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Abstract

In this thesis, a framework for building machine learning networks for solving
visual question answering tasks in the domain of Earth Observation is presented.
The flexible design of the framework allows the integration of different models for
the speech and image domains. Thus, state-of-the-art, transformer architectures
can be combined to answer natural language questions using satellite imagery.
Also presented is a data set that combines satellite imagery with questions and
answers, where unlike other domains, the images have more than the usual three
channels of red, green, and blue. Instead, the images include 10 color channels
and an additional 2 channels from a synthetic aperture radar.

The validity of the approach is examined through a series of experiments us-
ing combinations of four different image processing networks, five text process-
ing networks, and various activation functions, modality combination methods,
and dimensions of classification heads. It is shown that while all tested image
processing networks can achieve competent results, the choice of text process-
ing network and activation function may have some significant influence on the
training results. The choice of modality combination methods and the dimen-
sions of the classification head also have an influence, although it is smaller than
in the two previously mentioned categories. Considering the number of parame-
ters, the configuration consisting of MobileViT and BertTiny as feature extractors,
multiplication as feature fusion and 256/128 fusion dimensions is identified as
the most promising network of the presented framework with the investigated
sub-networks.
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Kurzfassung

In dieser Arbeit wird ein Framework zur Erstellung von Machine Learning Netzw-
erken zur Lösung von Visual Question Answering Aufgaben in der Domaine der
Erdbeobachtung vorgestellt. Der flexibel gestalltete Aufbau des Ansatzes erlaubt
die Integration verschiedener State-of-the-Art Modelle für die Sprach- und Bild-
domaine. Dadurch können aktuelle Transformerarchitekturen miteinander kom-
biniert werden, um natürlich-sprachlich gestellte Fragen unter Zurhilfenahme
von Satellitenbildern zu beantworten. Außerdem wird ein Datensatz vorgestellt,
welcher Satellitenbilder mit Fragen und Antworten kombiniert, wobei die Bilder
anders als in anderen Domainen über mehr als die üblichen drei Kanäle rot,
grün und blau verfügen. Stattdessen beinhalten die Bilder 10 Farbkanäle und
zusätzlich 2 weitere Kanäle von einem Radar mit synthetischer Blende.

Die Validität des Ansatzes wird durch eine Testreihe mit Kombinationen aus
vier verschiedenen Bilderverarbeitungsnetzwerken, fünf Textverarbeitungsnetzw-
erken sowie verschiedenen Aktivierungsfunktionen, Modalitätskombinierungs-
methoden und Dimensionen von Klassifizierungsköpfen untersucht. Es wird
gezeigt, dass zwar alle getesteten Bilderverarbeitungsnetzwerken kompetetive Er-
gebnisse erreichen können, die Wahl des Textverarbeitungsnetzwerken und der
Aktivierungsfunktion aber zum Teil erheblichen Einfluss auf das Trainingsergeb-
nis haben. Die Wahl der Modalitätskombinierungsmethoden und die Dimensio-
nen des Klassifizierungskopfes haben ebenso einen Einfluss, auch wenn dieser
geringer ausfällt als in den beiden vorhergenannten Kategorien. Unter Berück-
sichtigung der Anzahl an Parametern wird die Konfiguration bestehend aus Mo-
bileViT und BertTiny als Feature Extraktoren, Multiplikation als Feature Fusion
und 256/128 Fusionsdimensionen als vielversprechestes Netzwerk des vorgestell-
ten Frameworks mit den untersuchten Sub-Netzwerken identifiziert.
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1 Introduction

The ever-increasing amount of data that is recorded every day by a wide variety
of sensors is an ever-present problem. For example, in February 2020, over 500
Gigabyte (GB) of video data were uploaded to the video platform youtube.com per
minute [1]. In other domains such as Earth Observation (EO) a lot of data is
generated too. For example, ESA’s satellite-based Copernicus Sentinel-1, -2 and
-3 missions produce more than 20 Terabyte (TB) of data per day [2].

The data generated by satellite missions can be used by everyday tasks such
as weather forecasting [3, 4], as well as in specialized fields such as climate
change analysis [5, 6], urban planning [7, 8], Land Cover Classification (LCC)
and Land Use (LU), surface change [9–12], or disaster relief and prevention [13–
15]. Even very specialized problems such as drainage tile detection [16, 17] or
crop insurance fraud [18] can be solved by remote sensing imagery.

However, pure, unprocessed data cannot be meaningfully interpreted by hu-
mans, but require pre-processing such as filtering or structure, for example
through visualization. This turns data into information that can be assimilated
and further processed or applied by humans.

The processing of this amount of data is no longer possible by humans, because
too much data is recorded. Therefore, automated systems have to be developed,
which allow to filter and process the amount of produced data quickly and ef-
fectively with the help of computers. To ensure that the data do not lose their
relevance or become distorted during processing, these systems must work reli-
ably and quickly. Due to the amount of data to be processed, the systems should
also operate efficiently to reduce the energy load as well as the computing power
requirements of the processing systems.

In addition, flexible systems that can run on devices with low computational
power are needed for use cases such as disaster relief. For example, Deep Learn-
ing (DL) models can be used in flood disasters to identify flooded areas and sup-
port relief efforts. These can be based on different modalities such as satellite
imagery [15, 19] or posts in social media [20]. However, finding the structure, i.e.
the architecture, of such a system is a complex undertaking, since the behavior
of the networks depends on the exact structure, which in turn depends on many
design decisions. This is especially true for Artificial Neural Networks (ANNs),
since in these systems the parameters are learned by training with large data
sets rather than set by design choices.

Approaches such as Neural Architecture Search (NAS) are supposed to help
solve this problem by automating the search for appropriate architectures [21],
but they are criticized for consuming large amounts of energy during the search
itself. Even though the amounts of energy used are sometimes overestimated
many times over [22], it is clear that energy efficiency is an important part of the
development of new architectures.

The low computational demands of lightweight and throughput-optimized net-
works would allow them to run on mobile devices such as laptops. This means
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that the networks can be applied directly at the site of the disaster and the re-
sults of the execution can be implemented directly and immediately on site. This
eliminates the need to wait for access to large data centers, which would require
a stable network connection and possibly the allocation of computing resources.
Current DLmodels like transformer and Convolutional Neural Networks (CNNs)

tend to have a lot of parameters. This means that the models require a lot of
computational power for both training and application. In addition, these large
models no longer fit into the memory of a single machine and must be trained
using strategies such as distributed learning. However, such strategies require
large data centers with sometimes hundreds of nodes and scale only conditionally
or not at all depending on the chosen strategy [23, 24].
In order to simplify access to Machine Learning (ML) models for non-domain

persons, special model families are developed. VQA models are one such ap-
proach, that allows the processing of image data in conjunction with a natural
language input. This makes it possible, for example, for first responders in dis-
aster areas to use ML to simplify their work without the user needing a computer
science background.
The goal of this work is to develop a VQA model that has a small number of pa-

rameters and computational requirements compared to state-of-the-art models.
For this purpose, already existing lightweight architectures based on transform-
ers are to serve as a basis. The Thesis consists of 6 chapters which are structured
as follows.
Section 2 presents related work to this thesis. A short overview over transform-

ers in image processing domains not related to earth observation and the current
state of the art of DL models in remote sensing image applications in general will
be given. The chapter is opened with the explanation of various efficient training
methods for ANNs. Additionally, a detailed description of all subnetworks used
in pre-training and training as well as work related to VQA is provided.
Section 3 will explain the overall structure and functionality of the visual ques-

tion answering model introduced in this thesis. The individual stages as well as
the overall concept and the motivation behind the individual design decisions
will be discussed.
Section 4 presents the multi-class-multi-label data set used used for pre-train-

ing of the Visual Transformer models. It will also introduce the created data set
for Multi-Modal (MM) Visual Question Answering for Earth Observation (EOVQA).
Section 5 will introduce the methodology used to test the framework proposed

in the previous chapter in practice. The results of the training are presented.
In section 6, the results are evaluated and overall conclusions are drawn. In

addition, the implications of the results are presented and discussed. The work
in this thesis is summarized and a final result drawn from the individual partial
results. In addition, possible future work will be presented in this section.
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2 Related Work

This chapter describes the current developments and fundamental principles of
DL in general and in the Remote Sensing (RS) field in particular. It also explains
the basics of efficient learning, VQA and presents influential work related to multi
modal learning.

2.1 Overview on Efficient Learning

Efficient training is fundamentally important in an age where ever more data
needs to be processed faster. In efficient training, one must distinguish between
two types of efficiency: time efficiency and space efficiency.

Space efficiency is about minimizing the memory footprint of certain objects, in
this case networks. This means that a space-efficient network, compared to a less
efficient network, consumes less memory both during backup and during use in
the main memory of the computer or in the graphics memory of the graphics
card or other accelerator hardware.

One possible method to reduce the memory footprint is the weight sharing
method introduced by Nowlan [25]. This method, which does not train each layer
weights individually but uses e.g. weight matrices multiple times, reduces the
footprint of the network by using less individual weights. Weight sharing has
already been successfully applied several times in different variations [26–28].

Another method of removing the number of used parameters is pruning. In this
method, parameters that have either no influence or only a negligible influence
on the final result are removed from the network. This means that these param-
eters do not have to be stored and their (non-existent) influence does not have
to be calculated during use, which reduces the memory and computing power
requirements of the network. Although the correct application of pruning is still
under discussion, the method has been applied frequently with varying degrees
of success [29–32].

Quantization is a network compression and acceleration method in which the
weights of the individual layers are partially or completely transferred from one
data type to another. Normally weights are stored as high precision floating point
data, but it has been shown that converting to fixpoint with lower bit widths can
increase the speed and memory footprint of networks with small losses in ac-
curacy as shown for the conversion from float32 to 16-bit or smaller fixed point
by Lin et al. [33]. Alternatively, conversion to 8-bit integer [34] or even reduc-
tion to only one or two bits per weight and activation [35] has been successfully
demonstrated.

Instead of replacing the weights of the network after pre-training and before
finetuning with another representation, as is the case with quantization, you
can also use parts of the network and the optimizer during training instead of
float32, float16. This conversion can be done either manually [36] or with an
approach called automatic mixed precision by frameworks. This can mitigate the
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problems caused by simply replacing 32-bit floats with 16-bit floats [37]. It was
also shown that the approach is very scalable to increase the training speed on
clusters with few as well as many accelerators [38].
Also methods like frozen layer or zero/few-shot learning can be counted as

efficient methods to a limited extent. With frozen layers, only parts of the model,
typically the last n layers, are trained, while all other layers keep their current
state. Zero-shot learning, on the other hand, trains a text embedding and an
image embedding simultaneously, where the actual test classes are not explicitly
included in the training set. During the test time, the text embedding closest
to the image embedding is used as the classification. This allows the model to
abstract to unseen, or in the case of Few-Shot learning, to little seen classes.
More details are discussed in section 2.4.
These two methods are efficient in that they greatly speed up training. In the

aspects of memory usage and execution time during test time or after deployment,
however, they have no advantage over the same architecture that has not been
trained with frozen layer or zero/few-shot.

Knowledge Distillation Originally proposed as a methodology by Hinton et al.
[39], Knowledge Distillation (KD) is based on the thesis that a large network (the
“Teacher” network) contains many parameters that do not have much influence
on the overall result. Therefore, a small network (the “Student” network) can be
trained by the larger one to incooperate the same knowledge in fewer parameters.
In language processing in the context of this thesis, these large networks are, for
example, Large Language Models (LLMs).
The goal of Distillation can be formulated as the minimization of the distillation

loss LKD with

LKD =
∑
x∈X

L
(
f S(x), f T (x)

)
(1)

where X is the data set, f S and f T are behavior functions, that describe the trans-
formation of the input of a network (f S for the student network and f T for the
teacher network) to any information and L is a loss, that describes the difference
between the student and teacher network. As a basic case this can be the cross
entropy loss between the logits of the two networks. However, the behavior func-
tion can also describe the transformation to any intermediate layer of the teacher
network.
For single class classification, the classification head usually calculates the

probability qi of class i by comparing the network logit zi of this class with all
logits using the softmax function

qi =
exp(zi/T)∑
j exp(zj/T)

(2)

4



Here T is the temperature coefficient, usually defined as 1. For T > 1 this
creates softer labels, meaning, the ground-truth labels are treated as less certain.

The basic form of KD trains one or more teacher models on a large data set
until these models have achieved satisfactory performance. Then, the student
model is trained by using the soft labels that the teacher models output instead
of the hard original label.

Alternatively, the labels can be adjusted for distillation by either combining
the hard labels weighted with the soft labels, or by using two loss functions
in parallel. Thus, a cross-entropy loss with high temperature in the softmax
calculation with target of the soft labels and a second cross-entropy loss with
T = 1 with target of the hard labels train simultaneously on soft and hard labels.
The total loss is calculated as the weighted sum of the two cross-entropy loss
functions.

This method can also be used if only for a part of the training data the hard
labels are known. In these cases the weighting for the hard labels is set to zero
for data where hard labels are unknown. Meanwhile, care must be taken that
the gradients scale with the factor 1/T2, so they should be multiplied by T2 to
keep the relative influences of hard and soft labels constant for T during the
hyperparameter search. In general, a strong focus on the soft labels seems to
work better for knowledge transfer from teacher to student model.

2.2 Overview on Transformers

The Transformer Architecture is an architecture of ANNs specifically designed for
sequential data processing. It was proposed by Vaswani et al. [40] and is con-
sidered a successor architecture to Long Short-Term Memorys (LSTMs) [41] and
Recurrent Neural Networks (RNNs), especially gated RNNs [42]. Typical appli-
cation areas for sequential data are mainly Natural Language Processing (NLP)-
tasks like language modeling or machine translation.

Recurrent models process the input in series. For each symbol of the input at
position t a hidden state ht is calculated from the input and the hidden state ht−1.
This serial processing prevents parallelization and makes the calculation slow.
This is especially relevant for long input sequences. The Transformer model, on
the other hand, enables the parallelized processing of sequential data.

Instead of recurrence, the Transformer architecture mainly uses the attention
principle. This mechanism allows the network to make connections between dis-
tant and close symbols in the same calculation step. These connections are the
relationships of symbols to each other. Unlike recurrent models, these relation-
ships can be computed in a highly parallelized manner, which greatly reduces
the execution time of the networks.
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Attention can be modeled as

Attention(q,K , V ) =
N∑
i=1

softmatcha(q,K)i · vi (3)

softmatcha(q,K)i =
exp(a(q, ki))∑N
j=1 exp(a(q, kj))

= softmaxi({a(q, kj}j) (4)

with q ∈ Q ⊆ Rdq a query in query-space, k ∈ K ⊆ Rdk a key in key-space and
V ⊆ Rdv the value-space. a is an alignment function Q × V → R which evaluates
how well the embeddings at positions i and j relate to each other [43]. This
function can be realized e.g. as dot product (“dot-product attention”) or as Feed
Forward Network (FFN) (“additive attention”).
Transformers use dot-product attention, which can be parallelized by process-

ing all queries and keys in parallel as a matrices Q and K instead of serially as a
vector:

Attention(Q,K , V ) = softmax
(
QKT

)
V (5)

Since the softmax function produces only a small gradient for large values, the
result of the matrix multiplication is usually scaled depending on the dimension-
ality of the key embedding dk:

Attention(Q,K , V ) = softmax

(
QKT√
dk

)
V (6)

Other architectures have already been able to use attention successfully. Lin et
al. [44] used attention to create the embedding of the input. Instead of a vector,
the embedding was represented as a 2D-matrix, where each row corresponds
to a symbol of the input. This allowed successful author profiling, sentiment
classification and textual entailment.
The Transformer architecture uses an Encoder-Decoder structure. The tokens

(embedding of the symbols) of the input X = {x1, ... , xn} are transformed by the En-
coder into a representation Z = {z1, ... , zn}. From this representation, the output
Y = {y1, ... , ym} is auto-regressively generated. The Decoder receives the represen-
tation Y and all outputs {y1, ... , yt} generated up to t < m as input to generate the
output symbol yt+1.

