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Abstract

The fusion of images captured by different sensor modalities is a highly researched
subject in the field of remote sensing. Deriving information about a scene from
multiple modalities holds the potential to significantly improve the performance of
deep learning models to accomplish various tasks in the remote sensing domain. In
this context, the thesis investigates the capabilities of the novel Vision Transformer
(ViT) architecture to perform multi-modal fusion of remote sensing images. To this
end, several multi-modal fusion methods based on the ViT architecture are pro-
posed and compared on a multi-label remote sensing dataset. The experiments are
conducted on the BigEarthNet-MM dataset with multi-spectral optical and Synthetic
Aperture Radar images serving as the modalities to be fused. The proposed fusion
methods adapt different architectural components of the standard ViT architecture
to improve their respective potential to facilitate multi-modal fusion. The results
show that, while all investigated fusion methods can improve upon training on
single modality data, substantial performance differences among the considered
fusion methods could be observed. A comprehensive analysis is conducted to
evaluate these differences and identify their underlying causes. The investigation
includes the comparison of the overall as well as the class-wise performance of
these methods on a scene classification task. Additionally, detailed ablation studies
are performed to assess the impact of architectural hyper-parameters on the fusion
performance.
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Zusammenfassung

Ein wichtiges Forschungsgebiet innerhalb der Fernerkundungsforschung beschäftigt
sich mit der effektiven Fusion von Bilddaten, welche von unterschiedlichen Sensor-
systemen aufgenommen wurden. Solche visuellen Sensormodalitäten effizient zu
kombinieren, bietet großes Potenzial die Fähigkeiten von tiefen Neuronalen Netzen
zu verbessern, welche zur Analyse solcher Daten eingesetzt werden. In diesem
Zusammenhang erforscht diese Arbeit die Eignung der neuartigen Vision Trans-
former (ViT) Architektur zur Fusion von multimodalen Satellitenbilddaten. Dazu
werden mehrere multimodale Fusionsmethoden basierend auf der ViT Architektur
entwickelt und auf einem Satellitenbilddatensatz mit multipler Klassenzuordung
verglichen. Zu diesem Zwecke wird der BigEarthNet-MM Datensatz verwendet,
welcher multispektrale und Synthetic Aperture Radar Bilddaten zur Analyse bereit-
stellt. Die untersuchten Fusionsmethoden adaptieren verschiedene Komponenten
der ViT Architektur mit dem Ziel eine bessere und einfachere Fusion multimodaler
Sensordaten zu ermöglichen. Die Ergebnisse zeigen, dass die unterschiedlichen Me-
thoden eine bessere Leistung erzielen als Modelle, welche nur auf einer Modalität
trainiert wurden. Gleichzeitig konnten jedoch starke Unterschiede in der Klassifizie-
rungsleistung der verschiedenen Methoden festgestellt werden. Diese Unterschiede
werden in einer detaillierten Analyse sowohl der insgesamten als auch der klassen-
spezifischen Klassifizierungsleistung ausgewertet. Zusätzlich werden ausführliche
Ablationstudien durchgeführt, um den Einfluss bestimmter Hyperparameter auf
die Klassifizierungsleistung zu ermitteln.
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1 Introduction
In recent decades the field of Remote Sensing (RS) has seen a rapid increase in
the amount of satellite data available for earth analysis tasks. This trend has been
powered by continuously decreasing costs to launch satellite systems to low earth
orbit. Subsequently, the number of deployments of satellites equipped with sensors
for visual data acquisition has consistently risen in recent years [1]. Concurrently,
improvements in the technological capabilities of imaging sensors have enabled the
acquisition of data at increasingly higher resolutions [1]. These developments have
considerably increased the amount and complexity of available image data cap-
tured by satellites necessitating the development of dedicated methods to analyse
and process such large quantities of data.

Many applications from the research, commercial and military sector rely on
the imaging capabilities of sensors deployed on satellite systems to obtain detailed
information about the earth’s surface. To suit the objectives of different stakehold-
ers, a great variety of specialised satellite missions utilising different technologies
to acquire image data have been developed. The sensor systems of these satellite
missions can differ in many aspects ranging from the spectral or spatial resolutions
to the fundamental physical principles on which they operate. The data captured
by a particular type of sensor system is referred to as a sensor modality, often
abbreviated as modality in the context of this thesis. The most prominent types of
sensor modalities for satellite imaging include panchromatic, multi-spectral and
hyper-spectral optical sensors as well as Synthetic Aperture Radar (SAR) systems
[2].

Historically, the data obtained from different systems has often been analysed
separately partly due to the restrictions in available data for a specific location.
However, modern satellite systems can provide wide-ranging coverage of most
geographic locations at high revisiting times. This could enable the utilisation of
multiple modalities acquired over the same location for various earth analysis
tasks. Nonetheless, combining different sensor modalities can introduce significant
challenges to any analysis procedure necessitating the development of dedicated
methods to effectively derive information from multiple modalities [3].

Concurrently to the progress in RS technology, considerable leaps in the field of
machine learning and especially Computer Vision (CV) have resulted in various
new models for analysing visual data with significantly increased performance
compared to classical methods. Especially the field of computer vision has largely
been dominated by Convolutional Neural Network (CNN) architectures [4] in the
last decade since the inception of the AlexNet architecture [5]. Many more advances
in the field have steadily led to better and more sophisticated CNN models achiev-
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1 Introduction

ing outstanding performances on many image analysis tasks [6–8]. Due to these
developments, deep learning methods have also become invaluable in satellite
image analysis. Deep artificial neural networks allow the extraction of semantic
information from an RS image by mapping it to a highly abstract but semantically
meaningful feature representation. This enables tasks such as scene classification,
Land Use Land Cover (LULC) classification or Content-based Image Retrieval (CBIR)
to be performed with very high accuracy by automated procedures [9].

Therefore, a significant amount of research has focused on the multi-modal
fusion of satellite data by integrating the fusion process into CNN architectures
[2]. While these approaches are often able to achieve high performances the rapid
advancements in machine learning constantly require further exploratory studies
to identify potential new methods to perform multi-modal fusion.

Recent advances have shown that convolution-free architectures can match and
even outperform their convolutional counterparts. This was prominently shown
with the proposal of the Vision Transformer (ViT) architecture by Dosovitskiy et al.
[10] by achieving new state-of-the-art classification results on the ImageNet dataset
[11]. The ViT architecture is based on the Transformer architecture, which was
proposed by Vaswani et al. [12] for tasks in the field of natural language processing.
The ViT architecture introduced a radically different approach to image analysis
tasks by not integrating a local inductive bias which is an intrinsic component
of CNN models. Instead, the ViT architecture employs an attention mechanism to
compute a set of attention scores denoting the relevance of each part of an input
sequence to the current classification task.

Such an approach could be beneficial for combining separate modalities by
determining which features from each modality have the highest relevance for
a specific task. Therefore, Transformer-based multi-modal fusion methods have
been widely researched in the broader deep learning field [13].

