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Abstract

The development of various earth observation missions in recent years has led to a large amount

of remote sensing (RS) image archives. The resulting massive volumes of RS images require

new methods for content-based image retrieval (CBIR) to enable accurate search and retrieval

of relevant images. Deep learning based methods have been widely applied for CBIR due to

their prominent capability of characterizing complex RS images. However, deep learning based

methods require a large amount of annotated RS images, which is difficult because the man-

ual annotation is time-consuming and laborious. To address this problem, we first propose

novel semi-supervised methods based on graph convolutional neural networks (Graph CCNs)

for content-based image retrieval (CBIR) method from remote sensing (RS) image archives.

The propagation of labels through the graph allows the model to use the unlabeled images as an

additional input. Secondly, we propose a novel Triplet Graph Convolutional Network (TGCN)

with a Graph-based Triplet Sampling (GTS) strategy. The TGCN consists of three parallel graph

models with shared weights and learns a representation from triplets of images suitable for im-

age retrieval. The GTS relies on the graph representation to select triplets considering their

similarity learned by the graph. The TGCN shows superior performance in learning the graph

representationsâ metric space. The proposed GTS enables exploiting the implicit similarity in-

formation within the graph structure to select hard triplets, which are beneficial for the efficiency

of the training. Thirdly, we generalize the semi-supervised methods based on Graph CNNs to

multi-label RS image retrieval scenarios. Experimental results show the effectiveness of the pro-

posed methods for semi-supervised RS image retrieval.
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Zusammenfassung

Die Entwicklung verschiedener Erdbeobachtungsmissionen in den letzten Jahren hat zu einer

Vielzahl von Fernerkundungsbildarchiven (RS) geführt. Die daraus resultierenden massiven

Mengen an RS-Bildern erfordern neue Methoden für das inhaltsbasierte Abrufen von Bildern

(CBIR), um eine genaue Suche und das Abrufen relevanter Bilder zu ermöglichen. Deep-

Learning-basierte Methoden wurden für CBIR aufgrund seiner herausragenden Fähigkeit zur

Charakterisierung komplexer RS-Bilder in großem Umfang angewendet. Deep-Learning-basierte

Methoden erfordern jedoch eine große Anzahl kommentierter RS-Bilder, was schwierig ist, da

die manuelle Annotation zeitaufwändig und mühsam ist. Um dieses Problem anzugehen, schla-

gen wir zunächst neuartige halbüberwachte Methoden vor, die auf Graph Convolutional Neural

Networks (Graph CCNs) für die inhaltsbasierte Bildabrufmethode (CBIR) aus Fernerkundungs-

bildern (RS) basieren. Durch die Weitergabe von Beschriftungen durch das Diagramm kann das

Modell die unbeschrifteten Bilder als zusätzliche Eingabe verwenden. Zweitens schlagen wir

ein neuartiges Triplet Graph Convolutional Network (TGCN) mit einer graphbasierten Triplet

Sampling (GTS) -Strategie vor. Das TGCN besteht aus drei parallelen Diagrammmodellen mit

gemeinsamen Gewichten und lernt eine Darstellung aus Tripletts von Bildern, die zum Abrufen

von Bildern geeignet sind. Das GTS stützt sich auf die Diagrammdarstellung, um Tripletts unter

Berücksichtigung ihrer durch das Diagramm erlernten Ähnlichkeit auszuwählen. Das TGCN

zeigt eine überlegene Leistung beim Lernen des metrischen Raums der Diagrammdarstellun-

gen. Das vorgeschlagene GTS ermöglicht die Nutzung der impliziten Ähnlichkeitsinformatio-

nen innerhalb der Diagrammstruktur, um harte Tripletts auszuwählen, die für die Effizienz des

Trainings von Vorteil sind. Drittens verallgemeinern wir die halbüberwachten Methoden, die auf

Graph CNNs basieren, auf RS-Bildabrufszenarien mit mehreren Etiketten. Die experimentellen

Ergebnisse zeigen die Wirksamkeit der vorgeschlagenen Methoden zur halbüberwachten RS-

Bildwiederherstellung.
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1 Introduction

1.1 Motivation

With the development of various earth observation missions, a large amount of remote sens-

ing (RS) images are available for many important applications, including disaster monitoring,

land-cover and land-use classification, and urban mapping. Such massive volumes of RS im-

age archives require vigorous blooming of content-based image retrieval (CBIR) methods for

efficiently and accurately searching and retrieving relevant images, given the query images.

Deep learning (DL) based methods have recently seen a huge raise in popularity and due to

their powerful capabilities for extracting features from semantically complex RS images they

have been been applied to many CBIR tasks. Most DL-based CBIR methods in the literature

exploit supervised information (e.g., semantic labels) to guide the learning of the underlying DL

model [71, 6, 58]. To achieve scalable and accurate image retrieval, Roy et al. [50] introduce

the metric learning based deep hashing network that learns hash codes for RS images. The

network learns an embedding space, which induces a metric by receiving triplets of images as

input. However, such supervised learning requires large-scale labeled RS images, which require

huge amount of human efforts. Compared with supervised learning, semi-supervised learning

can effectively overcome such limitation by using an approach of learning the global structure

of the dataset from both the labeled and the unlabeled datasets.

Semi-supervised learning methods are divided into two aspects, transductive learning and

inductive learning. In the transductive learning methods, the classifier is constructed only for

those images that have been utilized in the training phase. In the inductive learning methods, the

classifier can predict the new images which are previously unseen when training the classifier.

There are various graph-based semi-supervised learning methods, the key idea of the existing

methods is building a graph whose nodes represent the labeled and unlabeled images, the nodes

with unlabeled images can be labeled by propagation from the labeled nodes through the graph.

In particular, one of the state-of-art DL methods for image retrieval is based on triplet loss,

which takes two similar images and one dissimilar image as input. Provided with such triplets,

the loss function drives the learning of a feature embedding space, which is suited for image

search and retrieval applications. It does so by forcing the distance between similar images to

be smaller than the distance between dissimilar image by at least a margin [53]. However, using

triplets that are obtained from random sampling may contain many easy triplets, which already

satisfy the optimization constraint. This reduces the training efficiency and stalls the training

progress. It is therefore important to efficiently mine hard triplets to help training and improve

performance.

Graph neural networks (GNNs) are first proposed by Gori et al. [19] and Scarselli et al. [52]

as recurrent neural networks. In the GNN, the information on each node can be passed to the

1



1 Introduction

neighbor nodes according to the topological structure of the GNN and the node representations

reach a stable state after training. Duvenaud et al. [16] propose a convolutional neural network

based on graph-structured data to achieve end-to-end learning for predictions leading to graph

neural networks (GNNs). Bruna et al. [5] use smooth spectral multiplier for the spectral con-

struction of deep neural network on graphs. Kipf and Welling [29] present the first adoption

of a GNN for semi-supervised classification. Recently a Siamese graph convolution network is

proposed to learn the discriminative feature space for CBIR in RS [9]. This network consists

of two GCN models for measuring the similarity between a pair of graphs. Such an architec-

ture can learn the metric space and pull similar images closer, while pushing dissimilar images

away. However, it cannot capture the potentially high-order correlations between samples and

correctly model the inter- and intra-class similarities of fine-grained datasets with large numbers

of classes.

Due to the sufficiency of the Graph CNNs applied in semi-supervised learning, we can im-

plement Graph CNNs to address the issues mentioned above by using only few annotated RS

images and we want to investigate the performance of Graph CNNs methods for RS image re-

trieval.

1.2 Objective

Supervised learning relies on a large amount of labeled RS images, which require a huge amount

of human effort and are expensive. In contrast to this, semi-supervised learning can effectively

overcome such limitations by learning the global data structure from both labeled and unlabeled

images. Various graph-based semi-supervised learning methods are proposed in the literature.

The key idea of the existing methods is to build a graph, with the nodes representing the images

and the edges expressing relations between images. Labels can be assigned to the nodes of

unlabeled images by propagating the labels from nodes through the graph.

Therefore, we plan to construct a Graph Convolutional Neural Network, which implements

label propagation method on the inherent graph structure among the images based on the learned

CNN models. The Graph CNNs methods can be beneficial for discovering the inherent data

structure among all the images in a scalable archive, such as BigEarthNet [59], with only a

small subset of annotated images.

In this thesis, we aim to show how GCN contributes to semi-supervised learning by propagat-

ing label information to unlabeled data and sampling suitable hard triplets. The semi-supervised

nature of the method allows it to benefit of the inherent data structure among all the images in

a large-scale archive with only a small subset of annotated images. Moreover, GCN can help

to explore the similarity relations between images from same or different classes, so that hard

triplet can be selected. Compared with the easy triplet mentioned above, each hard triplet con-

sists of a dissimilar positive and a similar negative image with regard to query image. It can

improve the training efficiency of the metric learning.

We address the lack of huge amounts of labeled images and difficulty in semi-supervised RS

image retrieval in this thesis by proposing novel semi-supervised RS image retrieval frameworks

based on Graph CNNs. First, we develop a semi-supervised GCN model for RS image retrieval

to learn image similarities by relying only on a few annotated images. Second, we propose a

2



1.3 Outline

new Triplet Graph Convolutional Networks with a novel GCN-based triplet sampling strategy to

improve the efficiency of graph-based metric learning. Third, we propose a new semi-supervised

GCN for multi-label RS image retrieval to generalize the GCN-based methods into multi-label

scenarios. This work shows the effectiveness of GCN-based methods on semi-supervised RS im-

age retrieval, which can achieve a better performance with only few annotated images compared

with state-of-art CNN-based methods.

1.3 Outline

This example thesis is separated into 7 chapters. A brief introduction is given bellow.

Chapter 2 introduces the related works with regard to graph convolutional neural networks

and image retrieval. In the first section, image retrieval methods are introduced, which are di-

vided into two categories: 1) text-based image retrieval (TBIR); 2) content-based image retrieval

(CBIR). In the second section, the development and state-of-art remote sensing image retrieval

methods are presented.

Chapter 3 introduces the background knowledge of graph convolutional neural networks (GCNN)

and semi-supervised learning. First, basic knowledge and assumptions for semi-supervised

learning are introduced. Then several representative semi-supervised methods are presented in-

cluding self-training, co-training, generative methods, and graph-based methods. After that, the

details of GCNN are introduced. GCNN are divided into two streams, spectral-based GCNN and

spatial-based GCNN. Moreover, several representative GCNN methods are introduced, such as

Spectral Convolutional Neural Network (Spectral CNN) [5], Chebyshev Spectral CNN (Cheb-

Net) [13], Graph Convolution Network (GCN) [29], Diffusion Convolutional Neural Network

(DCNN) [1], Message Passing Neural Networks (MPNN) [17], Graph Attention Network (GAT)

[67].

Chapter 4 introduces the proposed semi-supervised GCN model for RS image retrieval. The

architecture of the proposed model is presented, which consists of 1) an embedding CNN for

feature extraction and graph construction; 2) a GCN which can propagate the label information

from labeled data to unlabeled data by means of graph convolution. The loss functions and the

metrics for image retrieval are introduced. In addition, three RS benchmarks are introduced, i.e.

AID [69], NWPU-RESISC45 [10], and EuroSAT [23]. The proposed models are evaluated by

comparison with CNN-based methods in a semi-supervised setup. The experimental results are

presented and analyzed.

Chapter 5 introduces the proposed TGCN model and GTS strategy. The architecture of TGCN

and the loss function are presented. Specifically, the detailed derivation of GTS is provided. Ex-

periments are conducted on three RS benchmarks in comparison with state-of-art BATM method

to evaluate the effectiveness of the proposed methods. Afterwards, the experimental results are

presented and analyzed.

3



1 Introduction

Chapter 6 introduces the proposed semi-supervised GCN model for multi-label RS image re-

trieval. The network architecture and loss function are introduced. Besides, the introduction to

the multi-label RS image dataset, i.e. BigEarthNet [59] is provided. Afterwards, experimental

results and analysis are presented.