Both encoder and decoder consist only of self-attention and fully-connected
layers as learnable parameters. These two layers together with Layer Norm (LN)
and residual connections form the building block of each transformer block as
shown in fig. 1.
The encoder blocks are L identically constructed blocks, each consisting of two

sub-blocks. The first sub-block is a Multi-Head Self Attention (MSA) layer, fol-
lowed by LN. The second block consists of a fully-connected layer, also followed
by LN. A residual connection is connected around each of the two sub-blocks.
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Figure 1: Structure of the Transformer Architecture [40, fig. 1]

Therefore, each of the sub-blocks produces embeddings of the same dimension-
ality dH.

Multi-head Attention does not calculate the attention based on the dimension
of the embedding, but projects this embedding first linearly into the dimensions
of the query dq, key dk and value dv. This projection is learned and is different
for each head. The heads then calculate the attention in parallel. All results are
concatenated and again projected linearly back into the initial dimension dH.

MultiHead(Q,K , V ) = Concat(head1, ... ,headi)WO (7)

headi = Attention(QWQ
i ,KW

K
i , VWV

i ) (8)

with WQ
i ∈ R

dH×dq, WK
i ∈ R

dH×dk , WV
i ∈ R

dH×dv and WO ∈ RAdv×dH where A is the
number of parallel heads.
Since the attention mechanism is inherently position invariant, the trans-

former network must be given additional position information for each token.
This Positional Encoding (PE) is attached to or in-cooperated with the input em-
bedding. The embedding can be generated in different ways, e.g. learned or as
proposed by Vaswani et al. [40] by sinuide functions.

PE(pos,2i) = sin(pos/100002i/dH ) (9)

PE(pos,2i+1) = cos(pos/100002i/dH ) (10)
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The decoder also consists of L identical blocks, each of which consists of both
sub-blocks contained in the encoder and an additional third sub-block. Between
the MSA and the fully-connected layer is an additional multi-head cross-attention
layer, which computes the relation between the final embedding of the encoder-
stack and the embeddings of the decoder. Here, the queries are the output of
the previous self-attention sub-block and keys and values are the embedding of
the encoder-stack. This block contains layer-norm and a residual-connection as
well.
In addition, the self-attention block is modified by masking all positions i ≥ t

for decoding of position t. This prevents the self-attention block from attending
to positions that have not been decoded yet.

2.2.1 The Evolved Transformer

The development of the Transformer architecture led to other architectures based
on the Transformer principle. For example, So et al. [21] introduce the Evolved
Transformer. This group of architectures uses the tournament selection evolu-
tionary algorithm as described by Goldberg and Deb [45]. This algorithm works
as follows:
The set of all parameters that describe the configuration of a network is called

a gene encoding. The NAS called algorithm aims to search the high-dimensional
search space of all possible genes encodings as efficiently as possible to find a
gene encoding that describes a high-performance network.
For this purpose, an initial generation of networks is created whose genes are

randomly initialized. All networks are then evaluated (trained and tested). The
two best networks form the parents for the next generation. The genes of the
parents are mixed and mutated (noise is added) to create a new generation of
networks. All lower performing networks are discarded. This procedure is re-
peated for a certain number of steps or until a satisfactory performance of the
networks is achieved.
Although the networks found at NAS were more performant than previously

used networks, they were soon overtaken by architectures found by hand. In ad-
dition, NAS is considered computationally expensive and polluting, even though
the impact of the search is limited by techniques such as Progressive Dynamic
Hurdles [21] and advances in hardware or datacenter efficiency [46].

2.2.2 BERT

A very influential architecture is the BERT architecture introduced by Devlin et
al. [47]. This architecture differs from the original transformer architecture by
using only the encoder-stack of the architecture presented by Vaswani et al. [40]
as shown in fig. 2.
In addition, two pre-training techniques are introduced that allow the encoder

to be universally pre-trained in an unsupervised fashion and fine-tuned only for
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Figure 2: Structure of the BERT Architecture

the specific task, requiring a smaller amount of labeled data for fine-tuning. The
two tasks are Masked Language Modeling (MLM) and Next Sentence Prediction
(NSP).

Both tasks rely on the network architecture being a bidirectional encoder. This
means, that in the attention heads the token at position i can attend to the token
at position j with i < j and vise-versa.

In contrast to ViT, BERT uses two additional special tokens. During embed-
ding, an additional [CLS] token is prepended to the sequence of token. This
token was introduced for classification tasks. Instead of feeding all final hidden
states Ti ∈ RH with i = 1 ...N as input into the classification head, only the fea-
tures of the [CLS] token (denoted as C ∈ RH) are used as input. Additionally,
a [SEP] token was introduced. This token allows to use multiple sentences as
one sequence as an input to the network. Sentences are divided using the [SEP]
token.

In addition, two learned embeddings have been introduced, which indicate for
each input token whether it belongs to sentence A or sentence B. Including the
position embedding as used in ViT and the individual token embedding, the full
embedding structure of a pair of sentences is build as shown in fig. 3.

Figure 3: Embedding generation for example sentence pair “This is my dog. Her
name is Ronja.” [47, fig. 2]
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Masked Language Modeling is based on the Cloze Procedure [48]. Its working
principle is, that a part of the input tokens (15% in the case of BERT) are masked
at random. This means, that instead of the token embedding, a special [MASK]
token is used. The last hidden state of the masked tokens are passed through
an output softmax layer over the full vocabulary to predict the masked word.
However, this [MASK] token has the disadvantage that it is not present in most

fine-tuning tasks. Therefore, the inputs for pre-training and fine-tuning are fun-
damentally different. To reduce this difference, only 80% of the masked words
are actually replaced by the [MASK] token. In the other cases, the tokens are
replaced with equal probability by random embedding or the corresponding em-
bedding.
For the evaluation of the token at position i, not all hidden states are tested,

but only the hidden state Ti using cross entropy loss. It does not matter whether
the masked token was replaced by [MASK], a random token or not at all. For
MLM all tokens use sentence A embedding, as only a single sentence is used as
input.

Next Sentence Prediction is a classification task, which requires that the net-
work can extract the relationship between two sentences. This is especially rel-
evant for tasks like Question Answering (QA), where the answer to the textual
question is provided in a text excerpt1. For training, two sentences are used as
an input with embeddings created as shown in fig. 3. In 50% of all cases, sen-
tence B is the immediate next sentence of sentence A, whereas in the other cases
it is a different, random sentence from a corpus.
For binary classification, the final hidden vector C of the input token [CLS]

is evaluated to predict if sentence B is the subsequent sentence of sentence A.
Therefore, this token must have all features of the inter-sentence relationship
encoded for correct classification.

2.2.3 Efficient BERT-like Architectures

In the following paragraphs, some efficient transformer architectures are de-
scribed. All architectures have in common that their structure is a variation of
the BERT architecture and that they use optimized training procedures to train
the architecture efficiently and with only small restrictions in the final ability of
text understanding despite a small number of parameters. All approaches are
using the BookCorpus data set [49] and English Wikipedia for pre-training of the
model. The differences in training procedure and architecture will be described
in the following paragraphs.
The models described will be used for feature extraction of the NLP-input of

the framework described in section 3 of this thesis.
1as opposed to VQA, where the answer to the textual question is provided in a provided image
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DistilBERT Sanh et al. [50] introduce a smaller version of BERT [47], with the
number of layers L = 6, the hidden size H = 768, the feed forward/filter size
I = 3072 and the head number A = 12, which is the same as architecture as
BERTBase, but using only half as many layers. Pre-trained weights are obtained
from Huggingface [51]. This model is about 40% smaller and 60% faster than
BERTBase while retaining 97% of the performance.
To train this compressed model, a triple loss was introduced, which conditions

the model not only on the language itself, but also learns intermediate represen-
tations of a larger teacher model. This trains a kind of behavioral cloning (see
section 2.1). The three loss functions are a language modeling loss as used for
example for MLM LMLM, a distillation loss LCE and a cosine-distance loss Lcos. The
cosine-distance loss is used to bring the hidden states of the teacher and student
models closer together. It is calculated as

Lcos(x, y) =
{
−cos(x1, x2) if y = 1
max(0, cos(x1, x2)) if y = −1

(11)

where x = {x1, x2} are the two vectors whose distance is to be measured and
y = {−1, 1} is the label.

The distillation loss is defined as

LCE =
∑
i
ti ∗ log(si) (12)

where ti and si are the probability estimations of the teacher and student model
respectively.

For the initialization of the weights, every second layer of the BERT teacher
model was copied in each case. This is possible because only the number of
layers differs from the training model.
It could be shown that this kind of initialization increases the performance

of the final network compared to a random initialization. Additionally, using all
three loss functions improves over using only a subset of the loss functions.

TinyBERT The model introduced by Jiao et al. [52] follows the overall structure
of BERT [47], but with the number of layers L = 4, the hidden size H = 312, the
feed forward/filter size I = 1200 and the head number A = 12 for the specific
configuration. Pre-trained weights as used in this Thesis are made available by
Huggingface [53] used in this thesis. It leverages KD by introducing three loss
functions for different parts of the model. The loss functions are motivated by
the findings of Clark et al. [54], who discovered, that the attention heads contain
linguistic properties like syntax or coreference.
For distillation a two step approach is presented. In the first step, a mapping

n = g(m) is defined, which maps the index of layer g(m) of the teacher network to
the index of layer m of the student network. The embedding layer is set to index

11



0 and the prediction head to layer M + 1. The layers are therefore layer 0 and g(0)
for the embedding and N + 1 = g(M + 1) for the prediction layer.

In the second step, a distillation loss for each layer of the student model is
calculated over the whole data stet. The distillation loss of layer m is defined as

Lmodel =
∑
x∈X

M+1∑
m=0

Llayer
(
f Sm(x), f Lg(m)(x)

)
(13)

Here, Llayer is a loss function that is dependent on the type of layer that is distilled.
For the embedding layer, the loss function uses the Mean Squared Error (MSE)

between the embeddings, defined as

Lembd = MSE(ESWe, ET ) (14)

with ES and ET being the embeddings of student and teacher respectively and
We ∈ Rd′×d being a learnable linear transformation from student embedding space
to the teacher embedding space.
For the transformer blocks, the loss is composed of two parts. For the multi

head attention blocks, the loss is

Lattn =
1
h

h∑
i=1

MSE(ASi ,ATi ) (15)

with h being the number of attention heads and Ai ∈ Rl×l the attention matrix for
head i with l being the length of the token sequence. Note, that Ai is used directly
instead of the attention output softmax(Ai)

BERTTiny Themodels introduced by Turc et al. [55] are following the exact struc-
ture as proposed by Devlin et al. [47]. The specific model used in this thesis is
the configuration called BERTTiny (the smallest configuration) with pre-trained
weights used from Huggingface [56], with the number of layers L = 2, the hidden
size H = 128, the feed forward/filter size I = 512 and the head number A = 2.
This model was trained together with 23 other configurations (each differing

by a combination of different L and H2) in a three-stage procedure. Only a small
amount of labeled data is necessary to apply this three-stage procedure. How-
ever, a large amount of unlabeled data is also required for training.
In order to use this procedure, a teacher model with a high performance was

trained beforehand (see section 2.1). This model does not have to meet any de-
ployment speed/size constraints, since it is only needed for training the efficient
model and is not used in the final application. In the first step, the student net-
work is trained with in an unsupervised manner. Specifically, the network used
here was trained with MLM (see section 2.2.2). In the second step, the knowledge

2A and I are calculated as A = H/64 and I = 4H for all models
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of the larger teacher is distilled as described in section 2.1. The data used for
distillation may overlap with the labeled data, but this is not necessary. As a
final, optional step, the student model can be fine tuned using the labeled data
set. The model used in this thesis was pre-trained using a BERTLARGE teacher
model for the distillation (second step).

MobileBERT MobileBERT is a model architecture introduced by Sun et al. [57]
that makes modifications to the BERT architecture specific to mobile devices to
make the resulting models smaller and faster. The used modifications reduce the
width rather than the depth, because this leads to better performance, as Turc
et al. [55] have shown. To achieve this, the output dimensionality of both the
attention head and the FFN is reduced.

In order to preserve the residual connection and the depth-independent di-
mension of the embedding, a dimension reducing linear layer is in parallel to the
multi head self attention and an expanding linear layer after the FFN as can be
seen in fig. 4b.

For the training of this network, an additional training objective was defined,
which is used during training. It transfers knowledge from individual levels of
the trainer to the corresponding level of the student. Since the embedding of a
transformer accounts for a significant part of the overall network size, its width
should also be reduced, but the dimensions of the attention head output as
well as the FFN should be as in BERT [47], the teacher network was modified
similarly to the student, except that the expanding and contracting linear layers
are reversed as seen in fig. 4a. A detailed dimension comparison is listed in
table 8 in the Appendix.

The additional training objective LlKT is to transfer knowledge from layer l of
the teacher to layer l of the student. The loss is linearly composed of two parts.
First, the knowledge of the attention maps is to be transferred using an atten-
tion transfer method. This is done by reducing the KL-divergence between the
individual heads of the teacher and the student.

LlAT =
1
TA

T∑
t=1

A∑
a=1

DKL
(
atrt,l,a||a

st
t,l,a
)

(16)

Here, l is the index of the layer, T the sequence length and A the number of the
attention head.

Since the in-/output dimensions of each layer of the teacher match those of
the student, a comparison can be made between the feature maps at the end
of each layer. The mean squared error between the teacher and student feature
maps is the second part of the training objective. It is described by
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(a) Architecture of the MobileBert teacher network: Inverted-Bottleneck BERT (IB-BERT)
introduces an inverted bottleneck expanding parallel to the MSA layer and dimension
reducing after the FFN + Add & Norm block [57, fig. 1b].

(b) Architecture of the MobileBert student network: Same general structure as the
teacher network but using a bottleneck instead of an inverted bottleneck and repeat-
ing the FFN + Add & Norm block F times [57, fig. 1c].

Figure 4: MobileBert teacher and student network: Knowledge is transferred us-
ing Attention Transfer of MSA heads and Feature Map Transfer after
the last LN of the teacher to the student for each Encoder Block.