In the previously described context, this thesis aims to investigate the capabilities
of the ViT architecture for the fusion of multi-spectral and SAR satellite images. To
this end, multiple fusion methods based upon the ViT architecture are proposed
in this thesis and evaluated on a scene classification task. The proposed fusion
methods introduce various modifications to the ViT architecture with the aim to
identify a modification strategy best suited for the fusion of multi-spectral and SAR
satellite images. The training and experiments are conducted on the BigEarthNet-
MM dataset proposed by Sümbül et al. [14]. BigEarthNet-MM presents one of
the most extensive datasets available for deep learning RS research. It provides
sufficient quantities of high-resolution multi-spectral and SAR images to train
and evaluate the investigated multi-modal fusion methods effectively. The fusion
performance of the proposed and investigated methods is analysed in detail by
comparing their respective performance on the same multi-label classification task.
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Outline

The thesis is structured as follows: Firstly, Chapter 2 introduces the types of multi-
modal data utilised for the multi-modal fusion task. Next, Chapter 3 provides
a detailed introduction of the ViT architecture on which all investigated multi-
modal fusion methods are based. Chapter 4 then gives an outline of the state-
of-the-art in multi-modal fusion of RS image data with deep learning techniques.
Additionally, this chapter contains an overview of Transformer-based multi-modal
fusion methods from the general deep learning domain. Afterwards, Chapter 5
provides a detailed introduction of the multi-modal fusion methods investigated
and proposed in this thesis. For each method, the specific modifications performed
on the ViT architecture are defined with an analysis of their intended effect on the
fusion process. Chapter 6 then details relevant properties of the BigEarthNet-MM
dataset and describes the experimental setup used to conduct and evaluate the
experiments to determine the performance of the various fusion methods. An
analysis of the results obtained by the presented fusion methods is provided in
Chapter 7. This includes an analysis of the performance on fusing the multi-spectral
and SAR information present in the BigEarthNet-MM dataset and the performance
on a reduced fusion task only utilising Red-Green-Blue (RGB) and SAR data. The
chapter further includes detailed ablation studies on the impact of various hyper-
parameter settings on the fusion performance. Finally, Chapter 8 concludes with a
discussion of relevant insights obtained from the results as well as a small outlook
on potential future research.
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2 Fundamentals of Remote Sensing Data

This thesis’s primary focus is to analyse and improve the capabilities of the ViT
architecture in fusing two multi-modal data representations from the field of
remote sensing for a classification task. The following sections briefly introduce
the type of satellite data utilised in this thesis. The main focus is on their inherent
properties arising due to different acquisition processes.

2.1 Multi-Spectral Satellite Images

Multi-spectral imaging is the process of capturing an image over multiple spectral
bands simultaneously, usually with an array of dedicated sensors. These sensors are
typically specialised for a specific range of wavelengths from the electromagnetic
spectrum. Similar to classical RGB cameras, the individual channels contain infor-
mation on the spectral intensity received in the spectrum corresponding to that
particular sensor. Multiple multi-spectral imaging satellite missions are currently
in operation. Some of the most well-known include the Sentinel-2 mission [15, pp.
9-12], whose images are utilised in this thesis, as well as the Landsat and MODIS
missions [16]. The overall amount of spectral bands captured typically ranges from
3 to up to a few dozen. Commonly, most missions operate in the electromagnetic
spectrum of visible light, Near Infrared (NIR) and Short-wave Infrared (SWIR) [16].

A Multi-Spectral Image (MSI) allows the distinguishment of different surface prop-
erties based on specific spectral responses. This is possible because the chemical
compositions of various materials exhibit distinct spectral signatures. Previously,
the varying spectral responses relating to differing materials have often been ex-
ploited to perform a basic form of classification by computing a so-called index
from specific channels. For such an index, the value at a pixel location corresponds
with the presence of particular materials such as water or vegetation [16]. In recent
years, however, deep learning has largely replaced such approaches due to its
ability to model more complex relationships and achieve better results in a variety
of tasks.

The spatial and spectral resolution are critical properties of any multi-spectral
system employed for remote sensing. The spatial resolution refers to the physical
size of the area on the ground captured by one pixel of the sensor. It can range
from sub-meter resolution for very advanced systems up to a few dozen meters.
Conversely, the spectral resolution denotes the detail at which a system captures
spectral bands. More specifically, it refers to the difference between a sensor’s
maximum and minimum wavelength to which it is sensitive. Fig. 2.1 shows the
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2 Fundamentals of Remote Sensing Data

Figure 2.1: Overview on the spectral bands captured by a selection of relevant
multi-spectral satellite missions and their position on the
electromagnetic spectrum [16].

spectral bands and their position on the electromagnetic spectrum for a selection
of multi-spectral missions.

Continuous advancements in spatial and spectral resolution allow modern multi-
spectral satellite systems to provide a high amount of detail in their captured
images. This information enables a plethora of different research and commer-
cial applications to conduct detailed analyses of the Earth’s surface. Operating
very similarly to classical camera systems with more channels also simplifies the
interpretation of the provided data.

However, as multi-spectral systems rely on optical observation, they are strongly
impacted by changes to ground illumination and visibility. Therefore, such systems
can neither operate at night nor when cloud cover prevents the direct observation
of the surface. The problem of relying on daylight illumination can be alleviated by
placing the satellite in a sun-synchronous orbit. However, the captured data will
still experience a significant variance in the intensity and the angle of illumination.
In addition, the presence of clouds at the time of capture usually prevents the
corresponding images from being considered for further analysis.

Overall, multi-spectral satellite images provide highly detailed and valuable
information about the Earth’s surface. However, the aforementioned limitations
can be inhibiting for some applications. Therefore, to reduce the effects of clouds
and illumination on the resulting image data, other imaging technologies have
been developed, such as the SAR technology introduced in the next section.
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2.2 Synthetic Aperture Radar Data

2.2 Synthetic Aperture Radar Data

Synthetic Aperture Radar is a widely utilised technology in RS to acquire images of
the Earth’s surface. While it also relies on electromagnetic radiation in the imaging
process, its underlying principle and operation differ substantially from spectral
satellite imaging.

SAR systems mainly utilise microwave radiation for scanning the surface. Such
microwave radiation has significantly larger wavelengths than the spectral bands
used in optical imaging technologies. Additionally, SAR systems do not measure
the spectral response for a pixel location but instead rely on the radar principle to
obtain measurements of distances to objects.

A radar system sends out bursts of radiation and measures the backscattered
signal caused by objects reflecting the bursts of radiation back. The distance to
a target can be determined by evaluating the time difference between responses.
Additionally, the strength of the backscattered signal directly corresponds to the
surface properties of a target due to its interaction with the radiation. Fig. 2.2
visualises the principle of SAR data acquisition.

At this point, it is important to introduce a specific terminology for certain spatial
directions relative to the satellite’s movement. The direction along the satellite’s
flight path is called the azimuth direction and the direction orthogonal to the
satellite’s flight path is called the range direction. The differentiation is relevant
because different mechanisms are utilised to determine the source location of a
measured backscatter signal in azimuth and range direction from the satellite’s
position.

The range distance can be computed from the time difference between sending
and receiving a signal, as described previously. However, it requires the imaging to
be performed at an angle to the surface from the satellite’s point of view. Otherwise,
the time difference would not precisely correspond to a specific distance in range
direction as multiple objects might be at the same distance but on different sides of
the satellite’s flight path. Therefore, a SAR imaging satellite can never obtain an
image directly in the nadir direction. Fig. 2.2 also visualises the angled scanning of
the surface from a SAR satellite.