Chapter 7 summarizes all of the proposed methods and analyzes the experimental results. The

effectiveness and novelty of the proposed methods are discussed. In addition, several directions

of future work are presented, such as generalize the proposed TGCN and GTS into multi-label

scenario for RS image retrieval.
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2 Related Work

In this chapter, some related work is introduced and discussed. Section 2.1 introduces the cate-

gories of image retrieval methods including text-based image retrieval and content-based image

retrieval. Section 2.2 presents the methods related to remote sensing image retrieval. Section

2.3 introduces some of the methods based on graph neural network which are effective on image

retrieval.

2.1 Image Retrieval Methods

In recent years, a huge number of images have been created and collected in many areas includ-

ing media, academy, education, finance, etc. However, how to make use of the images and how

to access the desired information from them such as effectively and accurately search for the

needed or interested image from the large image datasets has become a hot topic in the field of

image process, information retrieval, remote sensing, etc.

Image retrieval methods can be divided into two categories according to the different ways

of describing the image, which are text-based image retrieval (TBIR) and content-based image

retrieval (CBIR).

2.1.1 Text-based Image Retrieval

The studies on the text-based image retrieval (TBIR) method started in the 1970s. TBIR de-

scribes the content of image using text annotations, and generates keywords or descriptions for

each image to describe the image content, such as the objects or scenes in the image. The image

can also be annotated by some metadata such as the image format, the image size and image

name. TBIR can be implemented by manually annotating or annotating with the help of image

recognition techniques.

Users can provide query keywords for retrieval according to their interests, then the retrieval

system can find the images annotated with the query keywords, and returns the query result to

the user.

The text-based retrieval method is easy to implement, and normally can achieve a high ac-

curacy due to the manual annotation. Therefore it is usually used in some small-scale image

retrieval scenarios. However, the text-based method has some well-known drawbacks. First,

the method is highly dependent on manual annotation, which is time-consuming and also takes

a lot of financial resources on large-scale image datasets. Therefore, it is only practicable on

small-scale image data. Second, the images can consist of much content and details, therefore,

it is difficult for a user to accurately describe the desired image by some keywords. Moreover,
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the manual annotation is limited or affected by the cognition level and language of the annotator.

Different annotators may give different descriptions to the same image.

Figure 2.1 shows the framework of a typical text-based image retrieval system. The images

are annotated manually by the database manager with text-based annotations, then the user can

retrieve all the images according to the given text annotations.

Figure 2.1: Text-based Image Retrieval

2.1.2 Content-based Image Retrieval

Along with the rapidly increased size of image archives, the drawbacks of TBIR have become in-

creasingly serious. In 1992, the National Science Foundation of the United States has discussed

the development of the image database management system and stated that the most effective

way for image retrieval should be based on the image content.

A typical framework of a CBIR system is illustrated in Figure 2.2. The system analyses the

images in the database and extracts the image features, then constructs the vector descriptions of

the image features and stores the descriptions into the image features database. When the user

inputs a query image, the same feature extraction method is used to process the image to obtain

the query vector. Then a certain similarity measure is used to compute the similarity between the

query vector and each feature in the feature database. Finally, the images are sorted according

to the similarity and output in order.

CBIR methods are first proposed in early 1990s by Kato [28], which can be used to retrieve

images from a database based on the color and shape. Before 2003, the global feature based

on texture and color has been widely used by the traditional CBIR methods as the feature rep-

resentation of the image, such as color histogram, color correlogram, Wavelet transform, GIST

[41], Edgel [7], ect. Color features and texture features are simple to calculate and can provide

reasonable representations of the image. However, the ability of these kind of global features to

represent the image content is limited, they are mainly used for image copy retrieval.

Similar to the Bag-of-Word model in NLP but uses image features as the words, the Bag-of-

Visual-Words (BoVW) model [55] is proposed in 2003. Thanks to the Scale-invariant feature

transform (SIFT) [35], the BoVW can be widely used for image retrieval. SIFT can detect the lo-

cal areas with significant visual characteristics in the image, and generate feature representations

6



2.1 Image Retrieval Methods

Figure 2.2: Content-based Image Retrieval

with stable description capabilities for these areas. Therefore, it can be effectively used for con-

structing visual words to describe the image. The local visual features represented by SIFT have

good resistance to geometric transformations such as translation, scaling and rotation. There-

fore, the visual retrieval methods can be effectively applied to more application scenarios such

as similar image retrieval, instance retrieval, etc. After the BoVW and SIFT, many methods

which based on local features and visual words are proposed. For example, clustering methods

such as hierarchical k-Means [40] and approximate k-Means [46] are used to generate visual

vocabulary from a large set of image descriptors, Fisher Vector [45] and VLAD [27] can be

used to aggregating the local image descriptors, Hamming embedding [25], product quantiza-

tion [26] and scalar quantization [74] are used to match or quantize the descriptors. These local

descriptor-based methods can significantly benefits the image feature extraction, and thus are

widely used in image retrieval.

With the development of deep learning, the image retrieval techniques has accordingly changed

in recent years. Deep neural networks can can simulate the neural mechanisms of humans and

extract the high-level features to produce an abstract representation of the image. Convolutional

Neural Networks (CNN) are the most popular model in visual representation. Thanks to the local

respective field and weight sharing, CNN can map the original image into an abstract seman-

tic representation with limited parameters. A number of representative CNN models have been

proposed, such as VGGNet [54], GoogleNet [60], ResNet [22], AlexNet [30], etc. The deep

7



2 Related Work

learning techniques have also been widely used in image segmentation, image classification,

object recognition and many other computer vision tasks.

Training a deep convolutional neural network requires a large amount of labeled data, which is

difficult to access for many specific computer vision tasks. However, the response of the middle

layers of a CNN trained with a large amount of samples already has the capability to effectively

extract the image features and represent the image content [42]. Therefore, it is possible to fine-

tune the pre-trained CNN to apply the model in different tasks via transfer learning. The off-

the-shelf CNN trained on benchmark datasets is also easily available or applicable to different

specific image retrieval scenarios such as clothes retrieval, vehicle retrieval and remote sensing

retrieval. Many studies also focus on distance metric learning for the image retrieval task. A

proper metric can be learned from the image dataset to effectively represent the similarity of the

images by distance.

Many studies focus on how to utilize the features obtained from the upper layers of the deep

CNN as a descriptor for image retrieval. Babenko et al. [2] uses neural codes as the high-

level descriptors and retrieves images based on the feature distance. Gong et al. [18] developed

the idea that the global deep CNN contains too much spatial information, which leads to its

lack of invariance to the geometric transformation when performing image retrieval. Therefore,

the multi-scale orderless pooling (MOP-CNN) is proposed to extract the CNN activation from

multiple scales and multiple local areas on the image, then VLAD pooling is performed to the

obtained feature representation. In addition, the robustness of global descriptors provided by

CNN can also be improved by utilizing integral max-pooling method on the convolutional layers

[63].

2.2 Remote Sensing Image Retrieval

In recent decades, with the rapid development of aerospace technology and sensor technol-

ogy, remote sensing and earth observation technology has greatly improved. A large number

of remote sensing images are acquired by the satellite sensors and stored in large-scale image

databases. Thanks to the explosive growth of remote sensing data, remote sensing has been

widely used in many field such as urban planning, disaster management, environment monitor-

ing. How to quickly and effectively acquire target information and retrieve required images has

attracted more and more research interests.

The remote sensing image retrieval methods are mainly divided into two categories, which

are text-based RS image retrieval and content-based RS image retrieval.

Text-based RS image retrieval is commonly used for remote sensing image retrieval in the

early years. It requires manual annotations for each RS image and describe the image with

relevant text information such as geographic regions, acquisition time and image name, then

match the query image with the images in the database according to the descriptions. As we

mentioned in Section 2.1.1, manual annotating requires a lot of time and financial resources, and

can easily be affected by the subjective recognition of the annotators. Therefore, it has gradually

been replaced by content-based RS image retrieval.

Content-based RS image retrieval can extract the image feature and measure the similarity be-

tween query feature and features in the image feature database, then retrieve the image according
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to the similarity. A content-based RS image retrieval system consists of feature extraction, fea-

ture indexing and feature similarity measuring.

Figure 2.3: Illustration of conventional content-based RS retrieval

The conventional content-based RS image retrieval system mainly extracts low-level features

including spectral features, texture features, shape features to describe the semantic content of

the remote sensing image. Compared with natural images, remote sensing images normally have

multiple or even hundreds of bands. As one of the simplest features, the spectral can describe the

most intuitive feature information of the RS images [44]. Texture is understood as the ordered

structure of repeated pixels, which is normally adopted in the RS image retrieval as a single

feature or the combination of many features. The common texture descriptors include gray level

co-occurrence matrices (GLCM) [21], wavelet [37, 3], Gabor filters [12, 38], etc. Shape feature

is used to depict the outline or region information of the object, which is usually adopted in RS

object recognition or image retrieval [14, 36]. However, it does not have the ability to capture

the spatial relation information. In addition to the above-mentioned low-level features, there are

some other local and global descriptors including SIFT [35], Histogram of Oriented Gradient

(HOG) [11], and Local Binary Pattern (LBP) [47, 62]. As an effective local feature descriptor,

SIFT can maintain the invariance to the scaling and rotation transformation. HOG is a global

descriptor which extract the feature by compute and count the histogram of oriented gradient in

the portion of the image. LBP encode and extract feature representations by comparing the pixel

value with neighboring pixels in a local window, and has gray scale and rotation invariance.

Compared with low-level features, middle-level features capture the semantic content of the

RS images by embedding the low-level feature descriptors into the visual vocabulary space. The

common encoding methods include Bag-of-Words (BoW) [55], Fisher Vector [45] and vector

of locally aggregated descriptors (VLAD) [27]. Compared with low-level features, BoW and

VLAD show the effectiveness in depicting the image content [61] and can achieve a high preci-
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sion in RS image retrieval [4]. According to [43], VLAD can reach a higher retrieval accuracy

while BoW has better computational speed. VLAD can be further improved by aggregating deep

local convolutional features to produce a global descriptor [24].

However, there is still a ”semantic gap” between low- and mid-level features and high-level

semantics. Due to the limitation of the handcraft descriptors, the semantic content of the RS

images can not be effectively depicted. In recent years, deep learning has been widely used and

achieved great success in many field including RS image retrieval. CNN is adopted by Zhou

et al. [73] in RS image classification and generate the low-dimensional feature representation

of the high-resolution RS images through global average pooling. Kumar et al. [31] use CNN

to extract the features of buildings in RS images, train neural networks through classification,

and retrieve RS images based on the features extracted from the network. Xiong et al. [70]

introduce attention mechanism to CNN and cause more attention to salient features to generate

discriminative for RS image retrieval. Imbriaco et al. [24] use VLAD to aggregate attentive,

local convolutional features to produce a global feature representation and achieve a faster and

more accurate image retrieval.

Due to the massive amount of RS images, the regular indexing methods are not able to meet

the requirements of large-scale RS image retrieval. The Approximate Nearest Neighbor (ANN)

can greatly improve retrieval efficiency with a relative high image retrieval accuracy. Hashing

methods have been widely adopted in large-scale RS image retrieval due to its advantages in

time-efficiency and storage capability [15]. Hashing methods initially find the mapping function

from the original feature space to the Hamming space. Therefore, similar data in original feature

space have similar binary hash codes in the Hamming space. Hashing methods are mainly

divided into supervised hashing and unsupervised hashing which learns the hash functions from

unlabeled data. Among them, Locality Sensitive Hashing (LSH) [56] is the most representative

unsupervised hashing method, which implements the mapping through random binary projection

and can effectively fast the retrieval process. However, LSH can only achieve a high retrieval

accuracy with long hash codes, which leads to larger storage requirements and worse retrieval

efficiency.