LlFMT =
1
TN

T∑
t=1

N∑
n=1

(
Htrt,l,n − H

st
t,l,n
)2 (17)

with N being the feature map size.
Through this loss function, the layer by layer knowledge of the teacher is trans-

ferred to the student. Sun et al. [57] have shown that splitting the loss in practice
into normalized feature map discrepancy and feature map statistics discrepancy
can stabilize the training.
Furthermore, a pre-training distillation loss LPD is defined utilizing MLM, KD

and NSP in a linear combination.

LPD = αLMLM + (1− α)LKD + LNSP (18)
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with α ∈ [0, 1] being a hyperparameter.
Three different training approaches were proposed. In the first approach, all

layers are trained simultaneously, all loss functions are applied as a linear combi-
nation and all layers are trained simultaneously. This method is called Auxiliary
Knowledge Transfer.

The second approach works in two steps. In the first step, the student model
is pre-trained by the transfer loss LKT. In the second step, the classification head
and all layers are finetuned by the pre-training distillation loss LPD. The approach
is named Joint Knowledge Transfer.

The third approach, called Progressive Knowledge Transfer, works in N steps
when N is the number of layers (encoder blocks and classifier head) of the model.
In the first step, only the first encoder block is trained by knowledge transfer.
The embedding is not trained, but copied from the teacher and already frozen for
this and following steps.

In the second step, the first block is frozen and only the second block is trained.
In the third step, the first and second blocks are frozen and only the third block
is trained, and so on.

In the last step, instead of training using LKT, the classification head is copied
from the teacher and then finetuned. In this step all encoder blocks and the
embedding are also fine tuned, there is no more frozen layer. A variation of the
method used in practice is instead of freezing the layer, to train it with a very
small learning rate. In practice, this method yielded the best results. Pre-Trained
Weights are taken from Huggingface [58].

ALBERT The BERT-like architecture developed by Lan et al. [59] attempts to
scale the size of networks without being blocked by poor hardware scaling. As
Vaswani et al. [40] have been able to show, deeper and wider networks generally
have better performance than smaller networks. However, beyond a certain size,
these networks no longer fit into the memory of a single accelerator such as a GPU
or TPU, requiring the use of multiple accelerators. This leads to communication
overhead, which can be avoided by reducing the parameters in the network used.

The Albert architecture has made two modifications to the BERT architecture
to reduce the number of parameters. Firstly, embedding is factorized and sec-
ondly, parameters are shared across different layers. In addition, a new training
objective (inter-sentence coherence loss) is introduced that predicts the order of
two input sentences.

Factorized embedding parameterization solves the problem that the hidden size
H of the network is bound to the embedding size E (H ≡ E). In the embedding layer
the embedding is mapped linearly from the vocabulary size V to the embedding
size E using a linear layer, so that the fully connected layer has the size O(V ×H).
Especially for a very large vocabulary this mapping is very parameter intensive.
Factorized embedding parameterization splits this embedding into two step lay-
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ers, with H 6≡ E. In the first layer V is mapped to a low dimensional embedding
space E and in the second to the hidden space H.

This changes the total embedding size to O(V × E + E × H), which can be signif-
icantly smaller if H � E. In addition, the dimensionality of H is no longer bound
to the dimensionality of the embedding E.

The second optimization is split weights between the layers. Either the atten-
tion head weights, or the FFN weights, or both can be shared. The different
weight-sharing strategies were tested with the result that especially FFN-sharing
reduces the performance of the network. However, these weights also make up a
significant portion of the network, with some saving more than 50% of all weights
through this strategy.

Splitting into groups was also tested. Here M blocks share weights with M < L.
For example, the network with L = 12 could be divided into 3 groups with M = 4
each, so that the number of parameters is approximately divided into thirds.
In general, it was found that less weight sharing leads to better performance,
but massively increases the number of parameters. The Albert network there-
fore shares all weights, so that the number of parameters in the network does
not scale with depth, but depends only on embedding size E and hidden size H3.
Thus, the configuration ALBERTBASE with L = 12, H = 768 and E = 128 used in this
thesis with pre-trained weights used from Huggingface [60] has about 12M pa-
rameters, whereas the configuration BERTBASE with L = 12 and H = E = 768 used
by factorized embedding parameterization has about 108M parameters. How-
ever, the training time still depends on the depth and deeper networks generally
perform better.

The training objective inter-sentence coherence loss introduced in connection
with ALBERT replaces the unsupervised NSP loss. While MLM learns the coher-
ence between words, NSP is supposed to learn the coherence between sentences.
However, Lan et al. [59] argue that NSP predicts the subject of the two sentences
rather than learning the coherence.

The inter-sentence coherence loss is intended to remedy this problem, in that
here the training samples consist only of positive samples of NSP. However, in
50% of the cases, the order of the two segments are swapped. The network should
use the Sentence Order Prediction (SOP) task to determine whether the given
order of the segments is correct or swapped. Thus, only coherence is learned,
since the topic of the segments is probably the same. It could be shown that NSP
cannot solve SOP, while SOP can nevertheless solve NSP with slight losses. This
leads to an increased performance of downstream tasks, which contain multiple
sentences as input.

3and thus also the number of attention heads A = H/64 and feed forward/filter size I = 4H
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2.2.4 Visual Transformers

DL approaches are increasingly used in vision tasks [61, 62]. DL is also being
used with increasing frequency in EO applications. For example, State-of-the-Art
architectures like CNNs, (stacked) Autoencoders, RNNs or Generative Adversarial
Networkss (GANs) are used in remote sensing applications like LCC, search-and-
retrieval [63] or domain adaptation [64, 65].

Due to the success of transformers in NLP applications, it is reasonable to con-
clude that the concept can also be applied to the vision domain. The problem
here is that the input data, in this case the image, must be converted into a se-
quence and the computational complexity of the transformer scales quadratically
with the sequence length. If one would simply flatten the image by considering
each pixel individually as 3 tokens, one per channel, one would already have a
sequence length of 3072 for a relatively low resolution image with a resolution of
32× 32× 3 as in the CIFAR-10 and CIFAR-100 data sets [66].

To overcome this limitation, optimization approaches such as local attention
[67], attention applied to specific regions [68] or only one axis [69, 70] were used.
Also sparcity [71] or the use of patches of size 2 × 2 [72] was tried. However, all
these approaches had little success or were not scalable enough.

Kuznetsova et al. [73] suggest that the image is embedded with much larger
patches. They propose the sizes 14×14 or 16×16 pixel. This would leave a single
image from the CIFAR data sets with a sequence length of only 4 and standard
image sizes such as 256 × 256 and 224 × 224 with sequence lengths of only 256
or 196 for a patch size of 16. A patch size of 14 is only possible for images of
size 224× 224, as 256 is not integer dividable by 14 and not used in these cases.
224× 224 images with patch size 14 have a sequence length of 256.

Figure 5: Structure of the ViT Architecture [73, fig. 1]

An image x ∈ RH×W×C is divided into a sequence of non-overlapping patches
xp ∈ RN×(P2·C), where each patch has a resolution of P× P. The number of patches
is dependent on the image and patch resolution and calculated as N = HW/P2.
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Figure 6: Structure of the MobileViT network [76, fig. 1b]

Like in the BERT architecture [47] (see section 2.2.2), a [CLS] token is pre-
pended, thereby the input sequence to the transformer has the length N + 1. For
classification, only the [CLS] token is feed into a classifier head.

The tokens are projected into embeddings using a patch embedding projection
E, that projects the flattened patches into a latent space of dimension dH, which
is also the hidden dimension throughout the full network. E can be a linear
layer or a feature map from a CNN, thereby building a hybrid architecture, or
any projection satisfying the dimension requirements. Positional embeddings
are added to the patch embeddings. The sequence is then used as input to the
transformer architecture.
Unlike in the BERT architecture, the LN is before the Attention layer and the

Multi-Layer Perceptron (MLP) as shown in fig. 5. ViT is thus defined by

z0 = [x[CLS], x1pE, x2pE, ... , xNp E] + Epos E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (19)
z′l = Attention(LN(zl−1)) + zl−1 l = 1 ... L (20)
zl = MLP(LN(z′l)) + zl−1 l = 1 ... L (21)

y = LN(z0L ) (22)

Training this architecture requires a large amount of data due to the lack of
inductive bias present in CNNs. Therefore, the networks used must be comple-
mented by data sets such as ImageNet-21K [74] or the JFT-300 data set [75] used
by google inhouse before they can be finetuned on other data sets. To solve this
problem and the long training time of 230 - 2500 TPUv3-core-days depending on
the data set and the size of the network, there are a number of optimization pro-
posals. The different optimized architectures used in this thesis are discussed
in the following paragraphs.

MobileViT Mehta and Rastegari [76] introduce the MobileViT architecture. It is
a hybrid of Transformer blocks and MobileNet-V2 blocks introduced by Sandler et
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al. [77]. The underlying concept of MobileViT is the assumption that a mixture of
convolutions and transformer blocks can simultaneously learn the local, image-
specific, spatial inductive bias and learn global relations.

For this, MobileViT-blocks are introduced. They aim to project the local and
global information of a given input into an output with fewer parameters. Local
spatial information are extracted from the input features by a n × n-convolution
and projected via linear combination to a d-dimensional space via point-wise4-
convolution. These two steps transform the input X from RH×W×C → RH×W×d with
d > C, thereby increasing the dimensionality of the image.
The features are flattened into non-overlapping patches XU ∈ RP×N×d with P =

wh pixels in a patch, N = WH
P as number of patches and h ≤ n and w ≤ n as patch

height and width respectively. Here the size of the patches is at most as large as
the kernel of the previous filter.

Relations of the patches p ∈ {1, ... ,P} can be modeled by:

XG(p) = Transformer (XU(p)), 1 ≤ p ≤ P (23)

By folding the patches to the original image height and width dimensions XG ∈
RP×N×d → XF ∈ RH×W×d and re-projection into a lower C-dimensional space, the
original dimensions H × W × C are restored. This tensor can encode both local
(from XU(p)) and global (from XU(p)) information of every other pixel. The tensor
is concatenated with the input X and low level and high level features combined
via n × n-convolution, thereby creating an output tensor of the same size as the
input tensor.

This novel MobileViT-block is combined with standard MobileNet-V2 and down-
sampling by factor of 2 MobileNet-V2-blocks as shown in fig. 6 before being feed
into a final point-wise convolution and a classifier head. The configuration used
in this Thesis is MobileViT-XXS.

MobileFormer The MobileFormer architecture introduced by Chen et al. [78] is
a parallel structure of two networks, interconnected via two-way bridges. It com-
bines advantages of the local processing capabilities of MobileNet-V2 inverted
bottleneck blocks introduced by Sandler et al. [77] and standard Transformer
blocks leveraging attention and FFN as used by Kuznetsova et al. [73]. Addi-
tionally, local and global features are combined after every step via information
exchange bridges modeled as cross attention as shown in fig. 7.
The reduction in computational complexity while not reducing the performance

was the main goal in the creation of this network. This is the motivation behind
multiple design decisions.
In contrast to the original ViT [73], this network does not use projected patches

of images as input for the Transformer blocks. Instead, randomly initialized to-
kens Z ∈ RN×d are used. Thereby, the number of patches N is not dependent

41× 1
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Figure 7: Structure of the MobileFormer network [78, fig. 1, 3]

on the size of the input image X ∈ RH×W×C but can be chosen as desired. This
allows the Transformer path to reduce the complexity by lowering the required
quadratic calculation in the multi-head self attention.
Local and global features are fused using cross attention in the Mobile → For-

mer and Mobile← Former blocks. However, in contrast to other implementations
of cross attention, this block does not use projections (WQ

i , W
K
i andWV

i ) at the Mo-
bile part but only at the Former part. This reduces the computational cost of this
part of the network, as the number of tokens in Z is lower than the number of
positions in the local features XL. Additionally, the local input features XL to both
blocks are taken from the bottleneck of the Mobile path, where the number of
channels is low.
Local and global features are split into individual maps XL = [xh] and Z = [zh]

for heads h ∈ {1, ... ,H} in multi-head attention. Local to global features in the
Mobile → Former block are then calculated as

zout = z +
[
Attention(zhWQ

h ,xh,xh)
]
h=1:H

WO (24)

where WO combines the output of multiple heads into the same dimension as the
input.
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Similarly, global to local features in the Mobile← Former block are modeled as

xout = z +
[
Attention(xh, zhWK

h , zhWV
h )
]
h=1:H

(25)

WQ
h , W

K
h and WV

h are the projection matrices for Query, Key and Value for the
global features in head h respectively.
In between the two bridge blocks are the Mobile block for local features and

the Former block for global attention. The Former block uses standard multi-
head self attention with a FFN afterwards. However, to reduce computational
complexity of the FFN, the expansion ratio was reduced from 4 to 2. Additionally,
layer normalization was used as suggested in [79].
For the Mobile block, inverted bottlenecks block as proposed in [77] are used.

However, as activation, Dynamic ReLU (DY-ReLU) [80] instead of ReLU is used,
using the output of the Former block as input for the hyper parameter θ. Fi-
nally, features from the Mobile and Former path are concatenated and feed into
a classifier head. The configuration used in this Thesis is MobileFormer-52.

CSWin The Cross-Shaped Window (CSWin) Transformer architecture proposed
by Dong et al. [81] is based on multiple Transformer blocks, where groups of
blocks are separated by a downsampling convolution each. The CSWin Trans-
former blocks use Cross-Shaped Self-Attention instead of regular Self-Attention.
Additionally, instead of inducing positional encoding at the embedding step as
done by Kuznetsova et al. [73], Locally-enhanced Positional Encoding (LePE), is
used. LePE induces local positional information at every attention step.
CSWin uses a convolution 7× 7, stride 4, as Token Embedding. This produces

input features X ∈ RH/4×W/4×C. However, no positional information is added to the
tokens at this step. Instead, the tokens are the input to CSWin Tranformer blocks.
These use the general architecture of Transformers as presented by Kuznetsova
et al. [73] with layer normalization in front of the FFN and the Self-Attention as
proposed in [79].
Dong et al. [81] propose two improvements to the Transformer architecture:

LePE and Cross-Shaped Self-Attention.

Cross-Shaped Self-Attention Instead of regular Self-Attention, the heads are
divided into Vertical and Horizontal Self-Attention and a split head before feed
into multiple attention heads. For Horizontal Self-Attention, the input features
are split into non-overlapping strips of X = [x1,x2, ... ,xM] where each strip is of
equal width sw and each strip containing sw×W tokens. Horizontal Self-Attention
can be modeled as

X = [x1,x2, ... ,xM] (26)

Y ik = Attention(xiWQ
k ,x

iWK
k ,xiWV

k ) (27)

H-Attentionk(X) = [Y1k , Y2k , ... , YMk ] (28)
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Figure 8: Structure of the CSWin network [81, fig. 1]

where xi ∈ Rsw×W×C, M = H/sw and i = 1, 2, ... ,M. WQ
k ,W

K
k ,WV

k ∈ R
C×dk are the pro-

jection matrices for query, key and value for head k with dk = C/K respectively with
K being the number of heads. Vertical Self-Attention can be derived similarly.

