performance with 256 clusters might
be caused by an implicit preference of the Barlow Twins for smaller batch sizes,
or it indicates that the hardness/variability of the Barlow Twins’ batches requires
finer tuning compared to SimCLR.

Applying the proposed sampling strategies to BYOL produces unexpected results.
BYOL does not contrast different images against each other and should be unaf-
fected by the proposed sampling strategy. The in-cluster sampling results shown
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Figure 6.20: Barlow Twins mixed-cluster sampling results with 2 clusters.
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Figure 6.21: BYOL in-cluster sampling results with 2 clusters and the batch size in
parenthesis.

in Fig. 6.21 indicate that even with the same batch size, the sampling procedure
has an impact on the overall retrieval performance. Changes to the relationship
among input patches within batches should have little to no effect on BYOL’s per-
formance since it only contrasts positive pairs. There is research indicating that
the standard BYOL method implicitly contrasts samples within a batch due to the
batch normalization layers [82]. The implicit contrasting of all images in a batch
supports the results shown in Fig. 6.21.

The performance differences are even more significant for the mixed-cluster
sampling strategy shown in Fig. 6.22. Further inspection has revealed that the
different batch sizes cause the main performance differences. Fig. 6.23 compares
the default sampling method with different batch sizes against the mixed-cluster
sampling strategy. The BYOL results become unstable for small batch sizes due
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Figure 6.22: BYOL mixed-cluster sampling results with 2 clusters.

to the unstable batch statistics [83]. However, even when considering the differ-
ent batch sizes, there is still a noticeable performance difference caused by the
proposed mixed-cluster sampling strategy.
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Figure 6.23: BYOL default sampling with different batch sizes vs. mixed-cluster
sampling results with 2 clusters.

Recent research has shown that BYOL can be modified to work without a
batch normalization layer with minor performance loss [84]. Future experiments
could investigate if a non-batch normalization BYOL variant produces similar
results with different sampling strategies. If the performance would still differ
without batch normalization, it would indicate that BYOL is sensitive to over-
/undersampling subsets. In the in-cluster sampling scenario, similar positive pairs
might result in a uniform gradient direction that pushes the model towards early
local minima. On the other hand, the mixed-cluster sampling scenario could have
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the opposite effect and implicitly favor exploration of the loss-space due to the
non-uniform gradient direction.

The presented CSSRL methods unanimously favor the mixed-cluster sampling
strategy and, therefore, easier, more variable batches. The in-cluster sampling
strategy hurts the retrieval performance in all scenarios and worsens with in-
creasingly harder batches. These results indicate that the location metadata can
effectively tune the batch hardness. The proposed sampling framework can be
used to improve the overall image retrieval performance of the presented CSSRL
methods.
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7 Conclusion

The thesis proposes a general metadata-guided sampling framework to improve
the content-based image retrieval performance of contrastive self-supervised rep-
resentation learning (CSSRL) methods in the remote sensing (RS) domain. The
sampling framework is applied to the SimCLR, Barlow Twins, and BYOL methods.
The specific implementation clusters the dataset based on the location data. These
clusters are then used to assemble batches with variable hardness as inputs for
the different CSSRL methods. Tuning the batch hardness improves the general
retrieval performance of these methods. Furthermore, the default augmentation
pipeline from the natural image domain is critically evaluated. An augmenta-
tion pipeline tailored explicitly for the remote sensing domain is presented and
experimentally verified.
The main results of investigating the default augmentation pipeline from the

natural image domain in the RS setting are the following: Allowing small crops
for the resized cropping augmentation is crucial for the retrieval performance
of CSSRL methods, even though the probability of dropping entire classes from
the input images is high in the RS domain. Small crops allow the model to learn
scale-invariant features better and avoid short-circuit solutions, such as histogram
matching. Dihedral and rotation transformations should be included since they
create an inductive bias to learn rotation-invariant visual features. Rotational
invariance is a unique property of remote sensing imagery and is desired for
almost all remote sensing retrieval systems. Gaussian blurring can be included
but should be evaluated depending on the specific method and the underlying
dataset. Color-jittering should not be included in the augmentation pipeline since
the main benefit of multi-spectral imagery is the ability to distinguish objects
based on their spectral reflectivity. Although color-shifting is recommended in
the natural image domain, the CSSRL methods’ retrieval performance suffers
from changes to the spectral reflectance values in the RS domain. As a result, the
proposed augmentation pipeline consists of resized cropping, rotating, Dihedral
transformation, and Gaussian blurring. The pipeline does not include any color-
shifting transformations.
The first proposed sampling strategy, in-cluster sampling, generally increases

the batch hardness by sampling all patches from a single cluster. The second
sampling strategy, mixed-cluster sampling, decrease the hardness by sampling all
patches from different clusters. The SimCLR and Barlow Twinsmethod contrast all
images within a batch and benefit from the sampling-based batch tuning approach.
Increasing the batch hardness by reducing the input variability through in-cluster
sampling hurts the overall retrieval performance of both methods. Increasing
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the variability with the mixed-cluster sampling strategy generally improves the
performance. These results show that the freely available location data can be
used as a proxy for the patch similarity and implicitly used to tune the batch
hardness.
BYOLdoes not contrast all imageswithin a batch and should bemostly unaffected

by the proposed augmentation strategy. However, the results are similar to those
from the SimCLR and Barlow Twins experiments. The in-cluster sampling strategy
decreases the retrieval performance, while the mixed-cluster sampling strategy
slightly improves the results for the default configuration. The performance impact
could be caused by implicitly contrasting all images within a batch due to the batch
normalization layer, or it could be caused by oversampling sparse regions. The
exact reason could be investigated in a future extension of this work.