In recent years, deep learning methods are adopted into hash coding to achieve a better re-

trieval performance. Lin et al. [34] proposed Deep Learning of Binary Hash Codes (DLBHC)

method, which inserts a coding layer between the fully connected layer and the classification

layer of the CNN to obtain the binary hash codes which contains semantic information. Li et

al. [33] proposed a novel hashing method named partial randomness hashing (PRH) for the

large-scale RS image retrieval. PRH first generates random projections to map the image into

Hamming space to obtain the low-dimensional representation and train the feature extraction

model. Reao et al. [49] introduce a unsupervised strategy which use multi-hash codes to rep-

resent the RS image and improve the performance of large-scale RS image retrieval. Roy et

al. [51] proposed a deep metric and hash-code learning network to learn the metric space for

RS image retrieval and simultaneously produce binary hash codes to perform a efficient archive

search.
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Figure 2.4: Illustration of hashing-based RS retrieval
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3 Fundamentals of Graph Convolutional

Neural Networks

Attributed to the rapidly developing computational capability and a large amount of training

data, deep learning has recently been applied to many machine learning tasks. Compared to tra-

ditional machine learning techniques which usually rely on handcrafted features, deep learning

can effectively extract informative features from Euclidean structure data. In section 3.1 fun-

damentals and representative algorithms of semi-supervised learning are presented. The graph

convolutional neural networks including spectral-based and spatial-based graph convolutional

neural networks are introduced in section 3.2.

3.1 Semi-supervised Learning

In machine learning, there are two major learning approaches, supervised learning and unsuper-

vised learning. Supervised learning performs the learning task using a set of data in which each

data has a certain corresponding labels. Representative methods that can work in a supervised

setup include LDA(Linear Discriminative Analysis), PLS(Partial Least square), SVM(Support

Vector Machine), KNN(K-Nearest Neighbor), Naive Bayes, Logistic Regression, Decision Tree

and Neural Network. Unsupervised learning methods aim at automatically classifying or group-

ing the input data without specific labels by inferring the underlying similarity between the input

data. Representative methods that can work under a unsupervised setup include K-Means, Hier-

archical Clustering, PCA(Principle Component Analysis), CCA(Canonical Component Analy-

sis), ISOMAP(Isometric Feature Mapping), LLE(Locally Linear Embedding) and LLP(Locally

Preserving Projections).

Usually, deep learning models are data-hungry Nevertheless. manual labeling is an expensive

and time-consuming process. On the other hand, only using unsupervised methods with unla-

beled data usually can not achieve desirable performance Semi-supervised learning is a branch

of Machine learning between unsupervised learning and supervised learning Semi-supervised

learning methods aim at using both labeled and unlabeled data. This is applicable for many

Machine Learning cases, such as Text Classification Computer Vision, NLP(Neural Language

Process) where a large amount of unlabeled data are easily accessible as well as some annotated

samples. Therefore, researchers try to combine the large amounts of unlabeled with the limited

number of labeled data to train together for learning, hoping to improve the learning perfor-

mance. Semi-supervised learning can make full use of data, and at the same time improves the

generalization ability of supervised learning and the learning accuracy of unsupervised learning.
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3.1.1 Assumptions for Semi-supervised Learning

In order to make use of the unlabeled data and improve the learning accuracy, the underlying

distributed data must satisfy the condition that the data distribution contains the information

of the posterior distribution. Therefore, semi-supervised learning relies on three assumptions:

smoothness assumption, cluster assumption and manifold assumption [65].

(1) Smoothness Assumption: The labels of two closely spaced samples in the high-density

regions are similar, that is, when two samples are connected by edges in the high-density regions,

they have the same label with a high probability; Conversely, when two samples are separated

by low-density regions, they tend to be in different classes.

(2) Cluster Assumption: When two samples are in the same cluster, they share a label with

a high probability. The equivalent of this assumption is defined as Low Density Separation

Assumption [8], that is, the decision boundary should pass through the low-density regions, and

avoid dividing the samples in the high-density regions on both sides of the decision boundary.

(3) Manifold Assumption: The high-dimensional data is embedded in the low-dimensional

manifold. When two samples are located in a small local neighborhood in the low-dimensional

manifold, they have similar class labels.

3.1.2 Semi-supervised Learning Methods

Semi-supervised learning includes transductive learning and inductive learning. Transductive

learning only processes the given training data of the sample space and trains the model to

predict the label of the unlabeled sample only based on the labeled and unlabeled sample of the

training data, whereas inductive learning processes all the given and unknown samples in the

entire sample space. The labeled and unlabeled samples of training data are trained together

with the unknown test samples to predict the labels of the samples in training and test data.

Self-training

Self-training methods is the most fundamental pseudo label method [64]. The basic assumption

of self-training methods is that the samples with high confidence are more likely to be classified

correctly when the classifier predicts the labels of the samples. In the beginning, the supervised

classifier is trained only based on the labeled data. The trained classifier is used to predict

the unlabeled data and produce pseudo labels. The obtained pseudo-labeled data with high

confidence is added into the labeled training set. Then the classifier is iteratively trained based

on the original labeled and new pseudo-labeled data until there is no more unlabeled data.

Co-training

In co-training, two classifiers are trained iteratively based on the labeled data. In each iteration,

each trained classifier is used to predict the unlabeled data. The most confident predictions are

added into the labeled data sets of the other classifier. Then the labeled and unlabeled data sets

are updated. The classifiers are trained iteratively until the data sets do not change. Based on

disagreement-based methods, different classifier provide different predictions for the unlabeled
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data. Therefore, both classifiers providing useful information for each other and by exchang-

ing learned information through unlabeled data. Co-training has been successfully applied in

many fields such as neural language processing [68], semi-supervised image recognition [48]

and classification [72].

Figure 3.1: Co-training

Generative Methods

The generative methods assume that samples and labels are generated by a certain set of prob-

ability distributions or structural relationship. We can obtain the prior distribution p(x) and the

conditional distribution p(x|y). Then we can compute the posterior probability p(y|x) according

to the Bayes’ theorem, and label the sample x by the corresponding y with the maximum p(y|x).
There are many models to generate the samples, such as Gaussian model, Bayesian Network,

Sigmoidal Belief Networks (SBN), Gaussian Mixture Model (GMM) and Hidden Markov Model

(HMM) [65].

(1)The sample distribution of the Gaussian model is:

p(x|y) = N(x|µ,∑) =
1

(2π)D/2|∑ |1/2
exp

�

−
1

2
(x−µ)T

−1

∑(x−µ)

�

(3.1)

(2)The sample distribution of the Bayesian Network is as Figure 2.2:

(3)The sample distribution of the SBN is:

p(xi|pa(xi)) =
exp((∑ j Ji jx j +hi)xi)

1 + exp(∑ j Ji jx j +hi)
(3.2)

(4)The sample distribution of the GMM is:

p(x|y) =∑
i

πi pi(x|y) (3.3)
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Figure 3.2: Bayesian Network

Where ∑iπi = 1, pi(x|y) is the Gaussian distribution as in (1).

(5)The samples in HMM are generated by the hidden state of the HMM, and the conditional

distribution of the state is GMM as (4).

For the generated samples xi = xi1,xi2, · · · ,xim, i= 1, · · · ,n, Naive Bayes classifier can be used

to compute the posterior probability of the label yi ∈ c1,c2, · · · ,cC, and label xi as the label with

highest posterior probability.

yi = argmaxcCyi=ci p(yi|xi) = argmaxp(xi|yi)p(yi) (3.4)

Graph-based Methods

The essence of graph-based methods is label propagation. Based on the manifold assumption,

the graph is constructed according to the geometric structure between the samples, and the sam-

ples are represented by the vertices of the graph. The labels are propagated from the labeled

samples to the unlabeled samples according the adjacency relation which describes the correla-

tions between the vertices of the graph.

The training procedure of the graph-based methods is shown in Figure 3.3.

(1) Choose an appropriate distance function to compute the sample distance such as Euclidean

Distance, Manhattan Distance, Chebyshev Distance, Minnesota Distance, Mahalanobis Distance

and Normalized Euclidean Distance.

(2) Select the appropriate connection method according to the distance. Construct the graph

by connecting the samples with edges. The graph includes dense graph such as complete graph

shown in Figure 3.4, in which every pair of distinct nodes is connected by a unique edge, and

sparse graph as shown in Figure 3.5, in which the nearest nodes are connected according to

certain criteria.

(3) Use kernel function to assign a weight to the edges of the graph, which can reflect the

similarity between the two edges. In other words, when the two nodes are close to each other,

the weight of the edge is large, which means the two samples are very likely to share a same

label. Commonly used kernel functions include Linear kernel, Polynomial kernel, Gaussian

kernel, RBF(Radial Basis Function) kernel, Hyperbolic Tangent kernel, Neural Network kernel,

Fisher kernel and Spline kernel [57].
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Figure 3.3: Graph based methods

(4) Determine and solve the optimization problem according to the learning goal. The goal of

the semi-supervised learning is to find a prediction function which minimizes the objective func-

tion, which can be regarded as a regularized risk minimization problem of a composite objective

function composed of a loss function and a regularization function. Therefore, the objective

function of the graph-based method for the semi-supervised learning problem is generally ex-

pressed as following.

min
f (x)

V (y, f (x)) +λΩ( f ) (3.5)

The loss functionV (y, f (x)) is used to penalise the case when the predicted label dose not match

the given label, the regularization function Ω( f ) is used to ensure the smoothness of the predic-

tion function, so that the predicted label of the neighboring samples can be the same. Different

loss functions and regularization functions can be selected according to specific learning tasks

including Square Error function, Absolute Value function, Logarithmic function, Exponential

function and Hinge function.
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Figure 3.4: Complete graph

Figure 3.5: Sparse graph

3.2 Graph Convolutional Neural Networks

3.2.1 Graph Neural Networks

Graph Neural Networks (GNN) was first proposed by Gori et al. [19] and further elaborated by

Scarselli et al. [52] as recurrent neural networks. These early studies mainly focus on iteratively

propagating the node information to update the state of a target node until reaching a stable

fixed point. However, the approaches mentioned above suffering from the high computational

complexity for training the recurrent neural network. To overcome such limitations, Li et al. [33]

improved the framework to use modern practices around recurrent neural network to overcome

the above limitations. Kipf and Welling [29] present the first adoption of a GNN for semi-

supervised classification.

In this paper, a graph represents asG= (V,E), whereV is the set of vertices or nodes, and E is

the set of edges. vi ∈V represents an node and ei j = (vi,v j) ∈ E represent a edge pointing from

vi to v j. N(v) = u ∈V |(u,v) ∈ E denotes the neighborhood of node v. A is the adjacency matrix,
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which is a n×n matrix with Ai j = 1 if ei j ∈ E and Ai j = 0 if ei j /∈ E. For an attributed graph, the

node attributes are represented by a node feature matrix X ∈ Rn×d where xv ∈ R
d representing

the feature vector of node v. The edge attributes of a graph are represented by an edge feature

matrix Xe ∈ Rm×c where xeuv ∈ R
c representing the feature vector of edge (u,v). Table 3.1 shows

the commonly used notations.

A directed graph is a graph where all the edges are directed from one node or vertices to

another. An undirected graph is a graph where all the edges are bidirectional. The adjacency

matrix of a graph is symmetric when the graph is an undirected graph.

Table 3.1: Commonly used notations

Notations Descriptions

| · | The length of a set.

· Element-wise product.

G A graph.

V The set of nodes in a graph.

v A node of V .

E The set of edge in a graph.

ei j A edge of E.

N(v) The neighborhood of node v.

A The adjacency matrix.

D The degree matrix of A, Dii∑
n
j=1Ai j.

L The Laplacian matrix, L= D−A.

n The number of nodes.

m The number of edges.

d The dimension of a node feature vector.

b The dimension of a hidden node feature vector.

c The dimension of an edge feature vector.

X ∈ Rn×d The feature matrix of a graph.

x ∈ Rn The feature vector of a graph in the case of d = 1.

xv ∈ R
d The feature vector of the node v.

Xe ∈ Rm×c The edge feature matrix of a graph.

xe(u,v) ∈ R
c The edge feature vector of the edge (u,v).

H ∈ Rn×b The node hidden feature matrix.

hv ∈ R
b The hidden feature vector of node v.

k The index of the layer.

σ(·) The sigmoid activation function.

W,θ ,ω,Θ Learnable parameters.