For a total of K attention heads, K/2 heads are each allocated to Horizontal and
Vertical Self-Attention. Cross-Shaped Attention is the projection of the concate-
nation of all K heads.

CSWin-Attention(X) = Concat(head1,head2, ... ,headK )WO (29)

headk =
{
H-Attentionk(X) k = 1, 2, ... ,K/2
V-Attentionk(X) k = K/2 + 1,K/2 + 2, ... ,K

(30)

with WO ∈ RC×C being the projection matrix to project the patch dimension into
the output dimension. The attention module is followed by a FFN like the the
original Vision Transformer [73].

The network contains i = 4 groups of Li CSWin Transformer blocks. After each
but the last group the features are feed into a downscaling 3× 3, stride 2 convo-
lution that reduces the feature height and width by 2 while doubling the number
of channels as shown in fig. 8.
The standard division of the receptive field (strip width sw) is set to (1, 2, 7, 7)

for image size 224 × 224, therefore had to be changed for image size 128 × 1285
to (1, 2, 1, 7) to make the feature map size divisible by the strip size. Except for
this change, the network used in this thesis is the CSWin-T configuration.

LePE Instead of encoding positional information while creating the token em-
bedding, LePE induces positional information at every Self-Attention step. LePE
introduces a channel-wise bias on a sequence x = (x1, ... , xn) of length n with a

5used image size in this thesis
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corresponding output sequence z = (z1, ... zn). Self-Attention can be calculated as

zi =
n∑
j=1

αijvj (31)

with

αij = exp(qTi kj/
√
d) (32)

with qi, ki and vi being the query, key and value obtained via linear tranfor-
mation of the input xi and d being the feature dimension. LePE can be modeled
as

zki =
n∑
j=1

(αkij + βkij )vkj (33)

for zki being the kth element of vector zi. The bias βkij is set to 0 if the Chebyshev
distance δ = |j − i| is larger than a threshold τ (τ = 3 for the network used in this
Thesis). This reduces computational complexity for long sequences which means
large images in this case.

ConvMixer The ConvMixer architecture introduced by Trockman and Kolter
[82] is a CNN-like architecture which uses token embeddings like other Trans-
former architectures. Instead of decreasing the spacial resolution while increas-
ing the dimensionality like other CNNs, this architecture follows the principal of
Transformers by keeping the dimensions of the image the same throughout the
full network.
ConvMixer uses the approach of token embedding as presented by Kuznetsova

et al. [73]. However, instead of using a transformer architecture for feature ex-
traction, mixing of tokens as proposed by Tolstikhin et al. [83] for the MLP-Mixer
architecture is used. For ConvMixer mixing via MLPs was exchanged for using
convolutions instead. Every ConvMixer block uses one depth-wise convolution
followed by a point-wise convolution as shown in fig. 9. This combination allows
for mixing of features in spatial and channel dimensions.
Each convolution is followed by an activation, specifically Gaussian Error Lin-

ear Unit (GELU) for the architecture used in this thesis, and batch normalization.
The token embedding is modeled as convolution RH×W×C → RH/P×W/P×h with H,
W, C, P and h being the image height, width, channels, the number of patches
and the dimension of the embedding respectively, followed by an activation and
batch normalization as well:

x0 = BN(σ{ConvC→h(X, stride = P, kernels_size = P)}) (34)
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Figure 9: Structure of the ConvMixer network [82, fig. 2]

ConvMixer block i can be modeled as

x′i = BN(σ{ConvDepthwise(xi)}) + xi (35)
xi+1 = BN(σ{ConvPointwise(x′i )}) (36)

To compensate for the absence of MLPs and attention, which enable the global
receptive field in transformer architectures, the kernels of the depth-wise convo-
lutions for ConvMixer were chosen very large when compared with other CNN-
architectures.
The configuration 768_326 was used for this theses. Here, the embedding

dimension is h = 768 and the depth of the network is d = 32. This model was
chosen, as this was designated as the model with the highest throughput.

2.3 Vision and Language Modeling

Visual Question Answering (VQA) is the task to answer a question with the help
of a picture in the context of this picture. While some questions can be answered
with relatively high certainty by knowledge alone (“What color is the sky?” →
“Blue”), other questions need a context to be answered (“What color is the car?”).
Therefore, it is necessary to develop systems that can combine multiple modali-
ties (e.g. text + image or text + video) to solve this task. Especially the answering
of detailed questions requires a wide range of capabilities from classification to
object and activity recognition as well as different reasoning techniques [85].
In order to combine the two modalities of text and image, different approaches

are being developed simultaneously. Generative models such as DALL-E [86],
DALL-E 2 [87], CLIP [88] and Imagen [89] have attracted particular attention.
These learn by training a text encoder and a vision encoder in parallel to keep
the latent space of the two encodings as close to each other as possible. Thus, an

6Some implementations [84] use Rectified Linear Unit (ReLU) instead of GELU for this configu-
ration. This thesis uses the suggested GELU-activation.
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image can be reproduced from the latent space of the text encoder or a text can
be completed. For example, the latent space can become a classifier by giving as
visual input the image and as text input something like “An image of a [MASK].”
and interpreting the replacement of the [MASK] token as a classification.

With this method, these models can be used as zero-shot classifiers or as
image-text retrieval, but by training the two encoders separately, the system lacks
the ability of reasoning. They only align the latent space without actually com-
bining the features of the two inputs. Therefore, these networks are not suitable
for tasks like VQA.

2.4 Overview on Visual Question Answering

Li et al. [90] suggest using a pre-trained region proposal system such as Faster-
RCNN [91] along with a text as input to a BERT encoder. The embedding for the
text is composed of the embedding of the token, the position of the token and an
embedding for the text segment. The segment embedding here indicates that it
is a text token and additionally, if there are multiple text inputs, to which text
input it belongs, similar to pre-training by NSP in BERT models.

The image embedding is composed of a visual feature representation, a bound-
ing box embedding and a segment embedding. The visual feature representation
comes from the region proposal system, as does the bounding box embedding.
This is only supplied if the task requires it. The segment embedding indicates
that this embedding is part of an image (as opposed to part of a text).

The network is pre-trained with two tasks similar to the structure of the BERT
pre-training. First, a variation of MLM is used, where the region of the image
belonging to the masked word is not masked. Second, sentence-image prediction
is used, a training technique in which the network is given two descriptions of the
image and the image and is asked to determine whether it is both descriptions
of the image. Here, one of the text inputs always describes the image and the
other has a 50% chance of not matching the image, while in the other case it is
an alternative description.

Through both pre-training tasks, the BERT encoder learns to combine text
and vision features. This can be used in a later finetuning step to train e.g. a
VQA network on a VQA data set. It helps to pre-train the network task-specific
by training MLM with image on the target data set before the actual supervised
training using input, output and objective of the data set.

The flamingo model introduced by Alayrac et al. [92] takes multiple images as
input as well as special formatting of the text. The formatting with special tokens
[EOC] (End of Chunk) and [image] allows the model to take multiple images
with multiple associated texts as input simultaneously. Perceiver resamplers [93]
together with frozen vision encoders produce a fixed number of image features,
independent of the number of vision inputs. A stack of language modeling blocks
combined with cross attention blocks combines the text inputs with the vision
features.
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This allows the system to solve tasks based on examples. For example, a VQA
task can be solved using as first input an image with text input in the form of
“<question>? Answer: <answer>” and as second input an image with text input
“<question>? Answer:” is given as the second input. The network then completes
the input with the answer to the second question in the context of the second
image.
The CoCa architecture proposed by Yu et al. [94] uses contrastive loss as latent

space alignment model like CLIP use, but only as part of the training procedure.
The CoCa model uses an encoder-decoder structure, where the decoder is split
into a unimodal and a multimodal text decoder. In the unimodal text decoder, no
cross attention of latent space of the vision encoder is used. Instead, the [CLASS]
tokens of the unimodal text and vision encoders are trained by a contrastive loss.
Here the decoder still works as an encoder. The vision encoder was previously
trained e.g. by classification.
After pre-training the vision encoder and aligning the latent spaces, the uni-

modal text decoder is used as a text generator and the multimodal text decoder
incooperates the vision features of the vision encoder. The goal here is to exactly
reproduce the caption of the image. Since a lot of attention has to be paid to
image details in order to replace the [MASK] tokens with correct tokens, a high
level of multimodal understanding is required.
With the multimodal text decoder and the associated feature fusion, this ap-

proach is able to solve VQA tasks using a simple classification head without
changing the overall structure of the model.
Instead of always training the full network, Zhai et al. [95] suggest that for

image-text alignment, one freezes the weights for a portion of the network. In
the work, the latent space of text and image encoder7 is also aligned as in the
previously named methods, but it is explored whether, and if so what difference it
has if one initializes the subnetworks randomly or pre-trained or even pre-trains
one of the networks and does not train it further at all during the alignment.
It is found that the highest performance is achieved when the vision encoder
is pre-trained supervised and all weights are frozen during the alignment, while
the text encoder is initialized randomly. This combination is called Locked-image
tuning (LiT).
LiT has a zero-shot performance that exceeds that of CLIP [88] and ALIGN

[96] in various benchmarks. Even in relatively difficult out-of-distribution (OOD)
benchmarks like ObjectNet [97], LiT can show convincing performance. However,
a conclusion about VQA capabilities is not made.

Visual Question Answering in Remote Sensing Visual Question Answering
for Remote Sensing (RSVQA) was first applied by Lobry et al. [98] as a task to
ML. Here, a ResNet-152 [99] pre-trained on ImageNet [74] was used as a visual
feature extractor. The last average pooling layer and the fully connected layer

7the work uses a dual encoder design
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in the classification head were removed. Instead, a fully connected layer was
inserted that mapped the 2048-dimensional feature vector to a 1200-dimensional
feature vector.

As feature extractor for the text part a RNN was used, which uses the skip-
thought architecture [100]. This subnet was pre-trained on the BookCorpus
data set [49]. In order to be able to connect the feature vector of this net with
that of the ResNet, a fully connected layer was inserted, which mapped the 2400
dimensional vector to a 1200 dimensional one.

Since both nets have the same output dimension, the feature vectors can simply
be multiplied together to get a feature combination. Since the two previous fully
connected layers are not trained for pre-training but for finetuning, Lobry et al.
[98] argue that simple multiplication is sufficient as a late-fusion approach.

To evaluate the capabilities of the network, two data sets are introduced, one
consisting of High Resolution (HR) images and one consisting of Low Resolu-
tion (LR) images. Both data sets use only Red, Green, Blue (RGB) channels,
although the LR data set uses Sentinel-2 data, which is multispectral. The ques-
tions created for the HR data set can be divided into 4 categories: Presence (“Is
X present?”), Area (“How big is X?”), Counting (“How many X are there?”), and
Comparisons (“Are there more X than Y?”, “Is X bigger than Y?”). For area, an-
swers are divided into levels (0m2, 1m2 - 10m2, 11m2 - 100m2, . . . ), counting has
answers 0, 1, . . . 89 and for comparisons and presence are yes/no answers.

For the LR the area task is replaced by the question whether a picture is rural
or urban. In addition, counting with one number per category is divided into
orders of magnitude (0, 1-10, 11-100, . . . ), since there were more than 17000
individual objects in the data set in a single image. However, with 256 × 256
pixels per image, these can no longer be meaningfully distinguished. The other
two categories are the same.

For answering the questions, a MLP is used as a classification head with a
hidden layer with 256 dimensions. The input are the fused features (1200 di-
mensional), the output is one dimension per answer choice.

It was found that the network is very good at distinguishing which task to solve.
For example, it rarely answered “Yes” to a counting task. Overall, the network
was able to handle the LR data set better than the HR data set, where it visually
had the most problems with counting. But also the area determination had a
lower accuracy than presence and comparison. The rural/urban task of the LR
data set could also be solved relatively well with 90% accuracy.

In a second application with an identical network, Lobry et al. [101] were able
to demonstrate again that this network architecture can learn using a BigEarth-
Net data set [102] for which a data set named RSVQAxBEN containing a total of
15 million question-image-answer triplets were generated from the given labels.
However, the data set is a multi-class multi-label data set, so many different label
combinations can occur. Here, each combination was considered as a separate
class and the 1000 most frequently occurring classes were evaluated. For ques-
tions that could be answered with Yes/No, the network had an accuracy of about
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80%, whereas questions about land cover classes were answered correctly with
only about 20% accuracy.
Chappuis et al. [103] can detect an improvement in both the LR and HR data

sets based on the same architecture by replacing the feature combinationmethod.
Here, Multimodal Compact Bilinear Pooling (MCB) [104] and Multimodal Tucker
Fusion for Visual Question Answering (MUTAN) [105] are explored as alternatives
to feature combination via multiplication. It can be found that both methods
have an increase in accuracy over multiplication in all but the rural/urban cat-
egory. It is believed that this is because this category is relatively rare in the LR
data set and therefore the two methods have too little data as both methods are
learned. However, MUTAN has fewer parameters than the baseline [98] because
this method reduces the 1200 dimensional to 360, thus the fully connected layer
contains more parameters. MCB on the other hand has 8000 dimensions as in-
put to the fully connected classification head. Therefore, it is not clear whether
the better performance of MCB is due to the increased number of parameters or
because it is a better method.
[106] use a different approach to get answers for the RSVQAxBEN data set.

Here, a vision network is trained to classify L1, L2, and L3 CORINE Land Cover
(CLC) classes like the labels in RSVQAxBEN. The result of the classifier is made
into a continuous text by simply converting the corresponding labels into their
natural language equivalents and enumerating all positive classes. This enumer-
ation of classes is called the context.
A Distilbert model [50] gets as input the question as well as the context and

is supposed to determine from it the answers Yes/No/None as well as all 61
L1/L2/L3 CLC classes as multilabel classification.
In addition to the context obtained from the network, it is tested how well the

Distillbert model with a perfect context (“visual oracle”) and without context (“vi-
sual blind”) can answer the questions to show the maximum and minimum per-
formance of this architecture. It can be shown that the trained architecture is
better than Lobry et al. [101], but does not reach the maximum performance.
Zheng et al. [107] present a data set derived from the already widely used RS

data sets UC-Merced [108], Sydney [109], HRRSD [110], AID [111], and DOTA
[112] and combines them and adds automatic and human-made question-answer
pairs. This results in a total of over 100000 image-question-answer tiplets from
about 37000 images. A VGG-16 mesh [113] is used as a feature extractor for the
images, and a Gated Recurrent Unit (GRU) is used as a text encoder. Features
are combined using an attention block followed by a linear layer to classify the
responses. It could be shown that this method works better on the presented
data set than single-modality methods, pre-trained text feature extractors like
BERT [47] or GoogleNews [114] or other fusion methods like Support Vector Ma-
chines (SVMs).
As shown in previous work, different categories of questions are difficult to

learn in different ways. Based on this finding, Yuan et al. [115] propose a sys-
tem in which questions are first learned that have already produced convincing
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results in other work (e.g., questions about the presence of an object) and more
difficult questions (such as questions about the number of objects) are asked at
a later stage.