However, to precisely discern different objects in the azimuth direction, a radar
imaging system would need to send out very narrow beams to determine where
precisely a signal was backscattered. Because a narrower beamwidth would require
a significantly larger aperture, radar imaging systems relying on a real aperture
are highly impractical to build and deploy with currently available technologies.
Therefore, a SAR imaging system constructs a synthetic aperture, hence the name
of the imaging technique, by sending and receiving a multitude of wider bursts
over the satellite’s flight path. By taking such measurements at different points
in time, an object on the surface produces multiple backscatter responses that
differ in range depending on the satellite’s position. Considering the properties
of the satellite’s orbit and the burst frequency, the various measurements can

7
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Figure 2.2: Visualisation of the flight path of a SAR imaging satellite showing the
angled acquisition of the imaged swath. The satellite measures
backscatter responses at time points t1, t2 and t3. The measured signals
are used to compute the precise location of the point target in both the
range and azimuth direction relative to the satellite [17, p. 21].

be combined to infer an object’s position relative to the satellite accurately. The
acquisition of multiple signals for a single surface location is also visualised in
Fig. 2.2.

The resulting single radar image has the same spatial resolution as would be
achieved with a theoretically larger aperture. Such images are often acquired in
so-called swaths, which denotes a strip on the surface repeatedly illuminated by
the beam bursts and scanned as the satellite travels along its orbit. The synthetic
aperture corresponds to the distance travelled by the satellite while a given point
on the surface is in view of the beam bursts.

Interestingly, the beam width of a burst increases with range distance, and the
amount of time a point location stays within the burst’s view increases simultane-
ously. Therefore, the synthetic aperture for a point location further distanced in
range direction from the satellite is larger than for a point location closer to the
satellite. This variation in the aperture’s size has the effect that the resulting image
has a uniform pixel resolution in both azimuth and range direction independent
of the distance of the corresponding location relative to the satellite.
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2.2 Synthetic Aperture Radar Data

SAR systems often rely on the radar signal’s polarisation to obtain more de-
tailed information about the surface. Different ground geometries produce various
backscatter signals depending on the polarisation type of the original signal, en-
abling a greater variety of detail to be captured simultaneously.

The fundamental information of SAR images relies on the fact that varying
properties of the Earth’s surface lead to different backscatter behaviour. Rough
surfaces, such as a forest cover, create a lot of signal scattering when hit by a radar
signal with a large amount of radiation sent back to the sensor. Surfaces with flat
textures, however, mainly reflect the signal away from the receiver. Therefore,
rough surfaces usually appear bright in the resulting images, while flatter ones
appear darker. However, variations in the signal strength are common because
changes in the angle between the surface and the signal direction can considerably
affect the backscattered signal strength. In rare cases, such as the perfect alignment
of a mountain slope and the burst beam angle, a flat surface might reflect most
of the burst’s radiation back to the receiver resulting in high signal strength for a
smooth surface.

Therefore, SAR measurements are not necessarily similar for the same ground
geometry when imaged from different angles. To provide another example, when
a satellite observes a mountain from one side, it can eclipse a large area behind it
for which no measurements would be available. Consequently, the same terrain
can lead to very different SAR images for varying viewing angles, which is a crucial
property to consider when interpreting SAR data. The whole procedure is also
inherently very susceptible to noise from multiple sources. Such noise can, for
example, come from backscatter interference or complex scattering behaviour
leading to a delayed response compared to other time steps.

The various properties of SAR imaging introduce much complexity to interpreting
the resulting image data. This is where deep learning methods can aid the process
of analysing such data due to their inherent ability to detect and handle complex
dependencies in input data. Fig. 2.3 shows some example SAR images from the
BigEarthNet [14] dataset.

SAR imaging systems possess a multitude of advantages over classical optical
camera systems. Firstly, due to their active component, they can operate entirely
independent of illumination by the sun. Additionally, SAR systems are not disrupted
by cloud cover as microwave radiation can pass through cloud layers undisturbed.
Therefore, such systems are suited for applications where reliability is a crucial
requirement. For specific wavelengths, the radiation can even partly penetrate
the upper layers of soil and reveal submerged artificial and natural structures.
However, the amount of information a SAR system can obtain about a certain
location on the ground is limited. While optical systems measure the reflected
radiation at multiple wavelengths, SAR systems are mostly restricted to a specific
wavelength chosen when building the system. Additionally, the resulting images
suffer from a higher amount of noise than optical data, which can also be seen in
Fig. 2.3. The increased complexity in processing and interpreting the data compared
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2 Fundamentals of Remote Sensing Data

Figure 2.3: Visualisation of some example SAR images from the BigEarthNet
dataset. Only images received at vertical polarisation are shown.

to standard spectral imaging can also present a significant challenge.
However, their reliability and ability to obtain structural information can be cru-

cial for many applications [18]. SAR imaging systems are, therefore, an invaluable
source of data widely utilised in many modern research fields.
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3 Vision Transformer Architecture

The ViT architecture [10] has garnered significant interest from the research com-
munity since its original proposal. It achieved an outstanding classification perfor-
mance on the ImageNet dataset [11] at its release.

This chapter provides a detailed description of the various components of the
ViT architecture, as it forms the primary underlying model of the multi-modal
fusion methods analysed in this thesis. First, the Transformer Encoder as its main
building block is introduced, accompanied by a mathematical definition of the
attention mechanism. After that, the ViT architecture is explained in detail. Fi-
nally, the chapter concludes with a discussion of the general advantages of the ViT
architecture.

3.1 Transformer Encoder

The Transformer Encoder constitutes one of the central processing blocks of the
original Transformer architecture. It was proposed by Vaswani et al. [12] and is
originally used to compute attention-based feature representations for sequen-
tial input data from the Natural Language Processing (NLP) domain. However,
the Transformer Encoder can be extended to process arbitrary sequential data
representations, which gave rise to multiple Transformer-based architectures in
other fields. Notable examples include the ViT architecture utilised in this thesis, as
well as the Audio Spectrogram Transformer [19] for audio data or the Point Cloud
Transformer [20].

The sequential inputs to the Transformer Encoder are formed by so-called tokens.
A token is a vector embedding generated from the input data to represent an
abstract subset of the input’s feature information. For NLP tasks, each token usually
represents a singular word from a sentence. However, various input data types,
such as images, can be represented as sequences of token embeddings [10, 19, 20].

The attention mechanism utilised in the Transformer Encoder functions by com-
puting attention scores reciprocal between all the tokens in the input sequence. The
resulting scores represent the relevance of the relationship between any two tokens
for the task the model is trained to solve. The Transformer Encoder specifically
utilises the so-called Scaled Dot-Product Attention function proposed by Vaswani
et al. [12]. Throughout this thesis, the term Scaled Dot-Product Attention will be
abbreviated to Attention for the sake of simplicity.

To formally define the Attention function, let 𝑙 ∈ N be the number of token
embeddings in a sequence and let 𝑑𝑒 ∈ N be the size of each token embedding.
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3 Vision Transformer Architecture

Figure 3.1: Visualisation of the Multi-Head Self-Attention procedure. The Scaled
Dot-Product Attention block refers to the computation of Attention as
defined in Eq. 3.1. ℎ denotes the number of attention heads [12].

With this, let 𝑍 ∈ R𝑙×𝑑𝑒 be a matrix representation of an input sequence with each
row corresponding to a token embedding in the input token sequence. Let then
𝑄, 𝐾,𝑉 ∈ R𝑙×𝑑𝑒 be matrices obtained by applying learned linear transformations to
𝑍 with weight matrices𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑𝑒×𝑑𝑒 . 𝑄, 𝐾 and𝑉 are respectively referred
to as query, key and value. With this, the Attention function can be defined as seen
in Eq. 3.1.