Since the CSSRL methods do not require any labels, an exciting investigation
could be to pre-train the models on a larger dataset and evaluate the performance
on the BigEarthNet archive. Increasing the dataset size allows the CSSRL methods
to learn more general features and imposes fewer restrictions on the sampling
framework.
Future experiments could investigate dynamic sampling strategies. For example,

the number of clusters to sample from could be modified during training. For
the in-cluster sampling strategy, starting with few easy clusters and gradually
increasing the hardness might increase the convergence speed or improve the
model’s overall performance.
Another possible extension to the proposed metadata-guided sampling frame-

work is to pre-group the data based on temporal information. Embedding temporal
information into the clustering pipeline would better accommodate for seasonal
changes and create finer clusters.
The clusters themselves could also be dynamically updated in an online fashion.

The location-based clustering result would be used as an initial guess for similar
images. During training, the images’ feature vectors could be compared against
each other and, based on some statistics, be re-assigned to a different cluster.
The sampling framework could also be used to cluster the labels in hamming

space and run similar experiments in a supervised fashion. These supervised
experiments could be applied to the proposed CSSRL methods to investigate the
batch dynamics further.
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A Additional BigEarthNet Resources

Table A.1: Relation between New and Original Class-Nomenclature.

Recommended 19-label class-nomenclature Associated original 43 class-nomenclature

Urban fabric Continuous urban fabric; Discontinuous urban fabric

Industrial or commercial units Industrial or commercial units

Arable land
Non-irrigated arable land; Permanently irrigated land;
Rice fields

Permanent crops
Vineyards; Fruit trees and berry plantations; Olive
groves; Annual crops associated with permanent crops

Pastures Pastures

Agro-forestry areas Agro-forestry areas

Complex cultivation patterns Complex cultivation patterns

Broad-leaved forest Broad-leaved forest

Coniferous forest Coniferous forest

Mixed forest Mixed forest

Natural grassland and sparsely vegetated areas Natural grassland; Sparsely vegetated areas

Moors, heathland and sclerophyllous vegetation Moors and heathland; Sclerophyllous vegetation

Beaches, dunes, sands Beaches, dunes, sands

Transitional woodland, shrub Transitional woodland/shrub

Inland wetlands Inland marshes; Peatbogs

Coastal wetlands Salt marshes; Salines

Inland waters Water courses; Water bodies

Marine waters Coastal lagoons; Estuaries; Sea and ocean

Land principally occupied by agriculture, with sig-
nificant areas of natural vegetation

Land principally occupied by agriculture, with signifi-
cant areas of natural vegetation

– Airports

– Bare rock

– Dump sites

– Port areas

– Road and rail networks and associated land

– Mineral extraction sites

– Construction sites

– Sport and leisure facilities

– Burnt areas

– Intertidal flats

– Green urban areas
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A Additional BigEarthNet Resources

(a) Marine waters (b) Arable land (c) Inland waters (d) Pastures

(e) Broad-leaved
forest

(f) Agro-forestry
areas

(g) Coniferous
forest

(h) Inland
wetlands

(i) Mixed forest (j) Moors
heathland and
sclerophyllous
vegetation

(k) Complex
cultivation
patterns

(l) Transitional
woodland
shrub

(m) Permanent
crops

(n) Urban fabric (o) Natural
grassland and
sparsely
vegetated
areas

(p) Coastal
wetlands
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(q) Land principally
occupied by
agriculture with
significant areas of
natural vegetation

(r) Industrial or
commercial units

(s) Beaches dunes
sands

Figure A.1: Example images containing the respective classes from the 19
class-nomenclature.
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Figure B.1: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with SimCLR method.

79



B Extended Experimental Results

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

37

38

39

40

41

number of retrieved images

N
D
C
G
(%

)

0.0 0.1

0.3

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

96

97

98

99

100

number of retrieved images

p
re
ci
si
o
n
(%

)

0.0 0.1

0.3

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

1.8

1.9

2

2.1

number of retrieved images

w
m
A
P

0.0 0.1

0.3

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

96

97

98

99

100

number of retrieved images

m
A
P
(%

)

0.0 0.1

0.3

Figure B.2: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with Barlow Twins method.
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Figure B.3: Simplified multi-spectral color-jittering augmentation (brightness +
contrast shifting) results with BYOL method.
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Figure B.4: Dihedral transformation results with BYOL method.
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Figure B.5: Dihedral transformation results with SimCLR method.
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Figure B.6: Gaussian Blurring results with SimCLR method.
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Figure B.7: Gaussian Blurring results with BYOL method.
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Figure B.8: Resized cropping results with SimCLR method.
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Figure B.9: Effect of Adam (default) vs. Ranger21 optimizer on Barlow Twins.
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Figure B.10: Dihedral transformation results with Barlow Twins method +
Ranger21 optimizer.
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Figure B.11: Gaussian Blurring results with Barlow Twins method + Ranger21
optimizer.

89



B Extended Experimental Results

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

37

38

39

40

41

number of retrieved images

N
D
C
G
(%

)
BYOL Adam (Default)

BYOL Ranger

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

96

97

98

99

100

number of retrieved images

p
re
ci
si
o
n
(%

)

BYOL Adam (Default)

BYOL Ranger

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

1.8

1.9

2

2.1

number of retrieved images

w
m
A
P

BYOL Adam (Default)

BYOL Ranger

5
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

96

97

98

99

100

number of retrieved images

m
A
P
(%

)

BYOL Adam (Default)

BYOL Ranger

Figure B.12: Effect of Adam (default) vs. Ranger21 optimizer on BYOL.
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10 clusters. Displaying NDCG scores over time.
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