In addition, the data set used requires different scales of objects by combining
the HR and LR data sets from [98] and the data set presented in [107]. To han-
dle the different scales, one Cross-Modal Global Attention (CGA) as well as one
Cross-Modal Spatial Transformer (CST) module is placed after the CNN in vision
feature extractor. These speech-driven image features and question-relevant im-
age regions are recognized by combining the image features with the text features
generated by a RNN using attention. Thereby, CGA extracts global attention,
while CST extracts regions by attention. Selfpaced Curriculum Learning (SPCL)
is used to realize the gradual increase of the difficulty. It could be shown that
this method in each category is in part significantly better than the baseline of
[98] resp. [107].

Molinier et al. [116] apply visual question answering on change detection with
different categories of questions. A data set of about 3000 multi-temporal im-
age pairs with over 122000 question answer pairs is introduced. The questions
are about if a change occurred, if the change was an increase or decrease, what
changed, what the smallest and largest classes of change where and what the ra-
tio of changes for different classes was. Answers are given as yes/no, percentage
(in 10% steps) or as land cover class.

The architecture used has a multi-temporal CNN encoder with a downstream
multi-temporal fusion module, which fuses feature maps of different temporal
steps by subtraction. The feature extraction of the question also happens via a
RNN, feature fusion of image and text features happens via concatination. The
classification head uses several fully connected layers to connect the features
and predict the answer as a class.

The architecture used has a multi-temporal CNN encoder with a downstream
multi-temporal fusion module, which fuses feature maps of different temporal
steps by subtraction. The feature extraction of the question also happens via a
RNN, feature fusion of image and text features happens via concatination. The
classification head uses several fully connected layers to connect the features
and predict the answer as a class. It has been shown that CDVQA is a challeng-
ing task, as both small vision encoders like ResNet-18 [99] and parameter-wise
larger ones like ResNet-152 or ViT-B16 [73] give only limited good results with an
average accuracy below 60% and an overall accuracy below 70% in all cases.

Rahnemoonfar et al. [19] present a data set that includes semantic segmen-
tation and VQA as tasks. The data set consists of 2343 images with a spatial
resolution of 15 cm, acquired by Unmanned Aerial Vehicles (UAVs), each with a
resoluton of 4000× 3000. The images were taken after Hurricane Harvey in Au-
gust 2017 in Texas and Louisiana, USA and include classes such as (un)flooded
houses and streets. Semantic segmentation is enabled by pixel-wise annotation
of all images into one of 9 classes. VQA is realized by about 4500 question-image-
answer triplets, where each question was created by hand. The questions refer to
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both local details and global contexts in the images. Questions are divided into
4 categories:

1. Simple Counting: Questions about the number of a certain type of object,
e.g. houses

2. Complex Counting: Similar to Simple Counting, but as additional condition
the state of the type, e.g. (un)flooded houses

3. Yes/No: Questions whether a certain object has a certain condition.

4. Condition Recognition: A questions about what condition a certain object
type or the whole image have

Answers can be Yes or No for Yes/No questions, flooded, unflooded, or both
for condition questions, and numbers from 1 to 41 for counting questions. While
Yes/No are relatively balanced as possibilities, there are about 3×more questions
answered with unflooded than those answered with flooded and even less with
both. Numerical answers are also strongly unbalanced with 1 to 4 being the
most common and larger numbers in particular tending to be exponentially fewer.
Note, that 0 does not occur as an answer option. It is also important to note that
a question type is always started by the same question word (“How” for counting,
“What” for condition, and “Is” for Yes/No).
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3 ProposedLightweight Transformer-basedVisualQuestion
Answering Framework for EarthObservation (LiT-4-EOVQA)

Visual Question Answering (VQA) is the task of answering a natural language
input of a user with the help of an image. The question refers to the given image.
To be able to solve this task, one needs a system, which can convert the different
input data into concepts, connect these and evaluate them together. Thus, a
system is needed that can 1. handle image data as well as 2. handle natural
language and 3. combine knowledge from both domains to obtain a joint answer.
The three sub-systems listed are explained and their structure motivated in the
following subsections.

To make the system accessible for scenarios where resources are constrained,
a lightweight solution in terms of low computational and storage resources is
needed. In order to keep this solution flexible and future-proof, the system should
be modular and allow the integration of new developments. In the context of this
work, the current state-of-the-art for image processing Transformer architecture
is used [73]. As image data, satellite-derived data is used for Earth Observa-
tion (EO). The system will be referred to as Lightweight Transformer-based Vi-
sual Question Answering Framework for Earth Observation (LiT-4-EOVQA) in the
following.

3.1 Vision Encoder as Feature Extractor

An elementary part of every solution for visual question answering is the solution
of the subproblems of text and image analysis. In order to keep the solutions as
modular as possible and to be able to easily integrate future approaches to solving
the subproblems into the concept presented here, the problems are treated as
independent of each other for the time being.

The extraction of features from an image is therefore realized by training a vi-
sion encoder. In principle, this can be implemented by any kind of encoder, but
in the context of LiT-4-EOVQA it is specifically defined as a lightweight trans-
former in the sense of saving computation and memory resources while using a
ViT.

To reduce training requirements, the encoder is pre-trained on a data set that
does not have to be related to VQA. However, the dimensions of the input data
must match that of the final VQA data set used. Otherwise, the embedding
produced will not match the embeddings expected by the vision transformer. For
EO the inputs are multi- or hyperspectral images, so an encoder trained for RGB
data will not work. For this reason it is necessary for LiT-4-EOVQA vision encoder
to be trained from scratch.

The encoder can be pre-trained by any type of training such as unsupervised,
self-supervised, weakly supervised or supervised. In the context of the training
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in this paper, the encoder is pre-trained by a multi-label multi-class supervised
classification task.
Depending on the selected data set and encoder, the loss functions are freely

selectable. For this work the loss function is the weighted Mean Squared Error
(MSE).

LMSE = 1
Nclasses

∑NClasses
i=0 wi · (yi − li)2∑NClasses

i=0 wi
(37)

Here NClasses is the number of classes used in the pre-training data set, wi is the
weighting of the loss, y is the prediction of the network and li the label for class
i respectively. This loss emphasizes the prediction error for classes with high
weight and de-emphasizes it for classes with lower weight. A typical use case is
unbalanced data sets to focus more on under-represented classes by increasing
their weights accordingly. For balanced data sets all weights can be set to the
same value to have no weighting applied on the loss.

Figure 10: VFormer configured for pre-training. The classification head includ-
ing its output dimension DIMclasses is dependent on the data set used
for pre-training.

After the completion of the pre-training, the classification head of the VFormer
is removed. Thus the final feature map of the encoder is a tensor x ∈ RDIMf, visual.
Classically, this is the result of pooling layers on the final embeddings after they
have passed through all transformer layers as seen in fig. 10. Some architec-
tures don’t use polling as a final layer. Otherwise the last filter layer is used. The
Transformer layer keeps the trained knowledge, which is used in the subsequent
task as initialization for further task-specific fine-tuning. As long as the multi-
spectral input for the fine-tuning task has the same dimensionality as the input
of the pre-training, the knowledge in the patch embedding can still be used.
However, in some cases it is advantageous if the pre-training takes place in the

same domain as the fine-tuning [117, 118]. So it is not necessarily sufficient to
pre-train for a twelve-dimensional final task on twelve-dimensional images, but
it would make more sense to pre-train and fine-tune within the same domain,
e.g. satellite data. It is also preferable that both data sets have similar features
such as spatial resolution and spectral bands in order to be able to apply the
knowledge from the pre-training directly. Alternatively, a non-domain-specific
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pre-training followed by a domain-specific pre-training can be combined to pre-
pare the encoder for the following task of VQA.

3.2 Text Encoder as Feature Extractor

Similar to the vision encoder for visual features, the text encoder must be pre-
trained in order to reliably extract information from the input given in text form.
Unlike the vision encoder, however, the text input for domain-specific texts is not
of a different dimensionality than for non-domain-specific texts. Therefore, for
the text encoder, any system can be used that allows the encoder to convert the
text input into an embedding with high information content.

The encoder can be trained independently from the actual task. It does not
have to be able to handle the domain, Remote Sensing, nor the type of input,
questions, since the text encoder is only concerned with the ability to develop a
general understanding of the text. As long as the understanding can be given as
output in the form of embedding, information can be extracted from a question
and implemented in a later processing step.

This domain-unspecific pre-training has the great advantage that it is not nec-
essary to collect data for the application in the territory of Earth Observation.
Instead, models pre-trained on generall-purpose data sets with extensive knowl-
edge about the structure of a language can be used.

In addition, this has the advantage that the application of this system can
change the language by replacing the text encoder. Although it is necessary to
fine-tune again after the exchange, since embeddings are not guaranteed to be
transferable from one language to another, this avoids the computationally and
time intensive language model pre-training step. This is particularly relevant for
the encoders used in LiT-4-EOVQA, as they use KD and therefore a LLM must
first be trained before training the small model, which is particularly resource
and time intensive.

The encoder can be implemented in different ways. For LiT-4-EOVQA the en-
coder is implemented by a lightweight text transformer. This encodes informa-
tion in pre-training for classification tasks by converting the input into tokens
and placing a special token [CLS] before the first token. Only this is considered
in the classification header as shown in fig. 11.

Flattening the final encoding of the [CLS] token produces a vector of dimension
RDIMf, text. A simple linear layer classifies the feature output. This classification
head is removed similar to the one of the vision encoder for the following fine-
tuning step. Thus, the output of the text encoder is a DIMf, text-dimensional
vector, which has encoded a large part of natural language relevant features from
the input by its pre-training.
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Figure 11: QFormer configured for pre-training. The classification head is de-
pendent on the task used for pre-training. Here, the configuration is
displayed for a binary classification task like NSP or SOP.

3.3 Late Feature Fusion

Late feature fusion is applied so that pre-trained encoders can be used for the
different modalities. The fusion is dependent on the outputs of the individual
networks. This ensures that the same principle can be used regardless of the
encoder.
For the fusion, the heads of the individual encoders are removed. This leaves

the pre-trained stem, which in the following acts as a feature extractor for its
respective modality. A linear layer is inserted to map the outputs of the encoders,
which have the dimensions DIMf, text and DIMf, visual, to a constant dimension
DIMin for each of the two modalities. These two linear layers are the only encoder-
dependent stages of the late fusion part of LiT-4-EOVQA. All other dimensions
are freely adjustable independent of the encoders.
Another advantage of these mappings is that the sometimes very high-dimen-

sional feature outputs of the encoders can be reduced to a smaller dimensionality.
This reduces the memory and computational requirements of the entire network.
The used Feature Fusion Method (FFM) can be configured arbitrarily as long as

it meets the condition that it can map an input vector with 2×DIMin dimensions
to an output vector with DIMin dimensions. Half of the input vector consists
of image encoder features and half of text encoder features. Possibilities of the
fusion can be for example point-wise multiplication as used by Lobry et al. [98],
element-wise addition of the two feature vectors or also a learned mapping. For
the mapping the features would be concatenated and put into a linear layer with
corresponding in- and output dimensions.
The last part of a LiT-4-EOVQA network is a classification head. In this the-

sis, it is implemented in the form of an MLP with a hidden layer to keep the
structural complexity and computational requirements low. The hidden layer is
specified according to Lobry et al. [98] with the dimension DIMhidden = DIMin/2.
The final layer is to be set depending on the data set. Each answer choice gets an
output neuron. Thus a multi-label multi-class classification is possible, but only
limited in the context of the training data. Free text answers, especially zero-shot
answers are not possible with this system. However, the classification head can
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Figure 12: LiT-4-EOVQA network architecture for fine tuning. Feature output
dimensions DIMf, visual and DIMf, text are dependent on the vision and
text encoders used while DIMin, DIMhidden and FFM are configuration
parameters of the feature fusion. DIMclasses is dependent on the data
set used for application.

be adapted according to the task without changing the overall functionality of
the system.

To avoid co-adaptation of individual units in the linear layers and the associated
overfitting, a dropout layer [119] is placed on each linear layer. Furthermore, each
linear layer is activated by a non-linearity. This strategy is also used for the case
when a linear layer is used as FFM.

Since the special nonlinearity is independent of the rest of the network, the
effect of function selection is discussed in this work. For the purpose of simpli-
fication, dropout and activation layer are not drawn in fig. 12.

The network is trained using weighted MSE

LMSE = 1
Nclasses

∑NClasses
i=0 wi · (yi − li)2∑NClasses

i=0 wi
(38)

as loss function with the weights wi dependent on the answer distribution in the
training data.
Thanks to its modular design, the system presented has the advantage that

new technical developments can be incorporated at any time. This flexibility
also makes it possible to interconnect systems of any complexity, as long as the
interfaces adhere to the given specifications. The linear layers introduced act as
adapters to make these connections as simple as possible.
In addition, the standardized interface of the modules to each other creates the

possibility to try out different combinations of networks in an efficient way. This
allows the different networks tested in this work to be quickly interconnected and
different combinations to be tried out, while the structure of the overall network
remains the same, while it also makes LiT-4-EOVQA particularly suitable for it-
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erative development of VQA networks on the basis of existing feature extractors.
The benefits of the presented framework are used in this thesis to test and com-
pare the networks presented in section 2 in different combinations with different
classification heads.
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4 Data Set Description

A common approach for training of Deep Neural Networks (DNNs) like CNNs or
Vision Transformers is pre-training on large annotated RGB data archives like
ImageNet [74] or proprietary data sets like the Google internal JFT-300M data
set used by Kuznetsova et al. [73]. However, DL approaches in RS often use
multispectral or hyperspectral images for improved performance on DL networks
[10, 120, 121].

As shown by Neumann et al. [117] and Risojević and Stojnić [118] pre-training
on domain-specific data sets can improve the final performance of DNNs. This
chapter presents the BigEarthNet benchmark archive used for pre-training as
well as two VQA data sets for finetuning which have been created from the archive.

4.1 BigEarthNet Classification Data Set

Sumbul et al. [102] introduced a data set based on 125 tiles of Sentinel-2 image
data, each spanning a surface area of 10km × 10km. Sentinel-2 images are
composed of 13 bands in 10m, 20m and 60m spatial resolution. These include
Visible Light Spectrum (VIS) (380 nm – 700 nm), Near Infrared Light Spectrum
(NIR) (700 nm – 1100nm) and Short-Wave Infrared Light Spectrum (SWIR) (1100
nm – 3000 nm) bands. 4 Bands (B02 – blue, B03 – green, B04 – red and B08
– HR-NIR) have a spatial resolution of 10m and are designed to conform to the
conditions of LCC. Additional 6 Bands (B05, B06, B07, B08a, B11 and B12)
were arranged for the monitoring of vegetation in 20m spatial resolution. These
bands are located at the Vegetation red-edge and SWIR for Cloud, Snow and Ice
discrimination. Bands B01, B09 and B10 are designed to cover atmospheric
parameters like aerosols, water-vapor and cirrus clouds and have a 60m spatial
resolution [43].