Attention (𝑄, 𝐾,𝑉 ) = Softmax
(
𝑄𝐾𝑇
√
𝑑𝑒

)
𝑉 (3.1)

As seen in the definition of Attention, 𝑄 and 𝐾𝑇 are multiplied by matrix multi-
plication, resulting in an intermediary result matrix with dimension 𝑙 × 𝑙. It can
be observed that this intermediary result directly assigns a score to each token to
token relationship. By scaling with

√
𝑑𝑒 and applying the Softmax function, these

scores are mapped to a range between 0−1. The resulting matrix is then multiplied
with 𝑉 , which combines the computed scores with features directly derived from
the input tokens. This procedure strengthens features with higher relevance scores
while less relevant features are diminished. After multiple layers, the repeated
selection of the most relevant features should influence the model to only attend
to the most pertinent tokens for the task the model is trained to solve.

The entire procedure of computing the attention scores can be scaled to perform
Multi-Head Self-Attention (MSA) [12] which consists of multiple Attention calcu-
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3.1 Transformer Encoder

lations in parallel. MSA maintains multiple sets of linear transformation layers
to map the same token sequence to different query, key and value matrices and
independently compute attention scores for them. Each layer of distinct learned
linear transformations and corresponding Attention computation is referred to as
an attention head.

Let ℎ ∈ N be a model’s number of attention heads. With this for each attention
head 𝑖 ∈ [1, · · · , ℎ] a set of linear transformations can be defined with indepen-
dently learned weight matrices𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈ R𝑑𝑒×𝑑𝑒 . By applying each of these

linear transformations to 𝑍 distinct 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 ∈ R𝑙×𝑑𝑒 can be obtained for each atten-
tion head 𝑖. The attention scores are then generated separately for each attention
head 𝑖 by computing the Attention function with the corresponding 𝑄𝑖 , 𝐾𝑖 and 𝑉𝑖
matrices. This allows each attention head to learn filters to attend to different
properties of the input, which can boost the overall performance of the model.
Fig. 3.1 visualises the computation of multiple Attention calculations for multiple
heads.

In practice, the weight matrices𝑊𝑄
𝑖

,𝑊𝐾
𝑖

and𝑊𝑉
𝑖

of each attention head are com-
bined to form unified weight matrices𝑊𝑄

𝑐 ,𝑊
𝐾
𝑐 ,𝑊

𝑉
𝑐 ∈ R𝑑𝑒×(𝑑𝑒∗ℎ) with ℎ referring to

the number of attention heads. Applying the linear transformations corresponding
to these weight matrices to 𝑍 generates matrices 𝑄𝑐, 𝐾𝑐, 𝑉𝑐 ∈ R𝑙×(𝑑𝑒∗ℎ) . 𝑄𝑐, 𝐾𝑐 and
𝑉𝑐 can be split along their second dimension into ℎ matrices to obtain 𝑄𝑖 , 𝐾𝑖 and
𝑉𝑖 for each attention head. Combining the linear transformations into one matrix
multiplication in the previously described manner allows the MSA layer to compute
the attention scores for all attention heads in parallel.

The tokens generated by the MSA layer are then passed through a Multilayer
Perceptron (MLP) which consists of two linear layers with one hidden dimension.
Each feature token in the output sequence from the Attention function is passed
through the MLP layer individually, with weights shared for all tokens generated
by a specific attention head.

Additionally, Layer Normalisation (LN) [21] is applied in each Transformer En-
coder layer before passing the inputs to the MSA and the MLP layer. LN computes
normalisation statistics for the individual feature tokens in a sequence and maps
the feature values in the tokens to follow a normal distribution. LN improves the
performance of a model due to advantageously influencing gradient computation
during gradient descent and has been shown to improve training stability and
generalisation capabilities [21]. To further improve performance, residual connec-
tions [6] are employed around the MSA and the MLP layer. Residual connections
can simplify the optimisation during gradient descent and aid in preventing the
problem of vanishing gradients which could hinder overall performance when
scaling the number of layers in the Transformer Encoder. A detailed overview of
the aforementioned components of the Transformer Encoder is shown in Fig. 3.2.
The Transformer Encoder forms the primary building block of the ViT architecture
introduced in the next section.
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Figure 3.2: The Transformer Encoder constitutes one of the main building blocks
of the Transformer architecture. It consists of a sequence of layers,
each containing an MSA layer followed by an MLP layer. Before each of
these layers, a normalisation operation is applied, and residual
connections are introduced. The image shows one layer in the
Transformer Encoder, which is stacked multiple times to form the full
architecture [12].

3.2 Vision Transformer

The Vision Transformer architecture [10] is a neural network architecture specif-
ically designed for the task of image classification. Fig. 3.3 gives an overview of
the different components of the architecture. It is an adaptation of the original
Transformer architecture proposed by Vaswani et al. [12] for the NLP domain.

The ViT architecture operates on a sequence of feature tokens derived from
images by a specialised embedding layer. Unlike words or other data representa-
tions, images consist of structured information in the form of pixels, which do not
directly translate to a form of sequential input as is required by the Transformer
architecture.

Therefore, in the ViT model, an embedding layer processes an input image by
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Figure 3.3: A general overview of the ViT architecture. The embedded patch tokens
and a class token are passed through a Transformer Encoder. The final
class token is utilised for classification by an additional MLP [10].

dividing it along its spatial dimensions into a predefined number of patches. For
a given image 𝑥 ∈ Rℎ×𝑤×𝑐 with ℎ, 𝑤 ∈ N being the with and height of the image
and 𝑐 ∈ N denoting the number of channels in the image, the resulting patches
𝑥𝑝 ∈ R𝑝×𝑝×𝑐 will have a spatial dimension of 𝑝 ∈ N so that ℎ

𝑝 ∈ N and 𝑤
𝑝 ∈ N.

Each of these patches is then processed with a linear transformation to derive a
patch embedding token 𝑧 ∈ R𝑑𝑒 with 𝑑𝑒 ∈ N denoting the embedding dimension.
The embedding token condenses the information present at the patch’s respective
image location into a lower dimensional feature space. In addition to the patch
tokens, a special learnable class token 𝑧𝑐𝑙𝑠 ∈ R𝑑𝑒 is defined and appended to the
token sequence. After processing the patch tokens and the class token in consecu-
tive attention layers only the class token is extracted and employed for the final
classification step. This forces the network to map the most relevant information
from the patch tokens to the class token. Due to the limited size of the class token,
mapping all information to it is intended to have a condensing effect and lead to
more accurate classification results. The entire input sequence to the Transformer
Encoder can hence be defined as 𝑍 = [𝑧1, 𝑧2, · · · , 𝑧𝑙 , 𝑧𝑐𝑙𝑠] with 𝑙 ∈ N referring to the
number of patches generated from an input image.

To assist the model in encoding the positional information of the patch tokens
in the input sequence, a positional encoding is added to all individual tokens.
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The positional encoding ensures that the model can easily discern the location
of a specific patch and aids in deriving spatially related information from the
whole sequence. It is implemented by a learnable vector with the same size as
the embedding dimension 𝑑𝑒, which is added to all patch tokens and allows the
architecture to learn an encoding for the position of a token in the sequence.