GNNs [52] is the first proposed model which build the neural network on graph. In GNNs, the

aggregation function is defined as a recurrent function, the state of each node is updated based
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on the neighboring nodes and edge information:

hx = fw(lx, lc0[x], lne[x],hne[x]) (3.6)

Where lx, lc0[x], lne[x],hne[x] respectively denotes the label of node x, label of edge connected to

x, label of neighboring nodes of x and the state of neighboring nodes of x at the previous time

step. The fw is the aggregation function which is defined as a recurrent function. The state of x

is updated recurrently according to fw until convergence. In addition, the global output function

is defined by GNNs and applied to the converged state of each node to obtain the final output:

ox = gw(hx, lx) (3.7)

Where gw denotes the global output function.

3.2.2 Spectral-based Graph Convolutional Neural Networks

The spectral-based methods define the graph convolution in spectral space based on convolution

theorem.

Convolution Theorem: The Fourier transform of signal convolution is equivalent to the prod-

uct of Fourier transform of the signal:

F( f �g) = F( f ) ·F(g) (3.8)

Where f ,g denote the original signal, F( f ) denotes the Fourier transform of f . · and � indicate

the pointwise product and the convolution, respectively.

According to the inverse Fourier transform:

f �g= F−1(F( f ) ·F(g)) (3.9)

Where F−1( f ) denotes the inverse Fourier transform of f .

We can implement graph convolution by inverse transform the product of the spectral signal

into original space according to Convolution theorem. Therefore, the convolution on graph can

be implemented without the translation invariance on graph.

The undirected graph can be represented by the symmetric normalized graph Laplacian ma-

trix: L = I −D−1/2ΛD−1/2, where D is the degree matrix and A is the adjacency matrix of

the graph. L is a symmetric positive-semidefinite matrix, which can be decomposed with L =
UλUT , where U is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

TakingU as the basis of the spectral space, the graph Fourier transform of signal x is:

x̂=UTx (3.10)

Where x denotes the original graph signal in vertex space. x̂ denotes the signal transformed into

spectral space. UT denotes the transpose of the eigenvector matrix for the Fourier transform.

The inverse Fourier transform of signal x is:

x=Ux̂ (3.11)
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Based on the Fourier transform and inverse Fourier transform on graph, the graph convolution

operator can be defined as:

x∗Gy=U((UTx)� (UTy)) (3.12)

Where ∗
G denotes the graph convolution operator, x,y denote the signal in vertex space, � denotes

Hadamard product, which can be transformed from element-wise product to matrix product by

replace the vector UTy with a diagonal matrix gθ . Therefore, the graph convolution can be

represented as:

UgθU
Tx (3.13)

Spectral CNN

Spectral Convolutional Neural Network (Spectral CNN) [5] defines the graph convolution op-

erator on each layer based on convolution theorem. With the help of the loss function, the

convolution kernel is learned through the gradient back-propagation, and multiple graph con-

volutional layers are stacked to build a neural network. The structure of the m-th layer of the

Spectral CNN is as follows.

Xm+1
j = h(U

p

∑
i=1

{Fmi, jU
TXmi }), j = 1, · · · ,q (3.14)

Where, p,q are the dimensions of input and output feature, Xmi ∈ Rn denotes the i-th input

feature on the m-th layer of the graph nodes, Fmi, j denotes the convolutional kernel in spectral

space, h denotes the activation function. In this layer a p dimensional feature is transformed into

q dimensional by graph convolution.

ChebNet

The traditional Spectral CNN has two shortcomings:

(1) The graph convolution kernel is global with a large amount of parameters.

(2) The computational complexity of the graph convolution is very high because of the eigen-

decomposition.

Chebyshev Spectral CNN (ChebNet) [13] uses the polynomial expansion to approximate the

graph convolution, that is, the parameterized convolution kernel is:

gθ =
K−1

∑
i=0

θkTk(Λ̂) (3.15)

Where θk is the learning coefficient, Λ̂ = 2Λ/λmax− In. The recursive expression of Chebyshev

polynomial is:

Tk(x) = 2xTk−1(x)−Tk−2(x) (3.16)

Where T0(x) = 1,T1(x) = x.

Let L̂= 2L/λmax− In, the structure of the m-th layer of the ChebNet is defined as:

Xm+1
j = h

�

U

p

∑
i=1

�
K−1

∑
k=0

θkTk(Λ̂)

�

UTXmi

�

= h

�
p

∑
i=1

K−1

∑
k=0

θkTk(L̂)Xmi

�

, j = 1, · · · ,q (3.17)
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3.2 Graph Convolutional Neural Networks

ChebNet implements the spectral CNN based on the polynomial parameterized convolutional

kernel of the eigenvalue matrix. The Laplacian matrix introduced by L =UΛUT to avoid the

eigendecomposition of the Laplacian matrix. Therefore, the parameter complexity is reduced

from O(n× p×q) to O(K× p×q). In addition, in the Laplacian matrix, if and only if the nodes

i, j satisfy K-hop reachability, LKi, j �= 0. Therefore, the ChebNet has locality when K is small.

CayleyNets

The CayleyNets [32] is proposed based on ChebNet, which builds a new spectral convolution

filter based on Cayley polynomials. Cayley polynomials are real-valued functions with complex

coefficients:

gc,h(λ ) = c0 + 2Re

�
r

∑
j=1

c j(hλ − i)
j(hλ + i)− j

�

(3.18)

Cayley filter is a spectral filter defined on real-valued signal f :

Gf = gc,h(∆) f = c0 f + 2Re

�
r

∑
j=1

c j(h∆− iI)
j(h∆+ iI)− j f

�

(3.19)

Where c and h are the training parameters.

With the analytical properties of Cayley filter that any smooth spectral filter can be represented

as Cayley polynomials, which has better spatial locality. Compared with the Chebyshev based

ChebNet, the CayleyNets also has better locality and linear complexity. In addition, the spectral

scaling factor h can be adaptively adjusted to detect the narrow frequency bands.

Graph Convolution Network

In order to use the graph convolutional neural network in a semi-supervised setup on graph,

Graph Convolution Network (GCN) [29] is proposed as the first-order approximation of the

simplified ChebNet. In GCN, assume K = 2 and λmax = 2, the equation can be simplified as:

Xm+1
j = h

�
p

∑
i=1

(θ0−θ1(L− In))X
m
i

�

, j = 1, · · · ,q (3.20)

There is only a limited number of labeled data in the graph semi-supervised learning scenario.

Therefore, to avoid overfitting of the model caused by the limited labeled training data, the

parameters are reduced by constraining θ = θ0 = −θ1, and the weights matrix is normalized.

Therefore, the following first-order graph convolutional neural network is obtained:

Xm+1
j = h

�
p

∑
i=1

θ D̂− 1
2 ÂD̂− 1

2Xmi

�

, j = 1, · · · ,q (3.21)

Where Â= A+ In, D̂ii = ∑ j Âi, j.
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3 Fundamentals of Graph Convolutional Neural Networks

3.2.3 Spatial-based Graph Convolutional Neural Networks

Compared with the spectral-based graph convolution methods based on convolution theorem, the

spatial-based methods implement the graph convolution by defining the aggregation function.

Such aggregation function aggregates each node with its neighboring nodes based on nodes

spatial relations. For example, ChebNet and the first-order GCN can be regarded as the graph

convolution methods which use Laplacian matrix as the aggregation function. Here we introduce

two general frameworks of spatial-based convolutional neural networks.

Diffusion Convolutional Neural Network

Diffusion Convolutional Neural Network (DCNN) [1] computes a degree-normalized transition

matrix which provides the probability of the node information transferring from node i to node j

in one step. The weights between nodes are defined based on the transition matrix. The diffusion

graph convolution is defined by DCNN as follows:

Hk = f (Wk�PkX) (3.22)

Where P ∈ Rn×n is the transition matrix, P = D−1A, Pk denotes the probability of the node

information can be transferred to another neighboring node in k steps, f (·) is the activation
function, Hk is the hidden representation matrix which has the same dimension with the input

feature matrix X , W is the learning weights. DCNN can represent the high-order information

between the nodes, but is hard to apply on large-scale graph due to the high computational

complexity.

Mixture Model Networks

Mixture Model Networks (MoNet) [39] focuses on the lack of translation invariance on the

graph. It maps the local structure of each node to the vectors with same size through a defined

mapping function and then learns the shared convolutional kernel from the mapping.

MoNet defines the coordinate system on graph, and represents the node relation as a low-

dimensional vector in the new coordinate system. In addition, MoNet defines a series of weight-

ing functions, which are applied on all neighboring nodes of the central node. The input of the

weighting function is the node relation and the output is a scalar value. MoNet can obtain the

vector representation with same size for each node according to the weighting functions:

Dj(x) f = ∑
y∈N(x)

wj(u(x,y)) f (y), j = 1, · · · ,J (3.23)

Where N(x) denotes the set of neighboring nodes of x, f (y) denotes the value of node y on signal
f , u(x,y) denotes the low-dimensional vector representation of node x,y in coordinate system u,

wj denotes the j-th weighting function, and J denotes the number of weighting functions. There-

fore, each node can obtain a J-dimensional representation which consists of the local structure

information of the node. Accordingly, MoNet defines the shared convolutional kernel:

( f �

Gg)(x) =
J

∑
j=1

g( j)Dj(x) f (3.24)
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3.2 Graph Convolutional Neural Networks

Where g( j)Jj=1 is the convolutional kernel.

Message Passing Neural Networks

Compared with MoNet, Message Passing Neural Networks (MPNN) [17] focuses on defining

the aggregation function between the nodes. Each node can be expressed as the superposition

of the information from the neigboring nodes and the central node itself. Therefore, MPNN

proposes the framework of graph convolutional neural networks by defining the general aggre-

gation function. MPNN consists of two steps. First, the aggregation function is applied to each

central node and its neighboring nodes to obtain the local structure expression. Then the update

function is applied on the expression of the central node and the local structure to obtain the

updated expression of the current node:

mt+1
x = ∑

y∈N(x)

Mt(h
t
x,h

t
y,ex,y),h

t+1
x =Ut(h

t
x,m

t+1
x ) (3.25)

Where htx denotes the hidden representation of the node x at the t-th step, xx,y denotes the edge

feature of nodes x,y, Mt denotes the aggregation function at the t-th step, m
t+1
x denotes the lo-

cal structure expression of node x according to aggregation function Mt , Ut denotes the update

function at the t-th step. Each layer of the graph neural networks can be defined by the above-

mentioned aggregation and update functions, and thus each node can be updated based on the

information from itself and the neighboring nodes to obtain the new expression based on the

node local structure.

Graph Attention Network

Graph Attention Network (GAT) [67] defines the aggregation function based on the attention

mechanisms, which is used to learn the relative weights between the pair of connected nodes.

However, unlike the models which focus on the edge information, the adjacency matrix in GAT

is only used to define the relevant nodes, and the relative weights can be learned from the node

feature expression based on attention mechanisms. The structure of each graph attention layer

is illustrated as Figure 3.6.

The graph attention layer takes the feature vector of node i, j as input and compute the normal-

ized attention weight between i, j, then aggregate the feature of the neighboring nodes to the

central node by weighted sum according to the attention weight. The attention weight and graph

convolution of GAT is computed as follows:

αi, j =
exp(LeaklyReLU(a[Whi�Whj]))

∑k∈N(i)αi, jWh j)
(3.26)

hi = σ( ∑
j∈N(i)

αi, jWh j) (3.27)

Where W is used for the feature dimension transformation of each node, a is for the attention

weight computation, � represents the concatenation of vectors, αi, j represents the weight be-

tween node i, j according to a, σ denotes the nonlinear activation function.
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3 Fundamentals of Graph Convolutional Neural Networks

Figure 3.6: GAT

GraphSAGE

GCN models such as GAT compute the weights between nodes based on the node features.

Therefore, the model needs to load the node features of the whole network, which has high

computation complexity and high memory requirement. Accordingly, GraphSAGE (Sample and

Aggregate) [20] was proposed. Different from the previous model that considers all neighbors,

GraphSAGE randomly samples neighboring nodes from the neighbors so that the neighboring

nodes of each central node are less than the given sample number. The structure of GraphSAGE

is shown in Figure 3.7.