The tiles are divided into 590326 patches, where each patch covers a surface
area of 1200m × 1200m, corresponding to 120 × 120 pixels, 60 × 60 pixels
and 20 × 20 pixels for 10m, 20m and 60m bands respectively. Each patch is
annotated with one or multiple labels of the hierarchical CLC database, which
contains 43 classes in its most detailed Level 3. For the construction of the
BigEarthNet archive, band 10 was not included as it contains no surface infor-
mation.

A second revision [122] expandes the data set by adding a Sentinel-1 patch of
10m spatial resolution (120 × 120 pixels) for each Sentinel-2 patch in the set.
The Sentinel-1 and Sentinel-2 patches map the same geological location with
close acquisition times, thereby being processed as a pair of image patches.

Sentinel-1 images are acquired using a Synthetic Aperture Radar (SAR) in dif-
ferent modes depending on the observation scenario [123]. Most data acqui-
sition over Europe is done using the Interferometric Wide Swath (IW) mode in
dual polarization (VV and VH), thereby creating two SAR-images. This data is
in-cooperated into the multi-modal BigEarthNet (BigEarthNet-MM) archive.
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Figure 13: Spectral Bands of Sentinel-2 Bands for different Spatial Resolutions.
[43, fig. 5]

An alternative nomenclature for the labels annotates each with up to 19 labels
based on the CLC database. In this nomenclature, a total of 57 images had no
label anymore. Additionally, 9280 (partially) covered by clouds or shadow and
another 61707 images are covered by seasonal snow. Therefore, it is recom-
mended not to use these images. This results in a total of 519284 image pairs
in the recommended set of images.
This data set was used for pre-training of all Vision Transformers. However,

only the 10 meter and 20 meter bands of the Sentinel-2 images and both bands
of the Sentinel-1 images where used. Therefore, a total of 12 Bands was used for
pre-training.
All bands were converted from 12 bit unsigned to 32 bit float for interpolation

to a size of 120 × 120 pixels with bicubic interpolation and value-inverted in
the case of Sentinel-1 images. This was done, as Sentinel-1 image values are
recorded as decibel and therefore negative. As the interpolation may cause values
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(a) Sentinel-2 Band 5
(20m, Vegetation
Red-edge)

(b) Sentinel-2 Band 8
(10m, HR-NIR)

(c) Sentinel-1
VV Polarisation

(d) Sentinel-2
True Color Image
(B04, B03 & B02)

Figure 14: Example images from the BigEarthNet-MM data set. Selected chan-
nels/channel combinations only.

that are smaller than zero or greater than 1 due to overshoot, image values where
scaled to a range from zero to one.

4.2 Proposed BigEarthNet-MM-VQA Data Set

Previously published data sets for RSVQA include images covering the visible
spectrum [19, 98, 101, 107, 116]. In addition, all images are in the RGB-channel
format commonly used in everyday life. Although the advantages provided by
Multi-Spectral Imagery (MSI) and Hyper-Spectral Imagery (HSI) that a more de-
tailed distinction of different materials despite having the same “color” in the
spectrum visible to the human eye, especially in the Remote Sensing (RS) commu-
nity have long been known [102, 124–128], to my knowledge there is currently no
multi- or hyperspectral data set for VQA. Therefore, in the context of this thesis
the BigEarthNet-MM-VQA data set based on the images of the BigEarthNet-MM
data set. The data set is extended by a catalog of questions and answers for each
image to form the BigEarthNet-MM-VQA data set. In order to diversify the lin-
guistic variety of the questions, a new question generation concept was created,
which can present a question with identical content in many different ways. This
increased linguistic difficulty is another distinction from other previously pub-
lished data sets.
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All available images from the BigEarthNet-MM data set were used as a basis.
Although questions were generated for all images, as in the original data set,
it is recommended not to use images that are completely covered with snow or
obscured by a cloud or cloud shadow. Also, no images that do not get a label
after conversion from the 43-label version to the 19-label version are included in
the data set.
This results in a total of 519284 images in the data set. By keeping the original

split, 269695 images are used for training, 123723 for validation and 125866
for testing. As for the pre-training data set, the 10m and 20m bands as well as
the two Sentinel-1 bands, i.e. 12 bands in total, were used for this data set. The
same interpolation and value range adjustment was used as for the pre-training
data set. This concept also introduces new types of questions that are not yet
present in any VQA data set for RS.

Question construction The generation of the questions belonging to the images
runs in a multi-stage process. In the process, random decisions are made at
several points. To make the question generation repeatable, the random number
generators are seeded.
There are five types of questions, with one question type generated in a sin-

gle stage, three question types generated in two stages, and one question type
generated in more than two stages. The question types are:

• Presence: Question about what classes there are

• Single: Question about which classes are left excluding an existing class

• Double: Ask which classes are left excluding two existing classes

• Multiple: Ask which classes are left excluding three or more existing classes

• Choice: yes/no question, possibly additional explanatory answers expected

In the first stage, one of these types is chosen at random. Choice is the most
complex case. Slightly more than 33% of all questions belong to this type. In
1/3 of all cases this type is used immediately, in 2/3 of the cases the number of
labels on the image currently to be questioned has an influence on the question
type. If the image has only one label, only questions of type Single and Presence
will make sense. For questions of the category Double and Multiple, there must
be 2 or more or 3 or more ground truth labels, respectively. If 2 or more labels
belong to the image, the Choice category is again a choice option to make the
question catalog more challenging.
The categories Single, Double and Multiple exclude one, two or more than two

labels from the list of available labels and then ask which labels are still available.
Answers for these questions consist of all existing but not excluded labels of the
image. If there is no label left, there is an additional answer option “No Answer”.
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The category Presence simply asks which land cover classes are visible on the
image. It is similar to the three categories above with the difference that no
class is excluded. The answers of this category are identical to those of a normal
classification task on the given image.

Questions of the type Choice are questions that can be answered with yes or
no. There are two sub-types of Choice questions: questions that ask for a certain
combination of existing classes and questions that ask for remaining classes
similar to the types Single, Double and Multiple, but still include a counting task.
Which of these subtypes is chosen depends on how many classes are excluded
from the question. Unlike the Single, Double and Multiple types, however, not
only classes that are actually on the image are excluded here, but classes from
the complete class catalog are selected.

If no class is excluded, which is the case in 4/11 of all questions, a specific
combination of classes is asked for. For this, one, two or three classes are chosen
from the complete catalog. These classes are then connected with either “and”
or “or” to ask for a combination of classes. For “and” questions, the answer is
yes if and only if all of them are present, while for “or” questions, the answer is
yes if at least one of the enumerated classes is present. If not all respectively
none of the mentioned classes belong to the shown image, then the answer to
the corresponding question is no.

For questions of the Choice type in which classes are excluded, one to four
classes are excluded with decreasing probability. The probability for one class
is 3/11, the probability for two is 2/11 and the probability for three and four is
1/11. 50% of the cases are then asked whether there is at least one other class
in the image. If not, the answer is no. If there is at least one additional class, yes
is expected along with a list of all additional classes present. Alternatively, in the
other half of the cases, it is asked if there is more than one additional class. The
difference here is that this question should be answered no if there is only one
additional class. If there are two or more additional classes, yes is also expected
with an enumeration of the classes.

Since the additional yes/no answer is expected depending on how many addi-
tional classes there are and the yes/no distinction is not simply dependent on
the number of classes, but also on the exact subtype of the question (at-least-one
subtype and more-than-one subtype), these questions are more complex than
the Single, Double and Multiple types. Furthermore, since all classes can be ex-
cluded, the variety of questions for the Choice type is greater than for the other
4 types. The full process of question generation is shown in fig. 15.
Questions are constructed using a building block system of sentence parts to

be grammatically correct. For each part of the sentence there are different pos-
sibilities in order to be able to ask questions that are as linguistically diverse as
possible. For example, for each question type there are several ways to introduce
the question, i.e. to choose the first few words.
Moreover, an introduction is not exclusive for a single question type. This is

to avoid that it can be recognized already by the first word of the question which
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question type it is, as it is the case in the data set presented by Zheng et al. [107].
4 questions were generated per image. This results in 1078780 questions in the
training set, 494892 questions in the validation set and 503464 questions in the
test set, i.e. a total of over two million image-question-answer triplets.

Questions/Answers distributions Individual sets were created for each of the
splits train, validation and test. Due to the random generation, the ratios of the
questions are not identical, but differ by less than one percent from the theoreti-
cal percentages. The distribution for the sub-types of the questions of type Choice
for the training set can be seen in fig. 16b. Again, the ratios in the splits are not
exact, but also vary only by parts of percentages. Distributions for validation
and test split are provided in the Appendix (fig. 34, fig. 36).
For the training set, 533956 unique questions were generated, with the most

common questions being verbatim-similar questions of type Presence. The same
is true for the validation set with 289000 unique questions and the test set with
293421 unique questions. The absolute frequencies of the 200 most common
questions for the training set are shown in fig. 17a. The drop around the 95-
most frequent question is the change from questions of type presence to other
types. All questions to the left of the drop are of type Presence while all to the
right are also of other types. This is due to the limited content-related diversity
of questions of type Presence, since these questions all ask the same thing but
are phrased differently. However, this also shows the linguistic diversity of the
proposed data set.
The most frequent answer combinations in all three sets are “No”, “No answer”,

and “Marine waters” with 178951 times “No”, 126184 times “No answer”, and
44529 “Marine waters” in the training set, 81668 times “No”, 58322 times “No
Answer” and 21015 times “Marine waters” in the validation set, and 83420 times
“No”, 59799 times “No Answer”, and 21252 times “Marine waters” in the test set.
The distribution of the 50 most frequent response combinations for the training
set are shown in fig. 17b. Overall the training, validation and test set contain
12872, 8035 and 8344 unique answer combinations respectively.
Therefore, it is necessary not to consider the answer combinations as one class

per combination, otherwise the data set would become highly unbalanced. In-
stead, the classes should be considered individually. In fig. 17c the distribu-
tion of the individual classes in the training set is shown. This distribution is
also highly unbalanced, which should be kept in mind while using the data set.
Details on distributions in validation and test set are provided in the Appendix
(fig. 35, fig. 37).
Four question-answer pairs have been generated for each image, with the type

of question being re-determined at each generation. Examples of image-question-
answer triplets are shown in fig. 18.
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Figure 15: Flow diagram of Question Construction – In the first stage, the general
type of question is assigned. Some question types can be refined with
a second stage, in which, based on the type, the question is detailed
by including or excluding a set of (possibly existing) classes and/or
specifying the type of the class more precisely. Options within gray
boxes are selected at random with equal probability.
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(a) Question type distribution for
themain types Choice, Presence,
Singe, Double and Multiple for
the training set.

(b) Question sub-type distribution
for the main type Choice for the
training set.

Figure 16: Question type distributions for the training set.

(a) Absolute frequencies
of most common ques-
tions for the training
set. Questions to the
left of the drop around
index 95 are about
Presence. Questions to
the right of the drop
are about other types.

(b) Absolute frequencies of
most common answer
combinations for the
training set. Most com-
mon combinations are
“No”, “No Answer”, and
“Marine waters” in all
sets.

(c) Absolute frequencies of
classes in the training
set. Class name “Land
principally occupied by
agriculture, with sig-
nificant areas of nat-
ural vegetation” short-
ened to “Land princi-
pally occupied by agri-
culture, with . . . ”.

Figure 17: Absolute frequencies of n most common Questions and Answers in
the training set.
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“Besides Pastures and Land principally [. . . ],
what kind of class are visible here”

“Mixed forest”

“Barring Mixed forest, which land cover class
are visible in this scene?”

“Pastures”, “Land
principally [. . . ]”

(a) Sentinel-2
True Color Image
(B04, B03 & B02)

“Except Transitional woodland, shrub and
Complex cultivation patterns, is there a Land
cover class visible in this image”

“Yes”, “Arable land”,
“Mixed forest”, “In-
land waters”

“Besides Land principally [. . . ] and Inland wa-
ters, are there LCs visible here”

“Yes”, “Arable land”,
“Mixed forest”

Figure 18: Example VQA triplets from the BigEarthNet-MM-VQA data set. Only
true color image shown.
Images: S2A_MSIL2A_20170613T101031_51_78 (top) and
S2A_MSIL2A_20170701T093031_19_58 (bottom).
Classname “Land principally occupied by agriculture, with significant
areas of natural vegetation” shortened to “Land principally [. . . ]”.
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5 Experimental Results

5.1 Design of Experiments

This chapter describes the training procedures of the pre-training of the vision
feature extractors and the results of the pre-training. In addition, the training
procedures for LiT-4-EOVQA-networks and the trained combinations as well as
the evaluation metrics are presented.

5.1.1 Vision Transformer Pre-training

In order to train fewer parameters, the feature extractor networks are pre-trained
separately. Since the Text Feature Extractors have already been trained, there is
no need to train them again. However, since the Vision Feature Extractors have
been changed in structure to accept the multi-spectral images of the used RS
data set, they must be trained from scratch.

For this training, the weights are initialized according to their respective au-
thors (e.g. CSWin uses a truncated normal distribution to initialize some pa-
rameter groups) and then pre-trained. This section presents results of the pre-
training of the in section 2.2.4 presented architectures in the visual component of
the proposed pipeline. All architectures are trained using the BigEarthNet-MM
data set introduced by Sumbul et al. [122] with modifications as presented in
section 4.1.

The networks are trained for 100 epochs with validation every epoch. AdamW
[129] was used as optimizer with Linear Warmup Cosine Annealing Learning Rate
and weight decay of 0.01. Maximum learning rate and Warmup are set on a net-
work to network basis on the basis of empirical results. The batch size was set to
256 for all pre-training of all networks. Training was seeded with seed 4242 using
seed_everything() by pytorch_lightning [130]. The training state with the
smallest average validation loss was used as final network.

The networks are evaluated using the loss, precision, recall, accuracy, the F1
score and the Receiver Operating Characteristic (ROC)-Area Under Curve (AUC)-
Score [131]. If utilized, True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN) use a threshold of 0.5 while True Positive Rate (TPR) and
False Positive Rate (FPR) are calculated at different thresholds to calculate the
ROC curve. The ROC-AUC-Score is the integral of the ROC curve for a FPR from
0 to 1. All evaluation metrics are averaged over all classes.

Precision = TP
TP + FP

(39)

TPR = Recall = TP
TP + FN

(40)
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FPR = FP
FP + TN

(41)

Precision = TP + TN
TP + TN + FP + FN

(42)

F1 = 2 · Precision · Recall
Precision + Recall

(43)

MobileViT A learning rate of 0.001 was used with Warmup for five epochs. As
displayed in fig. 19a the training loss decreases over the full training while the
validation loss reaches a steady state after about 60 epochs with the minimum at
77 epochs. F1 Score increases over the full training with only small improvements
after the point of smallest validation loss (see fig. 19b). On the test set, the
network has an F1 score of 0.7316, which is the highest among the trained Vision
Feature Extractors. It also reaches the highest scores on recall and accuracy as
shown in table 1.