The resulting sequence of tokens directly derived from the input data is then
passed through a Transformer Encoder, which forms one of the main components
of the original Transformer model and has been introduced in Section 3.1. The
Transformer Encoder performs a computation of the attention mechanism in each
of its layers. It outputs a sequence with the same length as the input sequence, with
the features now corresponding to higher-level information about the semantic
content of the input image. The class token is then extracted from the final output
sequence and individually utilised to perform the classification, while the rest of the
tokens are discarded. Next, the class token is processed by a dedicated classification
MLP called the classification head. The classification head maps directly from the
embedding dimension 𝑑𝑒 of the class token to the class dimension 𝑑𝑐𝑙𝑎𝑠𝑠 ∈ N which
is equal to the number of classes present in the current classification task. Finally, a
Softmax function is applied to these class logits to obtain a confidence score for the
presence of a specific class in the input image. For multi-label classification tasks,
as is performed in this thesis, this Softmax function is replaced with a Sigmoid
function.

A significant modification is introduced in the Transformer Encoder used by the
ViT model. While the standard Transformer relied on the more simplistic Rectified
Linear Unit (ReLU) function [22] in its encoder, in the ViT architecture, this is
replaced with the Gaussian Error Linear Unit (GELU) activation function. The GELU
function smooths the transition activation outputs around zero and exhibited the
potential to increase the performance of models on various deep learning tasks
[23].

When the ViT model was initially proposed, it achieved a performance improve-
ment on the ImageNet dataset [11] compared to rivalling methods. Remarkably,
the ViT model was the first convolution-free architecture to outperform the more
established CNN architectures dominant in the field of computer vision in the
last decade. However, it required extensive pretraining of the model on a very
large-scale image dataset before fitting the model on the ImageNet dataset. The
additional pretraining demanded a vast amount of additional processing resources.
The significant computational requirements are caused in particular by the com-
plexity of the Attention function. With 𝑙, 𝑑𝑒 denoting the length of the processed
sequence and the embedding dimension, the complexity of the Attention function
is 𝑂(𝑙2 ∗ 𝑑𝑒). Therefore, the computation scales quadratically with the length of the
input token sequence.

When CNN models were first proposed, their high performance on visual data was
partially explained by their strong local inductive bias imposed on the model due to
the limited number of pixels observed by any convolutional filter. This was deemed
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beneficial because it allows deeper layers to learn more abstract features than
shallow layers. In contrast, the ViT architecture exhibits a very weak local bias and
attends to all input tokens equally from the first layer onward. The computation of
attention scores between all patch tokens allows the model to immediately correlate
features from the entire image without first having to abstract local features from a
specific image location. Such a property might be beneficial when analysing multi-
modal data in the field of RS because images captured by different sensors can
exhibit significant levels of correlation at the feature level. Additionally, because the
Attention function inherently assigns relevancy scores to components of an input
sequence, it could potentially be extended to filter the most relevant information
provided by multi-modal data. Therefore, the ViT model serves as the main building
block on which all multi-modal fusion methods investigated in this thesis are based.
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The following sections give an overview of various approaches to performing
multi-modal fusion within deep learning architectures. The first section provides
an overview of the state-of-the-art in deep-learning-based multi-modal fusion of
remote sensing data. Specifically, the description focuses on approaches dedicated
to scene classification or LULC classification tasks, as these relate most closely to the
scene classification task of interest in this thesis. Afterwards, an outline of various
state-of-the-art Transformer-based multi-modal fusion methods from the general
deep learning field is provided to embed the work of this thesis in the broader
research landscape.

4.1 Multi-Modal Fusion in Remote Sensing Image
Classification

In the field of RS, data captured by different sensor systems are abundantly avail-
able. Such sensor modalities are commonly used in various applications due to the
distinct types of information they can provide for a geographical location. However,
combining multiple modalities effectively still presents a challenging subject in
modern remote sensing research. Therefore, multiple different methods have been
developed to effectively achieve the fusion of separate RS modalities [2].

Some early works in the field have often relied on statistical methods [24, 25]
to fuse features from separate modalities, while others employed shallow neural
networks for this purpose [26, 27]. Other approaches that have received significant
attention are direct subspace learning from multi-modal data representations
[28, 29] and manifold alignment methods, which seek to map different modality
representations of the same underlying physical source to a common representation
on the same manifold [30, 31].

However, with the recent success of deep-learning-based methods in the field
of RS, most research has focused on fusion techniques fully integrated with deep
learning models. Many of these fusion methods rely on CNN architectures due to
their outstanding performance in the CV field for many years.

Hang et al. [32] propose a relatively shallow CNN model with two coupled modal-
ity encoders for the fusion of Hyper-Spectral Image (HSI) and Light Detection and
Ranging (LIDAR) data. In both encoders, the last layers share weights to produce
more similar feature encodings between the modalities and reduce the model size.

Other publications have used an encoder-decoder design to map multi-modal
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inputs to a shared latent space representation of lower dimensionality than the
input features [33, 34]. These methods often perform an additional step during the
training phase, where the original inputs are reconstructed from the fused feature
embedding. The reconstruction forces the model to learn a mapping that preserves
as much information as possible in a condensed latent space.

A very different approach is explored by Li et al. [35], who conceived a fusion
model where feature embeddings are extracted from HSI and SAR data by the same
encoder. During training and inference and depending on the relevance of a chan-
nel feature to the current classification operation, a corresponding feature from the
other modality is injected to substitute that feature. This reduces redundancy and
has subsequently been shown to improve classification performance compared to
other models.

Another method is investigated by Audebert et al. [36], who use a fully convo-
lutional architecture to achieve the fusion of multi-spectral and LIDAR data for
LULC classification. The respective modality encoders are modified to include a
reoccurring fusion layer between convolutional layers in the encoder to exchange
information from both modalities perpetually. Therefore, the output from one
encoder is assumed to contain a fused representation of both modalities and is
passed to a decoder to construct an LULC map. Comparisons to a late fusion model
indicate that integrating such sophisticated fusion steps into a model architecture
can significantly improve the performance capacity of a deep learning model.

Hong et al. [37] conduct a comprehensive comparison between multiple CNN-
based fusion methods for the fusion of multi-spectral and SAR data. These fusion
methods include concatenation-based early, middle and late fusion but also a
more sophisticated encoder-decoder fusion model and a cross fusion method which
functions by sharing weights between the CNN encoders for the different modalities.
The conducted experiments indicate that models with more sophisticated fusion
approaches directly integrated into the model architecture can outperform methods
relying on more straightforward fusion approaches.

Due to the beneficial properties of the attention mechanism for the fusion of
modalities, many works have sought to incorporate it into the fusion process.
Furthermore, because of the general prevalence of CNN architectures in RS, various
models have been proposed which integrate attention-based fusion modules with
CNN models in a limited capacity [38, 39].

Other works have focused on integrating Transformer models to specifically
perform the fusion of modalities, while dedicated CNN encoders are still used to
derive feature embeddings from input data. Such a model is proposed by Fan et
al. [40], which employs separate encoder modules to extract features from high-
resolution RS images and population movement data. A standard Transformer
Encoder then directly performs the fusion of the extracted features on a combined
input sequence derived from both modalities. In a more sophisticated manner, Ma
et al. [41] conceive a specialised Transformer-based model with adapted attention
layers to better facilitate the fusion of multi-modal and multi-scale features. These
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models receive features derived from CNN encoders as inputs.