Figure 3.7: GraphSAGE

Taking the red node as the target node, GraphSAGE randomly samples from the first and second-

order neighbors and uses the sampled nodes as related nodes. Then the aggregator function

is applied to the related node features, and update the state of the red node according to the

aggregation result.
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3.2 Graph Convolutional Neural Networks

There are a variety of aggregator functions, such as mean aggregator, LSTM aggregator and

Pooling aggregator. The mean aggregator takes the element-wise mean of the node feature

vectors as the aggregation result. The LSTM aggregator can aggregate the nodes with larger

expressive capability due to the LSTM architecture. The pooling aggregator fed the node feature

vectors into a full-connected neural network and a following max-pooling operator is applied to

the output to obtain the aggregation result:

AGGREGATE
pool
k = ma‘x({σ(Wpoolh

k
ui

+b),∀ui ∈ n(V )}) (3.28)

Where max denotes the element-wise max operator, σ is a nonlinear activation function.

GraphSAGE can train the model with mini-batch, which only need to load the local structure

of the corresponding node instead of the whole network. This makes it possible to build a graph

convolutional neural network on a large-scale data set.

Confidence-based Graph Convolutional Networks

Confidence-based Graph Convolutional Networks (ConfGCN) [66] assume each pair of two

nodes has a corresponding confident label score. ConfGCN estimate the influence between of

each node on the neighboring nodes based on the label confidence of the corresponding nodes.

Figure 3.8 illustrates the structure of ConfGCN applied to node classification task. According to

the estimation of ConfGCN, node b and c have higher influence on estimating the label of node

a due to the high confident label scores.

Figure 3.8: ConfGCN [66]

In ConfGCN, the distance between two nodes is defined based on the label distributions µu,µv
and co-variance matrices∑u,∑v:

dM(u,v) = (µu−µv)
T (
−1

∑
u

+
−1

∑
v

)(µu−µv) (3.29)
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3 Fundamentals of Graph Convolutional Neural Networks

Accordingly the influence score of node u on node v is defined as ruv:

ruv =
1

dM(u,v)
(3.30)

Therefore, the graph convolution defined by ConfGCN for updating the node state at the k-th

layer is as follows:

hk+1v = f

�

∑
u∈N(v)

ruv× (Wkhku +bk)

�

, ∀v ∈V (3.31)

Where W denotes the learning parameters, hk+1v is the representation of node v at the k+ 1-th

layer. bk denotes bias, N(v) is the set of neighboring nodes of v including v itself.
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4 Semi-Supervised Remote Sensing Image

Retrieval

In this chapter, the proposed end-to-end semi-supervised GCN model is introduced and the

entire experimental process for RS image retrieval is presented. In section 4.1, the architecture

of the semi-supervised GCN for RS image retrieval is presented, which includes the embedding

networks and graph convolutional neural networks. In section 4.2, the three RS benchmarks

and the experimental setup are introduced. The evaluation results are presented and analyzed in

section 4.3.

4.1 Methodology

4.1.1 Network Architecture

Embedding Networks

In the proposed semi-supervised GCN, ResNet18 [22] is used as the embedding networks.

ResNet18 is a form of ResNet [22], which is a residual learning framework proposed on the

basis of the existing training deep neural network, which has the advantages of easy optimiza-

tion and low computational burden. The residual is used to solve the degradation and gradient

problems such as vanishing or exploding gradient problem so that the performance of the net-

work can be improved as the depth increases. The structure of ResNet18 is shown in Figure 4.1.

Figure 4.1: Structure of ResNet18

It consists of 17 convolutional layers and a fully-connected layer. More specifically, ResNet18

contains 4 residual blocks (shown as yellow, green, orange, and blue in Figure 4.1, respectively),

and each block contains 4 convolutional layers. The first-layer residual structure of each residual
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4 Semi-Supervised Remote Sensing Image Retrieval

block (broken lines) need to adjust the shape of the input feature matrix by reducing the size of

the feature matrix to half of the original and adjusting the depth of the channel to meet the needs

of the residual structure of the next layer. The images are resized to 224×224 before inputting
to ResNet18. As shown in Figure 4.2, each residual block of ResNet18 contains 2 convolutional

layers. Each convolutional layer is followed by a Batch Norm layer and a ReLU activation func-

tion. The residual structure contains skip connections, which transfer the input across layers

through shortcut connections, and then adds it to the output after convolution. By means of

the structure, the underlying networks can be fully trained, so that the accuracy is significantly

improved with the increase in depth. In many cases, ResNet is used for image classification

Figure 4.2: Structure of residual block of ResNet18

by means of the fully connected layer after the residual blocks and the average pooling layer.

However, the fully connected layer is not required here, because it is used as a feature extractor

in the semi-supervised GCN. Specifically, the features are extracted from average pooling layer.

Graph Convolutional Neural Networks

In this chapter, we present a semi-supervised RS image retrieval approach based on GCN. The

input of the end-to-end GCN framework is a collection of labeled or unlabeled RS images.

Utilizing embedding networks ResNet introduced above, the input images can be embedded into

feature vectors. To propagate the label information from the labeled data to unlabeled data with

the help of graph convolution, a fully-connected graph G = (V,E) is constructed according to
the feature vectors and the labels of the input images. As shown in Figure 4.3, each node vi ∈V
is a concatenation of feature embedding of the image and one-hot encoding of the corresponding

label.

Let a graph be denoted as G = (V,E), where V is the set of nodes and E is the set of edges.

vi,v j ∈ V represent two nodes and ei j = (vi,v j) ∈ E represent an edge pointing from vi to v j.

Given an image set X = {x1, . . . ,xn}, we obtain the feature embedding φ
(q)(xi) of the image
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4.1 Methodology

Figure 4.3: Graph construction

xi ∈ X by means of the embedding function φ (q)(·). The initial node vi ∈ V of the graph G

is constructed as the concatenation of the image embedding feature φ (q)(xi) and the one-hot

encoding hi of the image label li, i.e. v
(0)
i = (φ (0)(xi),hi). The node attributes of the graph are

represented by the node feature matrix Z ∈ Rn×d , where zv ∈ Rd represents the feature vector of

node v. A is the adjacency matrix, which is a n×n matrix, where Ai j denotes the connectivity of

vi and v j. Â = A+ In denotes the symmetric normalization of A with a self-loop, where In is the

identity matrix. The graph convolution [29] is defined as:

Zl+1
j = σ

�
p

∑
i=1

θ D̂−
1
2 ÂD̂−

1
2Zl

i

�

, j = 1, · · · ,q, (4.1)

where Â = A+ In denotes the symmetric normalization of A with a self-loop. In is the identity

matrix, D̂ii =∑ j Âi, j denotes a diagonal degree matrix, and σ is a non-linear activation function.

Each GCN layer is a function f :Rn×n×Rn×d→R
n×l which receives input signal Z(k) ∈Rn×d

and produces Z(k+1) ∈ Rn×l denotes as

Z(k+1) = f (Â(k)
,Z

(k)
i ) = ρ(Â(k)Z(k)Θi), (4.2)

where Â indicates the adjacency matrix, Θi ∈ R
d×l contains the parameters to be learned in

the convolutional layer, and ρ denotes the leaky-ReLU activation function. Before each graph

convolutional layer, Â is learned from the current hidden states of the nodes by the symmetric

function ψθ parameterized by a 3-layer neural network F for similarity computing based on the

absolute difference of two nodes as

Â
(k)
i, j = ψθ (v

(k)
i ,v

(k)
j ) = Fθ (�v

(k)
i − v

(k)
j �) (4.3)
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4 Semi-Supervised Remote Sensing Image Retrieval

Figure 4.4: Illustration of the training procedure of the proposed GCN

As shown in Figure 4.4, with regard to cross-entropy loss and Contrastive loss, two different

architectures of end-to-end GCN are proposed. The first one optimized by cross-entropy loss

takes input images from the archive and extracts features through a ResNet18 to produce the

feature embeddings. The graph is constructed using the feature embeddings and one-hot en-

codings of the corresponding labels. Afterward the graph is entered into a graph convolutional

neural network to propagate the labeled information to unlabeled data and extract node features

by means of graph convolution. The model is optimized by cross-entropy loss based on the

labels and graph embedded features.

The second model optimized by Contrastive loss contains two parallel ResNet18 and graph

convolution neural networks with shared weights.

4.1.2 Loss Function

Contrastive Loss

Contrastive loss can effectively deal with the relationship of paired data in the siamese network.

This loss function was originally used in dimensionality reduction. Originally similar samples

are still similar in the feature space after feature extraction. Accordingly, the original dissimilar

samples are still not similar after dimensionality reduction.

Contrastive loss is defined as

L =∑
i, j

li j� fi− f j�
2
2 + (1− li j)h(m−� fi− f j�2)

2 (4.4)

where h(·) denotes the hinge loss function, i.e. h(x) =max(0,x), m is the margin, li j denotes the

label indicator function which is formulated as

li j =

�
1 if yi = y j

0 otherwise.
(4.5)

Observing the expression of the above-mentioned contrastive loss, it can be found that this

loss function can effectively represent the matching degree of the paired data, and can also be
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used to train the model for extracting features. When li j = 1 (that is, the samples are similar),

the loss function only leaves ∑= li j� fi− f j�
2
2, which is the distance of the original similar sam-

ples. A large Euclidean distance in the feature space means that the current model needs to be

optimized and increase the penalization. When li j = 0 (that is, the samples are not similar), the

loss function is ∑(1− li j)max(m−� fi− f j�2,0)2. When the samples are not similar, a small Eu-

clidean distance of the feature space corresponds to a large loss and an increasing penalization.

Cross-entropy Loss

Cross-entropy loss compares the difference between the predicted class probability and the ac-

tual class label and penalizes the probability according to the distance between the probability

and the desired value.

During the training, cross-entropy loss is used to adjust the weights of the model, and the

model is therefore optimized by minimizing the cross-entropy loss.

Cross-entropy loss is defined as

L =−
1

N

N

∑
i=1

C

∑
c=1

yci log(pci ) (4.6)

where pci denotes the softmax probability that the sample xi is classified into class c

pci =
exp(wT

c vi)

∑ j exp(wT
j vi)

(4.7)

where wc,wj denote the learning parameters. vi is the feature of xi.

4.2 Description and Design of Experiments

4.2.1 EuroSAT

EuroSAT is a dataset for land use and land cover classification, which consists of 10 categories

with in total 27,000 annotated Sentinel-2 satellite images. The 10 land-use classes are Annual

Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, Residen-

tial, River and Sea Lake. There are 2000-3000 images in each land-use class.

The EuroSAT is consist of two datasets, one contains only the R, G, B frequency bands and the

other contains all 13 spectral bands. In this experiment, we use the first dataset which contains

only RGB bands. Example of images in EuroSAT are shown in Figure 4.5.

4.2.2 NWPU-RESISC45

NWPU-RESISC45 is a large-scale benchmark for remote sensing scene classification. It con-

tains 31,500 images, which cover 45 scene types with 700 images in each type. Each image

has a size of 256×256 pixels with a spatial resolution from about 30m to 0.2m per pixel. The

scene types covers airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral,

church, etc.
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The dataset contains complex background and illustration conditions and holds a huge differ-

ence in resolution, viewpoint, translation, object pose, etc. Due to the between-class similarity

and within-class diversity, NWPU-RESISC45 becomes one of the most difficult benchmarks for

RS image classification and retrieval. Example of images in NWPU-RESISC45 are shown in

Figure 4.6.

4.2.3 AID

AID is a large-scale aerial dataset constructed based on the image samples collected fromGoogle

Earth imagery. AID is designed for aerial scene classification and retrieval, which consists of

10,000 RGB images distributed in 30 scene classes including: airport, bare land, baseball field,

beach, bridge, church, dense residential, desert, farmland, forest, industrial, meadow, mountain,

parking, playground, pond, port, railway station, river, school, sparse residential, etc.

The number of sample images in each aerial scene class ranges from 220 to 420. Each image

has a size of 600×600 pixels, and the image resolution varies from about 8m to 0.5m per pixel.

The images are acquired from different countries and regions around the world in different sea-

sons and illustration conditions, which increases the intra-class diversity of the dataset. Example

of images in AID are shown in Figure 4.7.