(a) Training and validation loss for Mo-
bileViT pre-training. Dotted green line
marks the state of network with the
lowest validation loss.

(b) F1 Score on the validation set for Mo-
bileViT pre-training.

Figure 19: Pre-training statistics for MobileViT network.

MobileFormer The learning rate 0.0008 was used with Warmup for two epochs.
The network reaches its minimal validation loss after 17 epochs while training
loss decreases and F1 score increases for the rest of the training. An F1 score of
0.6653 is reached on the test set. The networks has the best performance for loss,
the ROC-AUC-Score and precision among the trained vision feature extractors
(see table 1).

CSWin Learning rate was set to 0.00025 with Warmup for five epochs. The
lowest validation loss is reached after 43 epochs, after which both the training
loss continues to decrease and the validation F1 score continues to increase
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(a) Training and validation loss for Mobile-
Former pre-training. Dotted green line
marks the state of network with the
lowest validation loss.

(b) F1 Score on the validation set for Mo-
bileFormer pre-training.

Figure 20: Pre-training statistics for MobileFormer network.

slightly as seen in fig. 21. The network achieves a test F1 score of 0.7293. The
network has the second best scores in all evaluation categories, thereby never
being the best but also never worse then any but one (see table 1).

(a) Training and validation loss for CSWin
pre-training. Dotted green line marks
the state of network with the lowest val-
idation loss.

(b) F1 Score on the validation set for
CSWin pre-training.

Figure 21: Pre-training statistics for CSWin network.

ConvMixer A learning rate of 0.0008 was utilized with Warmup for five epochs.
The network reaches the lowest validation loss after 11 epochs, after which the
validation loss increases exponentially. However, the network seems to continue
learning, as both the training loss decreases (see fig. 22a) and the F1 score in-
creases (see fig. 22b). In accordance with the other networks, the state with the
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lowest validation loss was nevertheless finally evaluated. The network achieves
an F1 score of 0.5507 on the test set.
The network has the lowest performance in all evaluation metrics among the

trained vision feature extractors as visible in table 1. For uniformity, the training
loss is shown in fig. 19a together with the validation loss. Since the details of the
training loss are lost, it is shown again individually in the appendix in fig. 33.

(a) Training and validation loss for Conv-
Mixer pre-training. Dotted green line
marks the state of network with the
lowest validation loss.

(b) F1 Score on the validation set for Conv-
Mixer pre-training.

Figure 22: Pre-training statistics for ConvMixer network.

Table 1: Results on the test set for pre-training of the VFormer networks.

Network Loss ROC-AUC-Score Precision Recall Accuracy F1 Score

MobileViT 0.02613 0.9446 0.7794 0.6949 0.9371 0.7316
MobileFormer 0.00099 0.9593 0.8448 0.5694 0.9329 0.6653
CSWin 0.02585 0.9485 0.7862 0.6869 0.9365 0.7293
ConvMixer 0.04025 0.9117 0.6851 0.4871 0.9117 0.5507

5.1.2 LiT-4-EOVQA Transformer Training

Different configurations of LiT-4-EOVQA networks are trained. The configura-
tions each differ by one aspect, while all other aspects are kept the same. All
configurations are trained with the AdamW optimizer [129] with a weight decay
of 0.01. The learning rate is set depending on the configuration. All networks are
trained for 20 epochs and the latest state is evaluated with the test set. The loss,
Mean Average Precision (mAP)-Micro and -Macro the F1 score and the ROC-AUC
score [131].
mAP-Micro and -Macro differ in that mAP-Macro calculates the mAP for each

class individually and then averages it, whereas mAP-Micro does not consider
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class-specific differences. To calculate the mAP, the area under the precision-
recall curve is considered, where the curve is formed by forming different thresh-
olds.

As different configurations, networks with different Visual Feature Extraction
Sub-Networks (VFormers), Question Feature Extraction Sub-Networks (QFormers),
Activation Functions in the Late Fusion module and Feature Combination Meth-
ods (FCMs) including dimensions of the Linear Layer in the Classification Head
(DIMhidden) as well as Feature Fusion Methods (FFMs) are considered. A full
overview of which configurations are tested including the specifications of all
network parts is shown in table 2.

Table 2: EOVQA model configurations being evaluated. Duplicates grayed out
but displayed in their respective block for completeness.

Special
Characteristic

Network Name Activation
Function

FCM Configuration Name
VFormer QFormer DIMin FFM DIMhidden

VFormer

MobileViT BERTTiny Tanh 256 Mult 128 MVBT-T256M128
MobileFormer BERTTiny Tanh 256 Mult 128 MFBT-T256M128
CSWin BERTTiny Tanh 256 Mult 128 CSBT-T256M128
ConvMixer BERTTiny Tanh 256 Mult 128 CMBT-T256M128

QFormer

MobileViT BERTTiny Tanh 256 Mult 128 MVBT-T256M128
MobileViT TinyBERT Tanh 256 Mult 128 MVTB-T256M128
MobileViT Distilbert Tanh 256 Mult 128 MVDB-T256M128
MobileViT Mobilebert Tanh 256 Mult 128 MVMB-T256M128
MobileViT Albert Tanh 256 Mult 128 MVAB-T256M128

Activation
Function

MobileViT BERTTiny Tanh 256 Mult 128 MVBT-T256M128
MobileViT BERTTiny ReLU 256 Mult 128 MVBT-R256M128
MobileViT BERTTiny GELU 256 Mult 128 MVBT-G256M128
MobileViT BERTTiny Sigmoid 256 Mult 128 MVBT-S256M128
MobileViT BERTTiny ELU 256 Mult 128 MVBT-E256M128

FFM
MobileViT BERTTiny Tanh 256 Mult 128 MVBT-T256M128
MobileViT BERTTiny Tanh 256 Add 128 MVBT-T256A128
MobileViT BERTTiny Tanh 256 CatNet 128 MVBT-T256C128

Fusion
Layer
Dimensions

MobileViT BERTTiny Tanh 256 CatNet 128 MVBT-T256C128
MobileViT BERTTiny Tanh 512 CatNet 256 MVBT-T512C256
MobileViT BERTTiny Tanh 128 CatNet 64 MVBT-T128C64

5.2 Results on Visual Feature Extraction Sub-Network Variations

In these configurations, the vision feature extractor is different for each configu-
ration. For the configurations with MobileViT (MVBT-T256M128) and ConvMixer
(CMBT-T256M128) the learning rate is set to 0.001. The configurations with
MobileFormer (MFBT-T256M128) and CSWin (CSBT-T256M128) networks have a
learning rate of 0.0005.

As seen in fig. 23, all configurations reach a converged state in validation loss
after about 5 epochs, while the training loss continues to decrease over the entire
training. The final loss on the test set is between 0.0179 and 0.0203 with MVBT-
T256M128 configuration having the lowest loss and CMBT-T256M128 having the
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highest loss. MVBT-T256M128 also achieves the best result for the metrics mAP-
micro and ROC-AUC-score, with MVBT-T256M128 achieving the highest mAP-
micro and CSBT-T256M128 the highest F1 score. Unlike in the pre-training, the
ConvMixer configuration CMBT-T256M128 is not always the worst in all metrics.
Although the result in mAP-Macro with approx. 0.72 is significantly worse than
in the other configurations with approx. 0.76-0.77, the network achieves a higher
ROC-AUC score than the MobileFormer (MFBT-T256M128) and CSWin (CSBT-
T256M128) configurations.

Figure 23: Training and validation loss for MobileViT, MobileFormer, CSWin and
ConvMixer Variations (in reading order). All other configuration parts
of the LiT-4-EOVQA network are kept the same.

As seen in fig. 24, the validation F1 score improves steadily during training for
all configurations, while other metrics reach their highest validation performance
already between the 5th and 12th epoch. It is particularly noticeable that MVBT-
T256M128 achieves the best results in mAP-Micro, mAP-Macro and the ROC-
AUC score towards the end of the training, while all other networks already lose
in performance. It is also noticeable that the ConvMixer configuration CMBT-
T256M128 starts with significantly worse results in the earlier epochs in every
metric, but catches up in all except mAP-Macro, and in some cases even delivers
better results in the meantime. The validation performance of CMBT-T256M128
for the metric mAP-Micro is even higher than for MVBT-T256M128 in epoch 10,
although MVBT-T256M128 delivers the best mAP-Micro results on the test set at
the end of the training.

52



Figure 24: Comparison of F1 Score, ROC-AUC-Score, mAP-Micro and mAP-
Macro for all VFormer Variations (in reading order). All other con-
figuration parts of the LiT-4-EOVQA network are kept the same.

Table 3: Results on the test set training of LiT-4-EOVQA networks with different
Vision Feature extractors.

Configuration Name Loss mAP-Micro mAP-Macro ROC-AUC-Score F1 Score
MVBT-T256M128 0.0179 0.8754 0.7686 0.9599 0.7180
MFBT-T256M128 0.0182 0.8740 0.7710 0.9476 0.7228
CSBT-T256M128 0.0185 0.8562 0.7613 0.9460 0.7344
CMBT-T256M128 0.0203 0.8402 0.7183 0.9479 0.6802

5.3 Results on Question Feature Extraction Sub-Network Variations

In the configurations compared here, only the text feature extractors are re-
placed, while the other configuration parts remain the same. The BERTTiny
(MVBT-T256M128), TinyBERT (MVTB-T256M128) and Albert (MVAB-T256M128)
configurations are trained with a learning rate of 0.001, the Mobilebert (MVMB-
T256M128) configuration is trained with 0.0003 and the Distilbert (MVDB-T256-
M128) configuration with a learning rate of 0.0001.

As shown in fig. 25, all configurations reach a converged state after 12 epochs at
the latest. The MVMB-T256M128 configuration already reached the state after 3
epochs, while the other networks only reached the state after later training steps.
A difference between this configuration and the others is, that this configuration
also has a converged state in the training loss, while the other networks con-
tinue to train. It can also be seen that the loss of the MVMB-T256M128 and the
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MVAB-T256M128 configurations is significantly higher than for the other three
configurations.

Figure 25: Training and validation loss for BERTTiny, TinyBERT, DistilBERT, Mo-
bileBERT and Albert Variations (in reading order). All other configu-
ration parts of the LiT-4-EOVQA network are kept the same.

This can also be seen in the results on the test set and the metrics dur-
ing the validation phases. While the MVBT-T256M128, MVTB-T256M128 and
MVDB-T256M128 configurations are in the same order of magnitude, the MVMB-
T256M128 and MVAB-T256M128 configurations are significantly worse in the
context of the metrics. The MVBT-T256M128 is the best in all metrics, while
the MVTB-T256M128 and MVDB-T256M128 deliver partly identical results to
the third decimal place. The results of configuration MVBT-T256M128 is with
0.8754 up to 3% (mAP-Micro) and with 0.9599 only 0.5% (ROC-AUC-Score) bet-
ter than the second best result performing configuration MVTB-T256M128 with
0.8452 and 0.9549 respectively.
The results of the MVMB-T256M128 and MVAB-T256M128 configurations are

considerably worse than the next best network. For example, both configurations
score less than half as well in the F1 score with 0.3322 and 0.3281 for MVMB-
T256M128 and MVAB-T256M128 respectively, while the other three networks
have scores between 0.6930 and 0.7180. The biggest absolute difference is in
the mAP-Micro metric where both networks score almost 37% less than the third
best network configuration MVDB-T256M128 as seen in table 4.
This difference is not only present during the test phases, but also during the

full training as shown in fig. 26. The two networks always have the difference in
each metric after the first, last, and in every epoch in between, which is also evi-
dent during the test phase. During training, sometimes one network and some-
times the other is better at intermediate states in terms of the metric. Similarly,
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with the MVTB-T256M128 and MVDB-T256M128 configurations, sometimes one
network is better and sometimes the other. while the MVBT-T256M128 config-
uration achieves the highest value at almost every point during training. Only
after the first epoch this configuration is not highest in the mAP metrics. From
the second epoch onwards, no other network achieves the same values as the
MVBT-T256M128 configuration for this metric, which is ultimately also reflected
in the final test result, where there are 3% difference between this and the second
best performing network for both metrics.

Figure 26: Comparison of F1 Score, ROC-AUC-Score, mAP-Micro and mAP-
Macro for all QFormer Variations (in reading order). All other con-
figuration parts of the LiT-4-EOVQA network are kept the same.

Table 4: Results on the test set training of LiT-4-EOVQA networks with different
Text Feature extractors.

Configuration Name Loss mAP-Micro mAP-Macro ROC-AUC-Score F1 Score
MVBT-T256M128 0.0179 0.8754 0.7686 0.9599 0.7180
MVTB-T256M128 0.0194 0.8452 0.7396 0.9549 0.6930
MVDB-T256M128 0.0196 0.8420 0.7315 0.9546 0.6933
MVMB-T256M128 0.0315 0.4754 0.4300 0.8774 0.3322
MVAB-T256M128 0.0313 0.4764 0.4324 0.8775 0.3281

5.4 Results on Activation Function Variations

In the configurations tested in this section, various activation functions were
tested in the Late Feature Fusion module of the LiT-4-EOVQA models. As Li et
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al. [132] and others have shown, the choice of activation function can have an
impact on the capabilities of a network. However, since different subnetworks
used in this thesis use different nonlinearities, e.g. MobileViT uses Swish [133]
and MobileFormer uses Dy-ReLu [80], different possibilities are explored in this
chapter. All used activation functions do not change the parameter count of the
respective network.
Activation functions were only exchanged in the linear layers of this module,

i.e., between the feature extractors and the fusion input, between fusion out-
put and the fusion hidden layer, and between the hidden layer and the output
layer. Any Activation Fuctions in the feature extractors were not exchanged. The
learning rate for the Tanh-using network MVBT-T256M128 was set to 0.001,
while the other networks with nonlinearities ReLU (MVBT-R256M128), GELU
(MVBT-G256M128), Exponential Linear Unit (ELU) (MVBT-E256M128) and Sig-
moid (MVBT-S256M128) had a learning rate of 0.0003.
As seen in fig. 27, the qualitative progression of all activation functions is

roughly the same. It is only noticeable that the validation loss for the MVBT-
S256M128 network is lower than the training loss at every point in time, while
for each of the other configurations there is a point in time where the training
loss becomes lower than the validation loss. In addition, the quantitative anal-
ysis shows that the loss of this network-configuration over the entire training is
about twice as high as for the other networks.

Figure 27: Training and validation loss for Tanh, ReLU, GELU, ELU and Sig-
moid Variations (in reading order). All other configuration parts of
the LiT-4-EOVQA network are kept the same.

A similar behavior can also be seen in the validation phases for all other met-
rics, as shown in fig. 28. While the Linear Units configurations and the Tanh
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network provide competitive results, the Sigmoid network-configuration performs
worse by a large margin. Except for the F1 score, this worse score is constant for
the entire training. Only the F1 score improves with longer training, being zero
or close to zero for the first 8 epochs.

Figure 28: Comparison of F1 Score, ROC-AUC-Score, mAP-Micro and mAP-
Macro for all Activation Function Variations (in reading order). All
other configuration parts of the LiT-4-EOVQA network are kept the
same.