However, due to the recent success the ViT architecture achieved in the classical
CV domain, much research has been focused on the multi-modal fusion of RS data
solely relying on Transformer models in all steps of the processing pipeline. Wang
et al. [42] tested the capacity of the standard ViT architecture to perform self-
supervised learning on the BigEarthNet-MM dataset [14] for a scene classification
task. The fusion is performed by concatenating the channel information from
Sentinel-1 (S1) and Sentinel-2 (S2) patches. The embedding generation procedure
from the standard ViT architecture is then used to extract patch embeddings from
the combined image tensors. The results indicate that Transformer-based self-
supervised learning could potentially match or outperform supervised training on
RS datasets.

Xue et al. [43] propose another approach to self-supervised learning with Trans-
formers on multi-modal RS data. Here the authors train a Transformer-based
encoder-decoder architecture to map HSI and high-resolution RGB data to fea-
ture embeddings in a constrained latent space. The model is pre-trained in a
self-supervised manner by masking parts of the input images and reconstructing
the original images from the feature embeddings. After pre-training, a classifier is
trained on these feature embeddings to generate accurate classification maps of
the respective area.

A supervised approach to the fusion of LIDAR and HSI data has been conceived by
Roy et al. [44]. While the token embeddings from the HSI data form the main input
sequence to a Transformer model, the information from the LIDAR data is injected
through a modified class token. This class token is generated from the LIDAR
data instead of being initialised randomly, as would be the case in the standard
Transformer model. The modalities are then fused in the attention layers of a
slightly modified Transformer Encoder which incorporates an adapted attention
computation between the class token and the feature tokens.

Another more classical fusion model is conceived by Xue et al. [45]. Their ar-
chitecture contains multiple modified Transformer encoders dedicated to specific
modalities which map the multi-modal inputs to an encoded embedding token
sequence. The resulting sequences are concatenated and fused by a specialised
attention operation in the last layer before employing a linear classifier to obtain
LULC maps.

It can be observed that a considerable amount of fusion methods have been
conceived specifically for RS applications. However, many relevant approaches to
Transformer-based multi-modal fusion are designed for applications from other
deep learning fields. Such approaches could provide valuable insights on how to
best analyse multiple modalities with Transformer-based models. Therefore, the
following section provides an overview of relevant works on multi-modal fusion
based on the Transformer architecture dedicated to tasks outside the field of RS.
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4.2 Transformer-based Multi-Modal Fusion

This section introduces a multitude of Transformer-based methods to perform
multi-modal fusion in the general deep learning domain to obtain insights on the
applicability of Transformers in multi-modal contexts outside the RS domain. In
the general deep learning field, the term modality usually refers to different types
of data representations corresponding to similar underlying information such as
text, audio or image data. Data from many such modalities are available in large
quantities and utilised for various types of tasks [46].

However, the definition above of the term modality differs slightly from the
definition used throughout the rest of this thesis. Therefore, in this section, the
term modality refers to the definition used in the general deep learning domain
instead of the stricter definition as a sensor modality.

Fusing different modalities is a highly researched subject within the general
deep learning community [42, 46–48]. However, to effectively fuse modalities such
as images or text, sophisticated embedding procedures are required to map their
inherent information to feature representations with similar dimensionality.

Interestingly, Transformer-based architectures could demonstrate impressive
results on various tasks while processing different types of modalities [10, 19, 20].
This could imply that the design of the Transformer architecture is inherently
modality-agnostic, and its internal layers can adapt to various representation types
for different input sequences, as has been hypothesised by Xu et al. [13].

Due to the abundance of modality-specific Transformer models, many procedures
exist to map different modalities to standard Transformer input embedding tokens,
simplifying the integration of different modalities for multi-modal learning. There-
fore, some fusion approaches map two modalities to sequences of feature tokens
that can be directly concatenated to serve as an input to the standard Transformer
model. Shvetsova et al. [49] employ such an approach to fuse video, audio and text
data. The authors generated multiple latent space representations from the input
modalities and utilised a contrastive loss to maximise the similarity for the same
sample. Relying on a similar principle, Gabeur et al. [50] conceive a multi-modal
Transformer for video retrieval tasks. A different approach is explored by Yao
et al. [51]. The authors propose a model which performs the fusion of text and
image modalities during the self-attention computation. While the query contains
information from both modalities, the key and value vectors are only derived from
the text modality.

Numerous other works substitute the self-attention computation step in some
or all of the Transformers layers with a Cross-Attention step [47, 52–55]. Cross-
Attention is a type of attention computation where the query vector is derived from
one modality while the key and value vectors are derived from another modality.
For a detailed description the reader is referred to Section 5.5. It represents one
of the most prevalent methods for Transformer-based multi-modal fusion due
to the simplicity of incorporating it into the standard Transformer architecture.
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Additionally, Cross-Attention presents an intuitive approach to fusing separate
modalities because it directly computes relevancy scores between distinct token
sequences corresponding to different respective modalities.

A notable architecture mainly relying on Cross-Attention is the Perceiver IO
architecture proposed by Jaegle et al. [47]. Perceiver IO is designed to perform the
fusion of arbitrary types of modalities by mapping all modalities to a joint latent
space embedding of similar dimensionality. Most computations are then performed
directly in the latent space to reduce computational demand. A standardised latent
size simplifies the integration of multiple modalities and allows the architecture to
process both uni-modal and multi-modal inputs. A multitude of experiments proves
the capacity of the architecture to adapt to different modalities while retaining the
ability to achieve competitive results on various tasks.

A radically different multi-modal fusion method is proposed by Nagrani et al.
[48], which adds specialised bottleneck tokens to facilitate the fusion between RGB
and spectrogram images. Both modalities are mapped to sequences, with each
token in these sequences having the same embedding dimension. Additionally, a
class token is appended to each modality sequence. The arrangements are then
concatenated, and bottleneck tokens are added to the combined sequence input.
While the architecture is mainly based on the default Transformer Encoder, it is
modified to only allow information flow between both modalities through the bot-
tleneck tokens. Therefore, the bottleneck tokens have the effect of condensing and
exchanging the most relevant information from both input modalities. Finally, the
class tokens corresponding to each modality are combined by averaging and then
utilised by a linear classifier to perform the final classification. The results show
that the addition of bottleneck tokens can significantly increase the performance
and decrease processing requirements on multi-modal tasks compared to a more
simplistic early fusion of modality-specific tokens.

As can be seen, many adaptations of Transformer-based fusion methods have
been conceived for various deep learning tasks. The multi-modal fusion methods
introduced in this thesis will incorporate and advance upon some of the procedures
above to facilitate the fusion of multi-spectral and SAR images.
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Some modifications to the standard information flow in the model are required to
apply the ViT architecture to multi-modal input data. As multi-modal information
is present in different data representations, it is not trivial to combine these into a
joint representation. This necessitates introducing additional processing steps to
fuse modalities and obtain such a joint representation for further processing by a
deep learning model. The fusion can be performed at either a low feature level or
with abstract features derived from multiple preceding deep learning layers.

Multiple multi-modal fusion methods based on the ViT architecture are conceived
and investigated in this thesis to assess their capabilities in fusing multi-spectral
and SAR image data for a classification task. These methods can be separated into
two categories:

1. Fusion methods, which modify the generation of token embeddings but rely
on the standard ViT architecture to perform the classification task.

2. Methods which improve the ViT architecture design by employing separate
modality encoders and introducing various techniques to influence and facil-
itate the inter-modal information exchange between them.

The investigated methods have different benefits and can vary considerably in
terms of complexity, performance capabilities and computation requirements. The
following sections give a detailed introduction of each method and provide an
analysis of its intended effects.