4.2.4 Experimental Setup

The feature embedding of the input image can be obtained by the trained CNN and Graph CNNs

models. The Euclidean distance between the obtained feature embeddings is used to obtain the

closest neighbor of the out-of-sample images from a set of samples with known classes. Image

retrieval searches for the most similar image in the archive by measuring the distance of the

feature embedding with the query image in the metric space. In this paper, the performance of

the image retrieval is evaluated by mean average precision (MAP), which is formulated as

mAP =
1

N

N

∑
i=1

APi (4.8)

AP@k =
1

GTP

n

∑
k

P@× rel@k (4.9)

where N denotes the number of all the queries, GTP denotes the number of the ground truth

positives, P@k denotes the precision@k and rel@k denotes the indicator function that equals to

1 if the retrieved data at rank k is relevant to the query and equals to 0 otherwise.

For the task in this chapter, 70% of the images in each class are randomly sampled to build

the training set, 10% for validation, and 20% of the images are used for the test set. For the

RS image retrieval, the training set is used as the archive while the validation set and test set

are used as the query. In the task, ResNet18 is selected as the backbone embedding network

architecture of the proposed GCN model. However, other CNN models such as ResNet50 can

also be implemented in this task and may have better performance for feature extracting. To

keep it simple, we only choose ResNet18 for this task.
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The input images from the above-mentioned three benchmarks are resized to 256 × 256 pix-

els. A series of data augmentation methods are implemented before training including Ran-

domGrayscale, ColorJitter, and RandomHorizontalFlip. The margin of the contrastive loss is set

to 0.5. Stochastic gradient descent (SGD) optimizer is used to update the gradients. The initial

learning rate is set to 0.001 and decayed by 0.5 for every 30 epochs. The batch size is set to 16,

and the model is trained for 130 epochs in total.

In this chapter, we compare several GCN model with several CNN methods, including: 1)

CNN-based triplet loss, 2) CNN-based contrastive loss, 3) CNN-based cross-entropy loss, 4)

GCN-based contrastive loss, 5) GCN-based cross-entropy loss. All the experiments are con-

ducted on the NVIDIA Tesla P100 graphics processing unit (GPU).

4.3 Experimental Results

Table 4.3-4.2 shows the mAP obtained by CNN-Triplet, CNN-Contrastive, CNN-CE, GCN-

Contrastive, and GCN-CE for the top-40 results on EuroSAT, NWPU-RESISC45, and AID

benchmarks, respectively. The results show that the GCN-based methods generally outperform

CNN-based methods.

Table 4.1: MAP@40 of semi-supervised image retrieval based on different methods on NWPU-

RESISC45

Methods 5% labeled 20% labeled

CNN-Triplet 0.6792 0.8111

CNN-Contrastive 0.3747 0.5712

CNN-CE 0.8086 0.8884

GCN-Contrastive 0.9184 0.9703

GCN-CE 0.9307 0.9822

In Table 4.1, CNN-Triplet yields 0.6792 mAP on NWPU-RESISC45 with 5% labeled data,

CNN-Contrasive provides only 0.3747 mAP, namely the lowest mAP in contrast to other meth-

ods, while the GCN-Contrastive provides a 35.17% and 19.62% higher mAP for 5% and 20%

labeled scenarios, respectively, compared to CNN-Triplet. Moreover, GCN-CE provides the

highest mAP in semi-supervised scenarios on NWPU-RESISC45, namely 0.9307 and 0.9822

with 5% and 20% labeled data respectively, which is increased by 1.33% and 1.22% compared

with GCN-Contrastive respectively.

In Table 4.2, GCN-Contrastive and GCN-CE also outperform the CNN-based methods in-

cluding CNN-Triplet, CNN-Contrastive, and CNN-CE on AID. Among the CNN-based meth-

ods, CNN-CE provides the highest mAP for both 5% labeled and 20% labeled scenarios, i.e.

0.7326 and 0.9461 respectively, while CNN-Contrastive yields the lowest mAP with correspond-

ingly only 0.5033 and 0.5889. By comparison, for the 5% labeled scenario, for example, GCN-

Contrastive and GCN-CE increase the mAP to 0.9013 and 0.9176 respectively.

In Table 4.3, different from the above results, CNN-CE yields the highest mAP on Eu-

roSAT for both 5% and 20% labeled scenarios, i.e. 0.9738 and 0.9832 respectively. Next is
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Table 4.2: MAP@40 of semi-supervised image retrieval based on different methods on AID

Methods 5% labeled 20% labeled

CNN-Triplet 0.6840 0.8779

CNN-Contrastive 0.5033 0.5889

CNN-CE 0.7326 0.9461

GCN-Contrastive 0.9013 0.9766

GCN-CE 0.9176 0.9794

Table 4.3: MAP@40 of semi-supervised image retrieval based on different methods on EuroSAT

Methods 5% labeled 20% labeled

CNN-Triplet 0.9403 0.9699

CNN-Contrastive 0.7295 0.9524

CNN-CE 0.9738 0.9832

GCN-Contrastive 0.9576 0.9766

GCN-CE 0.9539 0.9752

GCN-Contrastive which provides a slightly higher mAP than GCN-CE. For example, GCN-

Contrastive increases the mAP by 0.38% compared with GCN-CE with 5% labeled data.

We compare the computational complexity of CNN and GCN-based methods for the AID

dataset. Tabel 4.4 shows the number of required model parameters (NP) and floating-point

operations (FLOPS) associated to CNN-CE and GCN-CE for the AID dataset. From Tabel

4.4 one can see that the GCN model requires slightly more parameters than the CNN model.

However, the FLOPs of the proposed GCN model greatly increases 47.87% compared with the

CNN model, i.e. from 2.3752× 109 to 3.5124× 109. The introduction of GCN significantly

increases the computational complexity of the model.

Table 4.4: Number of required model parameters (NP) and floating-point operations (FLOPS)

associated to different methods

Methods NP(×106) FLOPS(×109)

CNN-CE 11.2093 2.3752

GCN-CE 11.7279 3.5124

Figure 4.8 shows examples of the retrieved images by CNN-Triplet, CNN-Contrastive, CNN-

CE, GCN-Contrastive and GCN-CE for the AID dataset. For a query image sampled from

the airport class of the test set, we present the 1st, 5th, 9th, 13th and 17th retrieved image from

the archive. In general, GCN-Contrastive and GCN-CE outperform the CNN-Triplet, CNN-

Contrastive and CNN-CE. As shown in Figure 4.8, GCN-based methods can retrieve more simi-

lar images, which belong to the same class as the query image. For example, in Figure 4.8(b), the

13th and 17th retrieved images are from the commercial and railway station classes respectively.

In Figure 4.8(c) the 9th, 13th and 17th retrieved images are from the pond, school and industrial
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classes respectively. However, the performance of CNN-CE is close to the GCN-based methods.

In Figure 4.8(d), the 1st, 5th, 9th and 13th images are correctly retrieved from the same class with

the query, while the 17th image is from the school class.

4.4 Conclusion

In this chapter, A semi-supervised GCN framework is constructed for remote sensing image re-

trieval. The framework consists of: 1) an embedding convolutional neural network which can

extract the feature of the RS images and generate the feature embedding for graph construction,

2) a graph convolution neural network that takes the constructed graph as input and propagates

the label information from the labeled nodes to unlabeled nodes by means of graph convolution.

GCN-Contrastive and GCN-CE are proposed to explore the semi-supervised learning capability

of GCN based on Contrastive loss and cross-entropy loss, respectively. To evaluate the per-

formance on semi-supervised RS image retrieval of GCN-based methods, several CNN-based

methods are implemented including CNN-Triplet, CNN-Contrastive, and CNN-CE. The GCN

and CNN-based methods are evaluated on three challenging RS benchmarks, i.e. EuroSAT,

NWPU-RESISC45, and AID. Experimental results show the effectiveness of the proposed GCN

framework. In most semi-supervised scenarios, the GCN-based methods obviously outperform

CNN-based methods. However, the GCN model also significantly increases the computational

complexity with a limited increase of model parameters.
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Figure 4.5: Example of images in EuroSAT and their labels.
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Figure 4.6: Example of images in NWPU-RESISC45 and their labels.
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Figure 4.7: Example of images in AID and their labels.
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Figure 4.8: (a) Query image, (b) image retrieved by CNN-Tiplet, (c) image retrieved by

CNN-Contrastive, (d) image retrieved by CNN-CE, (e) image retrieved by GCN-

Contrastive, (f) image retrieved by GCN-CE.
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5 Graph CNNs-based Triplet Sampling for

Semi-supervised Image Retrieval

In this chapter, a triplet GCN (TGCN) for semi-supervised learning is introduced and a graph-

based triplet sampling (GTS) strategy is proposed. In section 5.1, the architecture of the TGCN

for RS image retrieval is presented, and the methodology of GTS is explained. The used bench-

marks and experimental setup are introduced in section 5.2. In section 5.3, we provide the

evaluation results and the analysis.

5.1 Methodology

5.1.1 Triplet Graph Convolutional Neural Networks

As shown in Figure 5.1, the TGCN consists of three parallel CNNs (i.e., ResNet-based architec-

ture [22]) for extracting initial features followed by three parallel GCNs for learning the graph

embedding of the images. The parallel models share their network parameters. The proposed

TGCN learns the feature extraction and graph convolution simultaneously to find a graph struc-

ture that is fitted for image retrieval in a semi-supervised scenario driven by the triplet loss.

Shared weights 

Shared weights 

features

features

features

Triplet 

loss

Shared weights 

Shared weights 

anchor

positive

negative

Training batch GTS TGCNTriplets

Figure 5.1: Illustration of the training procedure of the proposed TGCN-GTS.

Let a graph be denoted as G = (V,E), where V is the set of nodes and E is the set of edges.

vi,v j ∈ V represent two nodes and ei j = (vi,v j) ∈ E represent an edge pointing from vi to v j.

Given an image archive X = {x1, . . . ,xn}, we obtain the feature embedding φ (q)(xi) of the image

xi ∈ X by means of the embedding function φ (q)(·). The initial node vi ∈ V of the graph G

is constructed as the concatenation of the image embedding feature φ (q)(xi) and the one-hot

encoding hi of the image label li, i.e., v
(0)
i = (φ (0)(xi),hi). The node attributes of the graph are

40
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represented by the node feature matrix Z ∈ Rn×d , where zv ∈ Rd represents the feature vector

of node v. A ∈ Rn×n is the adjacency matrix, where Ai j denotes the connectivity of vi and v j.

Â = A+ In denotes the symmetric normalization of A with a self-loop, where In is the identity

matrix. The edge attributes of the graph G are represented by the edge feature matrix Ze ∈ Rm×c,

where zeuv ∈ Rc represents the feature vector of the edge (u,v). The graph convolution [29] is

defined as:

Zl+1
j = σ

�
p

∑
i=1

θ D̂− 1
2 ÂD̂− 1

2Zl
i

�

, j = 1, · · · ,q, (5.1)

where D̂ii = ∑ j Âi, j denotes a diagonal degree matrix, and σ is a non-linear activation function.

Each GCN layer is a function f : Rn×n×Rn×d → R
n×l which receives input signal Z(k) ∈ Rn×d

and produces Z(k+1) ∈ Rn×l denoted as:

Z(k+1) = f (Â(k)
,Z

(k)
i ) = ρ(Â(k)Z(k)Θi), (5.2)

where Θi ∈ R
d×l contains the learnable parameters in the convolutional layer and ρ denotes the

leaky-ReLU activation function. Before each GCN layer, Â is learned from the current hidden

states of the nodes by the symmetric function ψθ parameterized by a 3-layer network F . The

similarity of two nodes is obtained based on the absolute difference of the nodes and denoted as:

Â
(k)
i, j = ψθ (v

(k)
i ,v

(k)
j ) = Fθ (�v

(k)
i − v

(k)
j �) (5.3)

The proposed TGCN consists of three parallel ResNets and GCNs that share the network param-

eters. As shown in Figure 5.1, the input of the model is a triplet sampled from the archive X . The

triplet consists of an anchor image xa, a positive image xp from the same class, and a negative

image xn from a different class. The ResNet works as the embedding network to produce the

feature embedding φ (q)(xi) of the image xi ∈ X . The graph G is the input to the 3-layer GCN,

which performs the feature learning and label propagation through the graph convolution and

obtains the output graph representation. Afterwards, the graph-structured data is mapped into an

l-dimensional embedding space.