The large differences between theMVBT-S256M128 configuration and the other
configurations also carry over into the test phase (see table 5). The test loss of
approx. 0.033 is almost twice as high as that of all other network-configurations
with approx. 0.018. The greatest difference is also apparent here in the F1
score, in which the MVBT-S256M128 configuration with 0.0957 achieves less
than a seventh of the score of the second worst configuration MVBT-E256M128
with 0.7176.

The other four configurations are often less than one percent apart in the evalu-
ated metrics in the test phase. The biggest difference is in the metric mAP-Macro,
where the best configuration MVBT-T256M128 with 0.7686 is about 1.3% better
than the worst of the four (MVBT-E256M128 with 0.7558). In all other metrics,
the best and worst network of the four configurations differ by less than one per-
cent. Furthermore, not always the same configuration is the best, but depending
on the metric, one or the other network is. Only the MVBT-E256M128 configura-
tion is not the best in any metric, but always the worst, excluding the previously
examined Sigmoid configuration.
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Table 5: Results on the test set training of LiT-4-EOVQA networks with different
Activation Functions.

Configuration Name Loss mAP-Micro mAP-Macro ROC-AUC-Score F1 Score
MVBT-T256M128 0.0179 0.8754 0.7686 0.9599 0.7180
MVBT-R256M128 0.0179 0.8774 0.7561 0.9628 0.7203
MVBT-G256M128 0.0181 0.8807 0.7600 0.9589 0.7226
MVBT-E256M128 0.0182 0.8753 0.7558 0.9565 0.7176
MVBT-S256M128 0.0331 0.4309 0.3816 0.8575 0.0957

5.5 Results on Feature Fusion Method Variations

The networks considered in this section use different methods to combine fea-
tures from the VFormer and the QFormer. These experiments will investigate
whether simple element-wise operations are sufficient to link multidimensional
features of different domains, or whether more complex linking operations should
be used to obtain promising results. The element-wise multiplication (MVBT-
T256M128) has trained with a learning rate of 0.001, while the other two meth-
ods element-wise addition (MVBT-T256A128) as well as CatNet (MVBT-T256C128)
each have a learning rate of 0.0003. CatNet means that the two feature vectors
are conCATenated and then a NETwork consisting of a linear layer is used to
bring them to the correct dimensionality and to combine the features in a linear
way.

Figure 29: Training and validation loss for Multiplication, Addition and CatNet
Feature Fusion Method Variations (in reading order). All other con-
figuration parts of the LiT-4-EOVQA network are kept the same.

As seen in fig. 29, the qualitative trajectories of the trainings of all three net-
works are similar, with only the loss being different especially in the first few
epochs, converging as the training progresses. This behavior can also be ob-
served during the validation of the metrics F1 Score, mAP-Micro and mAP-Macro.
As seen in fig. 30, the validation results for the MVBT-T256A128 and MVBT-
T256C128 configurations start more than ten percent below that of MVBT-T256-
M128 in some cases. However, all configurations have similar performance to-
wards the end of the 20-epoch training, with element-wise multiplication having
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Figure 30: Comparison of F1 Score, ROC-AUC-Score, mAP-Micro and mAP-
Macro for all Feature Fusion Method Variations (in reading order). All
other configuration parts of the LiT-4-EOVQA network are kept the
same.

higher results than CatNet and CatNet higher than element-wise addition for all
metrics.

MVBT-T256M128 is not the best network at all times during training. In the
validation phases of epochs 5 and 10, the performance in all metrics is lower
than for the other two configurations. In the subsequent epochs, however, the
performance is again partly competitive and partly better than that of the MVBT-
T256A128 and MVBT-T256C128 configurations. Overall, it can be seen that
the MVBT-T256M128 configuration had the greatest fluctuations from epoch
to epoch in the metrics when comparing the qualitative validation performance
curves with the other two configurations.

This order also carries over into the test phase. The results plotted in table 6
show that the MVBT-T256M128 network achieves the best result in all metrics.
However, the difference between this network and the worst, in all cases MVBT-
T256A128, is less than two percent in all metrics, in some cases significantly
less. The largest difference is in the metric mAP-Macro with about 1.55% and
the footnotesizeest in the ROC-AUC-score with less than 0.6%.

5.6 Results on Fusion Layer Dimensions Variations

In the configurations compared here, the Feature Fusion Method (FFM) is always
fixed to CatNet and the dimensions of the Late Feature Fusion module DIMin and
DIMhidden are changed. Due to the changes of DIMin, the output dimensions of
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Table 6: Results on the test set training of LiT-4-EOVQA networks with different
Feature Fusion Methods.

Configuration Name Loss mAP-Micro mAP-Macro ROC-AUC-Score F1 Score
MVBT-T256M128 0.0179 0.8754 0.7686 0.9599 0.7180
MVBT-T256A128 0.0190 0.8670 0.7421 0.9541 0.7075
MVBT-T256C128 0.0186 0.8717 0.7492 0.9543 0.7085

the Feature Extractor Networks DIMr, visual and DIMr, text are also adjusted accord-
ingly. The variations in the classification head will investigate whether a change
in the computational capacity of the network after the fusion of the modalities
has an impact on the answering capabilities of the network. Since the changes
in dimensions are also accompanied by a change in the number of parameters,
a trade-off analysis must be made.
The configurations are referenced as DIMin/DIMhidden, so 256/128 denotes the

configuration DIMin = 256 and DIMhidden = 128. The learning rate for all three con-
figurations 256/128 (MVBT-T256C128), 512/256 (MVBT-T512C256) and 128/64
(MVBT-T128C64) is set to 0.0003.
Both the qualitative course of the training and validation loss of all three net-

works is roughly the same. They differ only in the quantitative comparison, where
as in fig. 31 the MVBT-T128C64 configuration has the highest training loss while
that of MVBT-T256C128 and MVBT-T512C256 are very similar, with the course
of MVBT-T512C256 being somewhat flatter. Since the validation loss of all net-
works has the same constant order of magnitude from about the third epoch,
it is noticeable that the MVBT-T256C128 network has a higher validation loss
than training loss after about 8 epochs, while for MVBT-T512C256 this point
is reached only after about 15 epochs. The MVBT-T128C64 configuration has
a higher training loss than validation loss during the whole training, but for all
networks no convergence of the training loss can be seen yet, while the validation
loss is already fully converged after 10 epochs.
Looking at the metrics in fig. 32, it is noticeable that after about 10 epochs,

the ranking of the networks as a function of performance in the metrics F1 score,
mAP-Micro and mAP-Macro is clear. Here, the larger network achieves a higher
score than the smaller network in each comparison. Overall, this relationship is
valid for almost the entire course of the training, whereby only for a maximum
of a few epochs are individual relationships reversed before the larger network
achieves better results again. Only in the ROC-AUC-score is this relationship
only valid in the last two epochs, whereby the differences between the networks
can only be found in the third decimal place.
This ranking in the validation metrics can also be transferred to the test phase.

As can be seen in table 7, the MVBT-T512C256 configuration is leading in all met-
rics and only in the ROC-AUC-score is the MVBT-T128C64 configuration equal,
with the worst configuration in this comparison MVBT-T256C128 with 0.9543
only 0.1% below the result of the other two networks with 0.9553 each. The
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Figure 31: Training and validation loss for 512/256, 256/128 and 128/64 Fu-
sion Layer Dimension Variations (in reading order). All other config-
uration parts of the LiT-4-EOVQA network are kept the same.

biggest difference between the networks can be seen in the F1 score, where
the largest and best network MVBT-T512C256 with 0.7189 is almost one per-
cent ahead of the second largest and second best network MVBT-T256C128 with
0.7085. The footnotesizeest network MVBT-T128C64 is more than four and three
percent behind the best and second best networks with 0.6741, respectively.

Table 7: Results on the test set training of LiT-4-EOVQA networks with different
Fusion Layer Dimensions.

Configuration Name Loss mAP-Micro mAP-Macro ROC-AUC-Score F1 Score
MVBT-T256C128 0.0186 0.8717 0.7492 0.9543 0.7085
MVBT-T512C256 0.0184 0.8774 0.7543 0.9553 0.7169
MVBT-T128C64 0.0192 0.8616 0.7362 0.9553 0.6741
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Figure 32: Comparison of F1 Score, ROC-AUC-Score, mAP-Micro and mAP-
Macro for all Fusion Layer Dimension Variations (in reading order).
All other configuration parts of the LiT-4-EOVQA network are kept
the same.
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6 Conclusion and Discussion

In this thesis, a Lightweight Transformer-based Visual Question Answering Frame-
work for Earth Observation (LiT-4-EOVQA) was proposed. To demonstrate the
functionality of the framework, the data set multi-modal BigEarthNet Visual
Question Answering (BigEarthNet-MM-VQA) was created. The different aspects
of the framework were evaluated by examining the individual components. This
involved testing individual parts of the network like Visual Feature Extraction
Sub-Networks (VFormers), Question Feature Extraction Sub-Networks (QFormers),
Feature Combination Methods (FCMs) split into Feature Fusion Methods (FFMs)
and fusion layer dimensions respectively, as well as the effect of using different
activation functions in the late fusion approach. The flexibility of LiT-4-EOVQA
allowed the connection of different networks.

During the investigation, it was noticed that pre-training of the VFormer has
an influence on the final result after finetuning, but that finetuning can also
deliver competitive results with sub-networks that are not optimally pre-trained.
The situation is different for the choice of QFormer. Here, the sub-network has a
significant influence on the result, with some networks being significantly worse
or not trainable at all than others. A more in-depth exploration of why some
QFormers are not suitable for training with LiT-4-EOVQA or what adaptations
are needed could be explored in a future work.

While investigating different activation functions in the late feature fusion mod-
ule of LiT-4-EOVQA networks, it was found that both section-wise linear activa-
tion functions and the Tanh function are suitable. However, the Sigmoid function
was not trainable to a comparable performance. One possible explanation for this
behavior is that the Sigmoid function is the only one of the functions used here
that is neither unbounded to positive nor has a 0 mean. Whether the networks
behave in the same way for other activation functions with these properties and
whether this is in fact the cause of the observed training progressions could be
investigated in a future work.

Point-wise addition, point-wise multiplication, and a linear layer were investi-
gated to examine different feature combination methods. The best method in the
evaluated metrics is the multiplication, followed by the linear layer. The fact that
the linear layer is better than the point-wise addition can be explained, since the
linear layer can learn a point-wise addition and must be thus in no case worse.
However, a single linear layer is not able to learn the multiplication due to the use
of the lipschitz continuous activation functions [134]. In order to be able to ap-
proximate this, at least one hidden layer is necessary, whereby here the number
of the hidden neurons have a large influence [135].

Whether a CatNet modification with hidden layer can provide a better fusion
than the methods explored here could still be explored. In addition, further train-
ing with and without L2 regularization, and with and without weight clipping,
could investigate whether Lipschitz continuity is the origin of the behavior ob-
served in these networks.
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The last investigated variable of LiT-4-EOVQA based networks is the dimen-
sionality of the layer in the late feature fusion module. It has been found that
a higher dimension leads to better results. Due to the large data set introduced
in this work, this behavior may be explained by the scalability of DL-networks,
as is the case of large language models, since these networks learn to generalize
better with more parameters when training on a larger data set. However, this
theory works against the aspiration of using lightweight transformers made in
this work. Therefore, this approach will not be pursued further in the context of
this work, but could be explored in more detail in a future work and alternatives
to simple scaling could be searched for. The configurability of the approach pre-
sented in this thesis, especially the MVBT-T256M128 configuration, which has
been identified as the best performing of the ones tested, especially considering
the low parameter count of the configuration, as well as the data set designed for
VQA for RS, can be used as a basis for future research in this regard.
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7 Appendix

Table 8: Detailed model dimensions comparison between BERT [47] and teacher
and student of MobileBERT [57, tab. 1].

BERT MobileBERT

BERTLARGE BERTBASE IB-BERTLARGE MobileBERTTiny
Teacher Student

embedding
hembedding 1024 768 128

- - 3-convolution
hinter 1024 768 512

body

Linear hinput
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Figure 33: Training loss of the ConvMixer Network. Displayed without validation
loss for scaling.

81



Table 9: Wavelength and Bandwidth of the 13 Sentinel-2 Bands. Sentinel-2
satellites have two slightly different configurations (S2A and S2B) which
have minimal different specifications. All bands have a radiometric res-
olution of 12 bit. [136]

Spacial Resolution Band Name Central wavelength (nm) Bandwidth (nm)

S2A S2B S2A S2B

10m

B02 492 66
B03 560 559 36
B04 665 31
B08 833 106

20m

B05 704 15 16
B06 742 739 15
B07 783 780 20
B08a 865 864 21 22
B11 1614 1610 91 94
B12 2202 2186 175 185

60m
B01 443 442 21
B09 945 943 20 21
B10 1374 1377 31 30

Table 10: Use cases of the 13 Sentinel-2 Bands. Different spacial resolutions
are assigned to different use cases like Cloud Discriminations (CDs) or
Cirrus cloud detection. [137]

Spacial Resolution Band Name Wavelength Range Use case

10m

B02 VIS Blue light
B03 VIS Green light
B04 VIS Red light
B08 NIR HR-NIR for LCC

20m

B05 NIR Vegetation Red-edge
B06 NIR Vegetation Red-edge
B07 NIR Vegetation Red-edge
B08a NIR Vegetation Red-edge
B11 SWIR Snow& Ice Detection/CD
B12 SWIR Snow& Ice Detection/CD

60m
B01 VIS Aerosols
B09 NIR Water-vapor
B10 SWIR Cirrus clouds
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(a) Question type distribution for
themain types Choice, Presence,
Singe, Double and Multiple for
the validation set.

(b) Question sub-type distribution
for the main type Choice for the
validation set.

Figure 34: Question type distributions for the validation set.

(a) Absolute frequencies
of most common ques-
tions for the validation
set. Questions to the
left of the drop around
index 95 are about
Presence. Questions to
the right of the drop
are about other types.

(b) Absolute frequencies of
most common answer
combinations for the
validation set. Most
common combinations
are “No”, “No Answer”,
and “Marine waters” in
all sets.

(c) Absolute frequencies of
classes in the valida-
tion set. Class name
shorted like in the
training set.

Figure 35: Absolute frequencies of n most common Questions and Answers in
the validation set.
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(a) Question type distribution for
themain types Choice, Presence,
Singe, Double and Multiple for
the test set.

(b) Question sub-type distribution
for the main type Choice for the
test set.

Figure 36: Question type distributions for the test set.

(a) Absolute frequencies
of most common ques-
tions for the test set.
Questions to the left of
the drop around index
95 are about Presence.
Questions to the right
of the drop are about
other types.

(b) Absolute frequencies of
most common answer
combinations for the
test set. Most common
combinations are “No”,
“No Answer”, and “Ma-
rine waters” in all sets.

(c) Absolute frequencies of
classes in the test set.
Class name shorted
like in the training set.

Figure 37: Absolute frequencies of n most common Questions and Answers in
the test set.
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