5.1 Early Fusion by Modality Channel Concatenation

Early fusion approaches represent probably the most simplistic and widely adapted
fusion method in many neural-network-based fusion approaches for multi-modal
data sets. It usually refers to the concatenation of unprocessed modality inputs
or low-level features derived from these before analysing them with a model
architecture. Consequently, an Early Fusion approach is also investigated in this
thesis for the fusion of the multi-spectral and SAR images. The same method has
previously been employed by Wang et al. [42] for self-supervised multi-modal
classification on the BigEarthNet-MM dataset.

The procedure is especially viable when both modalities can be easily projected
into a feature space with the same dimensionality. In the case of the multi-spectral
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Figure 5.1: The token generation process for the Early Fusion approach. A patch
from the concatenated modalities tensor is mapped to an embedding
token by a linear embedding layer. The resulting tokens are assembled
into one sequence and a class token is appended. The feature token
sequence forms the input to the Transformer Encoder.

and SAR data utilised in this thesis, they are both available at a similar spatial
dimension. While some bands of the multi-spectral data require an up-sampling and
interpolation step to match the spatial dimension of all other bands, no information
loss should occur during this step. Therefore, a direct concatenation can combine
both modalities along their channel dimension. The concatenated input tensor
can then be processed by the default patch embedding layer employed in the ViT
architecture. The resulting feature tokens represent the combined information
from both modalities at a specific patch location.

Because the mapping from inputs to feature embeddings is performed by a
standard linear layer, there are two possible ways for data fusion to occur. To some
degree, the modality-specific information can already be merged by the linear filter
weights to produce combined features in the token embeddings. Conversely, the
linear filters might learn to map information from both modalities to different
feature positions in the token embedding vector. This would then leave the fusion
process of the modality information to the attention mechanism in the encoder
layers. Most likely, the fusion of modalities is performed by both of these processes
simultaneously, as it is difficult to determine how exactly information is processed
in a trained architecture. Fig. 5.1 visualises the working principle of the Early
Fusion method.

To define the process formally, let ℎ, 𝑤 ∈ N be the height and width of the
input images and let 𝑐𝑚𝑜𝑑1, 𝑐𝑚𝑜𝑑2 ∈ N be the channel dimension of the respective
modalities to be fused. Let further 𝑥𝑚𝑜𝑑1 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑1 and 𝑥𝑚𝑜𝑑2 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑2 be
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the images from the two separate modalities. The combined input to a model can
then be defined as 𝑥 ∈ Rℎ×𝑤×(𝑐𝑚𝑜𝑑1+𝑐𝑚𝑜𝑑2) whereas the channel information of 𝑥
consists of the channel information of 𝑥𝑚𝑜𝑑1 and 𝑥𝑚𝑜𝑑2 concatenated along the
channel dimension. Each patch embedding token is then derived from an input
patch 𝑥𝑝 ∈ R𝑝×𝑝×(𝑐𝑚𝑜𝑑1+𝑐𝑚𝑜𝑑2) with 𝑝 ∈ N again denoting the spatial dimension of a
patch.

The patches are processed by a set of linear filters similarly to the process for a
single modality as described in Section 3.2. It should be noted that the number of
learned filter weights increases to account for the additional channels compared to
single modality processing. The information of the combined modalities can either
be mapped to a feature embedding with the same dimension used when training
with single modality data or the feature dimension can be increased to account for
the additional information. However, increasing the embedding dimension also
influences other layers in the architecture, hampering the comparability between
models.

To conclude, the Early Fusion method presents a straightforward and efficient
approach to fusing MSI and SAR data. However, the combined generation of em-
beddings from both modalities might limit the beneficial properties of the attention
layers in the fusion process. Therefore, the next sections present further embedding-
based fusion methods which fully incorporate the attention mechanism into the
fusion process.

5.2 Proposed Modality Token Fusion

By separating the generation of embedding tokens between the two modalities an
additional simplistic fusion method can be designed. Such a Modality Token Fusion
method is proposed in this thesis for the fusion of multi-spectral and SAR images.
It operates by generating the token embeddings for each modality separately with
the same process as is described in Section 3.2.

The generated tokens are then concatenated to form the input sequence to a
Transformer Encoder. This avoids that features from both modalities are fused
at the patch embedding step as can occur in the aforementioned Early Fusion
approach. Therefore, all fusion has to take place within the attention layers of
the Transformer Encoder. Because the Attention function measures the relative
importance of all token embeddings relative to one another, separating the token
generation step for the input modalities could potentially improve the selection
of the most relevant features from each modality. While the direct fusion by
concatenation of tokens generated from modalities has been explored for other
types of modalities [56, 57], to the best of my knowledge this work is the first to
apply such an approach to the fusion of multi-spectral and SAR images.

Additionally, the patches from each modality do not have to share the same
embedding token due to separating the token embedding step. This allows more
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Figure 5.2: The token generation process for the Modality Token Fusion approach.
Separate patches from each modality are individually mapped by a
modality-specific embedding layer to embedding tokens. The resulting
token sequences corresponding to each modality are combined and a
class token is appended to form the feature token sequence. The
resulting sequence serves as the input to the Transformer Encoder.

features to be passed on to the attention layers. However, processing more tokens
in the attention layers comes at the cost of increasing the computational require-
ments. Since Modality Token Fusion generates twice the number of tokens as Early
Fusion, its processing requirements should significantly increase when a similar
embedding dimension and patch size are used.

To formally define Modality Token Fusion let again 𝑥𝑚𝑜𝑑1 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑1 and
𝑥𝑚𝑜𝑑2 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑2 be the two modalities with ℎ, 𝑤 ∈ N being the height and
width and 𝑐𝑚𝑜𝑑1, 𝑐𝑚𝑜𝑑2 ∈ N denoting the channel dimension of each modality.

Each patch embedding token is then derived from an input patch either defined
as 𝑥𝑚𝑜𝑑1

𝑝 ∈ R𝑝×𝑝×𝑐𝑚𝑜𝑑1 or as 𝑥𝑚𝑜𝑑2
𝑝 ∈ R𝑝×𝑝×𝑐𝑚𝑜𝑑2 with 𝑝 ∈ N again denoting the spatial

dimension of a patch. The token sequence, which serves as an input to the ViT
model, is then formed by concatenating all 𝑥𝑚𝑜𝑑1

𝑝 and 𝑥𝑚𝑜𝑑2
𝑝 and appending a class

token at the end. Fig. 5.2 also visualises the generation of the token embeddings
from the input tensors.

In summary, Modality Token Fusion is built on the simple concatenation of tokens
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generated from separate MSI and SAR modalities. This fully allows the attention
mechanism to select the most relevant features from both modalities which could
prove advantageous, especially when compared to Early Fusion. The principle can
be further expanded to directly let the attention mechanism perform the fusion of
the individual channel information as is introduced in the following section.

5.3 Proposed Channel Token Fusion

An additional embedding-based fusion method is proposed with the Channel Token
Fusion method. It functions by dividing patches utilised for the generation of the
feature tokens not just along the spatial but also along the channel dimension. A
separate filter is applied to each channel of a patch from the multi-channel image
of one modality to derive a token embedding independent from all other channels.
For multi-spectral data, this corresponds to the individual spectral bands, while for
the SAR data, this corresponds to the different polarisation channels. To the best of
my knowledge, utilising tokens derived from the individual channels of multiple
modalities has not been employed previously for the fusion of multi-spectral and
SAR images. While a similar concept is explored by Hong et al. [58], their approach
is dedicated specifically to HSI analysis and does not extend to multi-modal fusion.