The model is optimized by an adapted triplet loss, which is applied to the embeddings of the

images that are provided by the GCN. The triplet loss function is originally proposed by [53] to

ensure that the distance in the feature space between the anchor image and the positive image is

smaller than the distance between the negative image by at least the margin m. The formulation

of triplet loss is given in Eq. 5.4:

LTriplet = ∑
a,p,n

[� f (va)− f (vp)�
2
2−� f (va)− f (vn)�

2
2 +m]+, (5.4)

where f (·) denotes the GCN function. This loss function ensures that the distance in the GCN-

induced metric space between the anchor image and the positive image is smaller than between

and the negative image by at least the margin m.

5.1.2 Graph CNNs-based Triplet Sampling

A common way to select triplets is to apply random selection based on the class label similarity

among the images. Such a random triplet sampling (RTS) strategy may select several easy
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triplets. To avoid this issue, we propose the GTS strategy that aims at considering similarity in

the embedding space, in which negative images are closer to the anchor, while positive images

are farther apart. The proposed sampling strategy forms hard triplets that can make the model

better understand the essential difference between different categories [53]. For each anchor

image xa ∈ X we first randomly sample a number of positive images Xp = {x1p, . . . ,x
n
p} from X .

For each selected image xi ∈ Xp ∪{xa} with label li we obtain the feature embedding φ (q)(xi).

Therefore, the initial nodes of the graph Ga
p are represented by V

a(0)
p = {v

(0)
1 , . . . ,v

(0)
k } where

v
(0)
i = φ (0)(xi). The graph Ga

p is given as an input to a neural network stacked after the 3-layer

GCN and optimized by the triplet loss to map the graph into metric space and get the index of a

hard positive image. The corresponding node of the hard positive image vhp is denoted as:

vhp = argmax

v
(k)
i ∈V

a(k)
p

ψθ (g(v
(k)
a ),g(v

(k)
i )), (5.5)

where g(·) denotes the GCN function, and ψθ is the metric function. By this way, we can

construct the graph by selecting hard positive images. In the same way, we can select hard

negative images. From the hard triplets the loss term is computed as:

LGTS =
A

∑
a=1

[ max
vp∈Va

p \{va}
�g(va)−g(vp)�

2
2−

min
vn∈Va

n \{va}
�g(va)−g(vn)�

2
2 +m]+,

(5.6)

where va denotes the node corresponding to the ath anchor image, Va
p denotes the nodes of the

graph Ga
p constructed by va and a number of positive images vp. Accordingly, V

a
n denotes the

nodes of the graph Ga
n constructed by va and a number of negative images vn.

The image retrieval is conducted by a k-nearest neighbors search in the graph embedding space

that is generated by the proposed TGCN. For a given query image the most similar images are

retrieved by calculating the Euclidean distance between the image embeddings in the feature

space. The k images with the lowest distance from the query image are the result of the image

retrieval.

(a) (b)

Figure 5.2: t-SNE 2D scatter plots obtained by: (a) the TGCN-RTS; and (b) the TGCN-GTS.
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To visualize the difference between RTS and the proposed GTS strategy, the selected triplets

were projected into a two-dimensional space by the t-distributed stochastic neighbor embedding

(t-SNE). From Figure 5.2 one can see that for a set of anchor images (denoted by red points),

the positive and negative images (denoted by green and blue points, respectively) sampled by

GTS are more closely distributed in the metric space and are covering each other visually. More

specifically, for each anchor image, the GTS provides a dissimilar positive image and a similar

negative image in the metric space to form a hard triplet.

5.2 Description and Design of Experiments

5.2.1 Experimental Setup

The experiments were conducted on two different RS benchmark archives. The first archive is

the Aerial Image Dataset (AID) that consists of 10,000 images grouped into 30 classes. The

second archive is NWPU-RESISC45, that is a large-scale RS dataset containing 31,500 images

grouped into 45 classes. For both datasets the images were split into training, validation, and

testing with a ratio of 70%, 10%, and 30%, respectively. For evaluating the image retrieval

performance each image in the test set is selected as a query image and image are retrieved from

the training set.

A ResNet18 [22] model pretrained on ImageNet was used to extract features from the images,

which are used by the GCN to learn the graph representation. The input images from the before-

mentioned two archives are resized to 256×256 pixels. A series of data augmentation methods

are implemented before training including RandomGrayscale, ColorJitter, and RandomHorizon-

talFlip. The batch size is set to 16. The margin m of the triplet loss is set to 0.2. The stochastic

gradient descent optimizer is used to update the gradients with an initial learning rate of 0.001,

which is decayed by 0.5 for every 30 epochs.

In order to evaluate our TGCN we select deep metric learning based on triplet loss with batch all

triplet mining (BATM) [6] as a baseline to compare with our TGCN under two triplet sampling

strategies: i) RTS and ii) GTS.

5.3 Experimental Results

Table 5.1: mAP obtained by the BATM, the proposed TGCN-RTS, and the proposed TGCN-

GTS for the AID archive.

Method TDR 5% TDR 10% TDR 20%

BATM [6] 0.6841 0.7913 0.8779

Proposed RTS 0.8886 0.9323 0.9493

TGCN GTS 0.9448 0.9678 0.9879

Tables 5.1-5.3 show the mAP obtained by BATM, the proposed TGCN-RTS, and TGCN-GTS

for the top-40 retrieved images from AID, NWPU-RESISC45 and EuroSAT, respectively. The
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Table 5.2: mAP obtained by the BATM, the proposed TGCN-RTS and the proposed TGCN-GTS

for the NWPU-RESISC45 archive.

Method TDR 5% TDR 10% TDR 20%

BATM [6] 0.6792 0.7594 0.8111

Proposed RTS 0.8489 0.8804 0.8920

TGCN GTS 0.9294 0.9632 0.9839

Table 5.3: mAP obtained by the BATM, the proposed TGCN-RTS and the proposed TGCN-GTS

for the EuroSAT archive.

Method TDR 5% TDR 10% TDR 20%

BATM [6] 0.9403 0.9573 0.9699

Proposed RTS 0.9415 0.9539 0.9922

TGCN GTS 0.9854 0.9961 0.9958

results demonstrate that TGCN outperforms BATM in a semi-supervised learning setup inde-

pendent of the triplet sampling strategy.. The results demonstrate that Triplet GCN outperforms

BATM in semi-supervised learning setup. In Table 5.1, Triplet GCN provides a 16.97% and

12.10% higher mAP for 5% and 10% labeled scenarios respectively compared to BATM. As

the amount of labeled training data increases, the performance of BATM gradually approaches

Triplet GCN. From these results one can see that the proposed GTS can further improve the

performance of semi-supervised image retrieval with regards to BATM and Triplet GCN. For

example, in Table 5.2 GTS yields 0.9294 mAP on NWPU-RESISC45 with only 5% labeled

data, which is increased by 8.05% compared with Triplet GCN and by 25.02% compared with

BATM.

We evaluate the computational complexity of BATM and proposed TGCN for AID dataset.

From Tabel 5.4 one can see the NP and FLOPS associated to BATM and TGCN for AID. By

analysing the results in Table 5.4 one can observe that the TGCN only slightly increases the

computational complexity. Specifically, FLOPS and NP of TGCN are increased by 2.42% and

4.62% compared with BATM, respectively. Therefore, the introduction of GCN will not signifi-

cantly increase the computational complexity and training time consumption.

Table 5.4: Number of required model parameters (NP) and floating-point operations (FLOPS)

associated to different methods

Methods NP(×106) FLOPS(×109)

BATM 33.6280 7.1258

TGCN 35.1840 7.2989
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Figure 5.3: (a) Query image, (b) image retrieved by BATM, (c) image retrieved by TGCN-RTS,

(d) image retrieved by TGCN-GTS.

Figure 5.3 shows examples of the retrieved images by BATM and the proposed methods for

the AID dataset. For a query image sampled from the airport class of the test set, we present

the 1st, 5th, 9th, 13th and 17th retrieved image from the archive. As shown in Figure 5.3, the

proposed Triplet GCN and GTS methods can retrieve more similar images, which belong to the

same class as the query image. For example, in Figure 5.3(b), the 13th and 17th retrieved images

are from the commercial and railway station classes respectively. In Figure 5.3(c), only the 17th

retrieved image belongs to a different class than the query image. In Figure 5.3(d) all retrieved

images share the class of the query image.
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5.4 Conclusion

In this work, we introduced a contrastive learning-based deep metric GCN for semi-supervised

image retrieval from RS image archives. The GCN can propagate the label information from the

labeled data to the unlabeled data and learn the implicit information from the graph-structured

data. We first constructed a Triplet GCN model to characterize the remote sensing images and

learn the metric space of the graph representations. We then proposed a novel GCN-based

triplet sampling method that can explore the underlying similarity information among the graph

structure and select hard triplets for efficient contrastive learning and model optimization. Ex-

periments on the AID, NWPU-RESISC45, and EuroSAT RS datasets show the effectiveness of

our proposed method. In addition, the proposed TGCN can achieve a computational complexity

close to BATM. Moreover, the TGCN can reach the convergence in less training iterations by

means of proposed GTS.
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6 Semi-supervised Image Retrieval for

Multi-label Remote Sensing Image

In this chapter, the proposed end-to-end semi-supervised GCN model for multi-label RS image

retrieval based on Binary cross-entropy (BCE) loss is introduced and the experiments conducted

on BigEarthNet are presented. In section 6.1, the architecture of the proposed GCN model is

presented. The model consists of an embedding network and a GCN. In section 6.2, the multi-

label RS benchmark BigEarthNet and the experimental setup is introduced. The experiment

results are presented and analyzed in section 6.3.

6.1 Methodology

6.1.1 Network Architecture

The GCN model presented in this chapter is similar to the GCN model proposed for single

label RS image retrieval in Chapter 4. As shown in Figure 6.1, the proposed GCN consists of an

embedding network and a graph convolutional network. The ResNet18 [22] introduce in Chapter

4 is utilized as the embedding network and the graph convolutional neural network shares the

same architecture as the model in Chapter 4. Different from the model for single label image

retrieval, the GCN model for multi-label scenario is optimized by Binary cross-entropy (BCE)

loss.

Figure 6.1: Illustration of the training procedure of the proposed GCN

6.1.2 Binary Cross-entropy Loss

Binary cross-entropy loss is combined by Sigmoid activation and Cross-entropy loss. Different

from Softmax loss, each class is independent of another, that is, the loss value for each class is

independently computed and will not influence the loss value for other classes when it is utilized

in the multi-label scenario. The BCE loss is defined as follows
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LBCE = −∑
i
∑
c

lyi(c)log(pci )− (1− lyi(c))log(1− pci ) (6.1)

where pci denotes the probability of the existence of class c, lyi denotes the target label yi of the

ith image with regard to class c. The cth element of yi is set to 1 if the class c is annotated and set

to 0 otherwise.

6.2 Description and Design of Experiments

6.2.1 BigEarthNet

BigEarthNet is a large-scale multi-label remote sensing benchmark archive. The images are ac-

quired by 125 Sentinel-2 tiles from 10 different countries in Europe including Austria, Belgium,

Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, and Switzerland. All the

tiles were atmospherically corrected by the Sentinel-2 Level 2A product generation and format-

ting tool (sen2cor).

The dataset contains 590,326 images covering 43 imbalanced labels. The ground image patch

size is 1.2 × 1.2 km, and the image size is variable due to the different resolutions in different

spectral bands. BigEarthNet contains 12 of 13 Sentinel-2 spectral bands except for the 10th band

due to the lack of surface information. Therefore, the image size in the dataset includes 120 ×
120 pixels with 10m channel resolution, 60 × 60 with 20m channel resolution and 20× 20 with

60m channel resolution.

The number of the label correlated with each image varies from 1 to 12. Among the dataset,

about 95% of the images have at most 5 labels, and only 15 images have more than 9 labels. In

addition, images with approximately close numbers are acquired from different seasons. Due to

the high cloud cover percentage of the Sentinel-2 images in winter, the images acquired in winter

occupy the smallest proportion in the dataset. Example of images in BigEarthNet is shown in

Figure 6.2.

6.2.2 Experimental Setup

The feature embedding of the input image can be obtained by the trained CNN and Graph CNNs

models. The Euclidean distance between the obtained feature embeddings is used to obtain the

closest neighbor of the out-of-sample images from a set of samples with known classes. Image

retrieval searches for the most similar image in the archive by measuring the distance of the

feature embedding with the query image in the metric space. In this chapter, the performance

of the image retrieval is evaluated by mean average precision (MAP), weighted mean average

precision (WMAP) and average cumulative gain (ACG).

ACG represents the average number of the shared labels between the top-r retrieved images

and the query image, which is formulated as

ACG@r =
1

r

r

∑
i

C(q, i) (6.2)
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whereC(q, i) denotes the number of shared labels between the ith retrieved image with the query

image.

MAP represents the mean of the average precision of the retrieved images for each query

image, which is formulated as

MAP =
1

Q

Q

∑
q

AP(q) (6.3)

AP@k =
1

Nrel(q)@R

R

∑
r

(δ (q,r)×
Nrel(q)@R

r
) (6.4)

whereQ denotes the number of all the queries, Nrel(q)@R denotes the number of relevant images

which share at least one label with the query image in the top R retrieved images. δ (q,r) is a

indicator function that equals to 1 if the rth retrieved image shares at least one label with the

query and equals to 0 otherwise.

Different from MAP, WMAP is computed based on the ACG for each top r retrieved images

instead of average precision. WMAP is formulated as

WMAP =
1

Q

Q

∑
q

(
1

Nrel(q)@R

R

∑
r

(δ (q,r)×ACG@r)) (6.5)

For the task in this chapter, 70% of the images in each class are randomly sampled to build

the training set, 10% for validation, and 20% of the images are used for the test set. For the

RS image retrieval, the training set is used as the archive while the validation set and test set

are used as the query. In the task, ResNet18 is selected as the backbone embedding network

architecture of the proposed GCN model. However, other CNN models such as ResNet50 can

also be implemented in this task and may have better performance for feature extracting. To

keep it simple, we only choose ResNet18 for this task.

The input images from the BigEarthNet are resized to 256 × 256 pixels. A series of data

augmentation methods are implemented before training including RandomGrayscale, ColorJitter

and RandomHorizontalFlip. Stochastic gradient descent (SGD) optimizer is used to update the

gradients. The initial learning rate is set to 0.001 and decayed by 0.5 for every 30 epochs. The

batch size is set to 16, and the model is trained for 130 epochs in total.

In this chapter, we compare several GCN model with several CNN methods, including: 1)

CNN-based binary cross-entropy loss, referred to simply as CNN-BCE; 2) GCN-based binary

cross-entropy loss, referred to simply as GCN-BCE. All the experiments are conducted on the

NVIDIA Tesla P100 graphics processing unit (GPU).

6.3 Experimental Results

Table 6.1 - 6.3 show the ACG, mAP and WMAP obtained by CNN-BCE and GCN-BCE for

top-100 retrieved images from BigEarthNet respectively. More specifically, each table consists

of the results from three semi-supervised scenarios in which the models are trained with 5%,

10% and 20% labeled data respectively. The results demonstrate that GCN-BCE outperforms

CNN-BCE in a semi-supervised learning setup.
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Table 6.1: ACG@100 of semi-supervised image retrieval based on different methods on

BigEarthNet

Methods 5% labeled 10% labeled 20% labeled

CNN+BCE 1.2401 1.2732 1.3259

GCN+BCE 1.2858 1.3236 1.4014

In Table 6.1, GCN-BCE yields 1.2858, 1.3236 and 1.4014 ACG for 5%, 10% and 20% labeled

scenarios respectively. Compared with CNN-BCE, GCN-BCE increase ACG by 3.68%, 3.95%

and 5.69% for each semi-supervised scenario respectively. From this results one can see that

the GCN-based method can improve the performance of retrieving images from the archive with

more shared labels with the query image.

Table 6.2: MAP@100 of semi-supervised image retrieval based on different methods on

BigEarthNet

Methods 5% labeled 10% labeled 20% labeled

CNN+BCE 0.9618 0.9725 0.9787

GCN+BCE 0.9572 0.9685 0.9815

In Table 6.2, GCN-BCE generally achieves a similar performance with CNN-BCE in 5%,

10% and 20% labeled scenarios. To be more specific, CNN-BCE provides a 0.9618 and 0.9672

mAP with 5% and 10% labeled data respectively, which improve by 0.48% and 0.41% com-

pared with the results provided by GCN-BCE. However, GCN-BCE also yields a higher mAP of

0.9815 compared with the mAP of 0.9787 provided by CNN-BCE for 20% labeled scenario. The

results in Table 6.2 indicates that the GCN-based and CNN-based methods provide the similar

performance on precision accuracy.

Table 6.3: WMAP@100 of semi-supervised image retrieval based on different methods on

BigEarthNet

Methods 5% labeled 10% labeled 20% labeled

CNN+BCE 1.2386 1.2715 1.3226

GCN+BCE 1.2784 1.3157 1.3915

Table 6.3 evaluates the performance of GCN-BCE and CNN-BCE from amore comprehensive

perspective. It shows clearly that GCN-BCE outperforms CNN-BCE in the semi-supervised

learning scenarios. For example, GCN-BCE yields a 1.2784, 1.3157 and 1.3915 WMAP for 5%,

10% and 20% labeled scenarios respectively, which improve the WMAP by 3.21%, 3.47% and

5.21% compared with CNN-BCE. Different frommAP,WMAP can indicate the degree of shared

labels of the retrieved images. Therefore, the results in Table 6.3 indicates the effectiveness of

GCN-based method, which can learn more complex semantic relation between images.

We present the computational complexity of the CNN model and the proposed GCN model

for the BigEarthNet dataset. Table 6.4 provides the NP and FLOPS of CNN-BCE and GCN-
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Table 6.4: Number of required model parameters (NP) and floating-point operations (FLOPS)

associated to different methods

Methods NP(×106) FLOPS(×109)

CNN-BCE 11.2278 0.7012

GCN-BCE 11.7639 1.4757

BCE for BigEarthNet. From Table 6.4 one can see that the proposed GCN-BCE significantly

increases FLOPS by 110.45% compared with CNN-BCE, i.e. from 0.7012 to 1.4757. However,

the required model parameters of GCN-BCE is only slightly increased by 4.77% compared with

CNN-BCE. By analyzing the results one can observe that the introduction of GCN significantly

increases the computational complexity of the model.

Figure 6.3 shows the examples of retrieved images by CNN-BCE and GCN-BCE for the

BigEarthNet dataset. For a query image sample from the test set, which has the label of Pastures,

Coniferous forest and Peatbogs, we present the 1st, 2nd, 5th, 10th, 15th, 20th, 25th, 30th, 35th, and

40th retrieved images from the archive. As shown in 6.3, GCN-BCE can retrieve more similar

images compared with CNN-BCE. From Figure 6.3(a) one can see that the query image has the

labels including Pastures, Coniferous forest and Peatbogs. By analysing Figure 6.3(b) one can

observe that most of retrieved images by CNN-BCE only share one label with query image, i.e.

Pastures. In contrast, the Figure 6.3(c) shows that GCN-BCE retrieves more images which have

more shared labels with query image. For example, the 1st, 2nd, 5th, 10th, 20th, 25th and 30th

images share the labels Pastures and Coniferous forest with query image, while the 40th image

shares the labels Pastures and Peatbogs with query image. Furthermore, the 15th retrieved image

has the same labels with query image.

6.4 Conclusion

In this chapter, we introduced a multi-label RS image retrieval framework driven by a semi-

supervised GCN-BCEmodel. The GCN-BCEmodel can be trained in a semi-supervised manner

and propagate the label information from the labeled data to the unlabeled data utilizing the

graph convolution. By means of the capability of GCN-BCE for learning the complex semantic

relations between multi-label RS images, we generalize the RS image retrieval to the multi-

label scenario. Experimental results on the BigEarthNet dataset show the effectiveness of the

proposed GCN-BCE compared with CNN-based methods. However, the proposed GCN model

significantly increases the computational complexity compared with the CNN model.
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Figure 6.2: Examples of images in BigEarthNet and their labels.
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Figure 6.3: (a) Query image, (b) image retrieved by CNN-BCE, (c) image retrieved by GCN-
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7 Conclusion and Discussion

In this work, aiming to address the problem of the lack of a large amount of annotated images in

remote sensing image retrieval tasks, GCN-based methods are introduced. GCN can propagate

the label information from labeled data to unlabeled data employing the graph convolution on

graph-structured data.

Based on GCN, we first proposed a new semi-supervised GCN model for RS image retrieval

by means of two different components: 1) Contrastive loss and 2) Cross entropy loss. The pro-

posed model can effectively learn from few annotated images with a large number of unlabeled

images. Experiments conducted on three RS benchmarks in different semi-supervised image

retrieval scenarios validate the effectiveness of the proposed models. Compared with the CNN-

based methods including: 1) deep metric CNN based on triplet loss; 2) deep metric CNN based

on Contrastive loss; 3) CNN based on Cross entropy loss, the proposed GCN-based models can

accurately retrieve more semantically similar images from the archive.

Afterward, aiming to utilize the explicit information about similarity and dissimilarity pro-

vided by triplet loss for metric learning, we proposed a Triplet Graph Convolutional Network

(TGCN) which consists of three parallel graph models with shared weights and learns a rep-

resentation from triplets of images suitable for image retrieval. Additionally, we proposed

a novel GCN-based triplet sampling strategy exploring the underlying similarity information

among the graph structure and selecting hard triplets for efficient metric learning and model

optimization. Experiments conducted on three RS benchmarks validate the effectiveness of the

proposed TGCN. Compared with TGCN with random sampling strategy and the state-of-art

method BATM, the proposed GTS can further effectively improve the image retrieval perfor-

mance in the semi-supervised scenario.

Moreover, we proposed a semi-supervised GCN model for multi-label RS image retrieval

by means of the binary cross-entropy loss. The proposed model consists of a ResNet18 and a

GCN. The ResNet18 is used to extract the multi-label RS images and produce the feature em-

beddings. The GCN is utilized to explore the inherent correlation between multiple labels with

image features and further propagate the labels to unlabeled images. Experiments conducted on

BigEarthNet benchmarks show the effectiveness of the proposed GCNmodel compared with the

CNN model in semi-supervised scenarios. Specifically, the GCN model can effectively retrieve

similar images with more shared labels.

In general, the proposed GCN frameworks have a more complex network structure and more

parameters due to the additional graph convolutional neural networks. Therefore, for each train-

ing iteration, the proposed GCN needs a longer time to extract features and perform convolution

operations. However, compared with the RTS strategy, the proposed GTS strategy can signifi-

cantly speed up the training process due to the selection of a more effective triplet. The model

can thus reach convergence with fewer iterations.

As future work, we provide several directions based on this work. One is to generalize the
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deep metric GCN for the multi-label scenario and explore the capability for learning the com-

plex semantic relations between multi-label RS images. The proposed triplet deep metric GCN

has already validated the effectiveness of GCN in characterizing the RS images and generating

metric space that can better measure the feature similarity between RS images. Therefore, we

can explore the possibility of generating the feature embeddings of multi-label RS images by the

GCN-based metric learning methods by means of triplet loss. More specifically, for multi-label

images, using only a single label to determine the relations between two images has limitations

as in a single-label scenario, because many highly similar pictures may have multiple shared

labels. GCN can be used to provide a criterion for judging whether a multi-label image is a

positive or negative image for the anchor images based on the similarity.

In addition, different labels in the multi-label images may be associated. For example, beaches

and ocean generally appear together. Therefore, we can construct the graph in another way, using

nodes to represent each label, and edges with weights to describe the correlation between these

labels. The correlation of labels can be extracted by GCN and combined with extracted features

of images to better characterize the RS images.
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