Again let 𝑥𝑚𝑜𝑑1 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑1 and 𝑥𝑚𝑜𝑑2 ∈ Rℎ×𝑤×𝑐𝑚𝑜𝑑2 be the two modalities with
height and width ℎ, 𝑤 ∈ N and channel dimensions 𝑐𝑚𝑜𝑑1, 𝑐𝑚𝑜𝑑2 ∈ N. Then each
patch can be defined as 𝑥𝑝 ∈ R𝑝×𝑝×1 with p denoting the spatial dimension of
the patch. The embedding layer effectively iterates over all patches in the spatial
dimensions of both modalities and employs a separate filter for each channel to
map channel patches to separate token embeddings.

Interestingly, the overall number of parameters in all channel-wise filters is the
same as with the classical patch embeddings employed by the standard ViT model.
At the same time, a significantly higher number of tokens is generated from the
same input. The resulting tokens, therefore, correspond to a smaller number of
input features respectively. Hence, the condensing of information at the embedding
generation step is not as severe, which means that more information should be
available in the Transformer Encoder and its attention layers. Finally, the input to
the Transformer Encoder is formed by concatenating all generated channel feature
embeddings and appending a class token similar to the aforementioned methods.
A visualisation of the procedure is provided in Fig. 5.3.

Notably, there are some relevant downsides to the fusion of multi-modal images
with channel tokens in such a manner. One of the main problems is the overly large
amount of generated input tokens. The number of tokens scales directly with the
number of channels present in both modalities. This induces a very high processing
workload to compute the attention scores for all these input tokens because the
computation of attention scores scales quadratically with the length of the input
sequence. With multi-spectral data as one modality, such an approach can become
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Figure 5.3: The generation of embedding tokens from patches in Channel Token
Fusion. A separate token is generated for each patch and each channel
of the patch separately. The final token sequence consists of tokens
corresponding to each channel of patches in both modalities, as well as
a class token. The resulting sequence is then processed by a
Transformer Encoder.

infeasible as it leads to an explosion of memory and processing requirements.
However, Channel Token Fusion does not result in a larger model size of the

utilised ViT model compared to the other aforementioned fusion methods. While
the sequence length increases, the size of the individual tokens does not change,
which is one of the main factors contributing to the model size. In fact, the embed-
ding size can potentially even be reduced as a considerably smaller amount of input
features has to be mapped to each token embedding. Additionally, such an amount
of token embeddings could also have a regularising effect on the model’s training
because the same number of internal model weights are required to process a
higher amount of feature inputs with a likely overall higher variance.

To summarise, in Channel Token Fusion the channel information from MSI and
SAR data is fused directly in the attention layers of a Transformer Encoder. The ad-
vantageous properties of the attention mechanism might, therefore, enable a more
effective fusion of the channel information compared to the other aforementioned
fusion methods.
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All previously introduced fusion methods specifically modify the process of
generating the token input sequence but rely on a standard Transformer Encoder
for the feature extraction and classification. Conversely, the following sections
introduce fusion methods which employ modality-specific encoders to extract
features from both modalities and incorporate various procedures to fuse multi-
modal information between these encoders.

5.4 Proposed Middle Fusion with Separate Modality
Encoders

Based on the idea that features of deeper layers of a neural network contain se-
mantically more abstract and relevant information for a given input a Middle
Fusion method derived from the ViT architecture is proposed for the fusion of
multi-spectral and SAR images. It functions by merging the abstract feature rep-
resentations generated by separate encoders dedicated to different modalities.
Similar methods have previously been investigated for CNN architectures, such
as the one by Hong et al. [37]. Consequently, as both CNN and ViT architectures
derive more abstract features at deeper layers, the principle can also be extended
to Transformer-based multi-modal fusion. While similar approaches have been
conceived previously, as described by Xu et al. [13], to the best of my knowledge
this is the first time such a fusion method is specifically designed for the fusion of
multi-spectral and SAR image data.

The concrete architecture proposed in this thesis for multi-modal fusion of multi-
spectral and SAR images is composed of three separate Transformer Encoders. The
first two encoders, called modality encoders, are dedicated to each of the modalities
and extract modality-specific features. A dedicated fusion layer performs the
fusion of the feature token sequences generated by each modality encoder. This
layer separately fuses the standard feature tokens and the class tokens from both
encoders through a set of fully connected layers. The third encoder, called the
fusion encoder, receives the fused feature token sequences from both modality
encoders and passes these through additional attention layers. Processing the fused
feature tokens with further attention layers serves to extract fused abstract features
relevant to the classification task.

Fusing the class tokens separately ensures that all class-related information
contained in the class tokens is preserved and does not get mixed with the other
feature token information during the fusion step. Afterwards, the fused token
sequence is of equal length as both input sequences received from the modality
encoders. Therefore, the fusion step essentially halves the total capacity of the
whole sequence, which reduces processing requirements for the fusion encoder.
Simultaneously, the reduction of feature information at the fusion step might result
in a selection of abstract features of higher relevance for the classification task.

Afterwards, the fusion encoder processes the fused sequence of feature tokens
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Figure 5.4: Visualisation of the architecture design for the Middle Fusion approach.
The modalities are processed by the modality encoders to extract
abstract feature representations. The resulting feature tokens are fused
and processed by a further fusion encoder. Finally, the last class token
is extracted to perform the classification.

through further attention layers. Finally, as in the standard ViT model, the last
class token is extracted to perform the classification. The full architecture design is
visualised in Fig. 5.4.

The number of Transformer Encoder layers can be set independently from one
another in the modality encoders and the fusion encoder. The architecture can,
therefore, be configured to fuse the feature tokens at different layer depths. The
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fusion could, for example, be performed at an early step using small modality
encoders or at a later step by employing very deep modality encoders. Setting
different depths for the encoder types additionally allows for an analysis of how
many Transformer Encoder layers might be required to extract sufficiently abstract
features from both modalities. This might reveal relevant insights on the multi-
modal fusion of MSI and SAR data in general.

In summary, the Middle Fusion method fuses information derived from two
modalities by dedicated encoders in a specialised fusion encoder. Therefore, ab-
stract features from both modalities are combined in dedicated attention layers,
which is expected to positively impact the classification performance. However,
further advanced architectures can be conceived that fuse modalities in between
the layers of two Transformer Encoders as is shown in the following sections.

5.5 Proposed Cross-Attention Fusion

Another advanced architecture design is proposed in this thesis with a Cross-
Attention Fusion method to fuse multi-spectral and SAR image data. The fusion
method relies on Cross-Attention which is an established method to combine mul-
tiple modalities in deep neural networks, as has been described previously in
Chapter 4. The proposed Cross-Attention Fusion approach is based in particular
on the method proposed by Lu et al. [59]. To the best of my knowledge, this thesis
is the first work to extend this specific implementation of Cross-Attention to the
fusion of multi-spectral and SAR image data.

The Cross-Attention Fusion architecture features two separate encoders for ex-
tracting features from both modalities, with each encoder dedicated to a specific
modality. However, in contrast to the standard ViT architecture, the attention layers
of these encoders compute Cross-Attention instead of self-attention. Cross-Attention
derives the query input to the Attention function from another input sequence
than the key and value inputs.

Let 𝑧𝑚𝑜𝑑1 and 𝑧𝑚𝑜𝑑2 be sequence inputs of two separate modalities derived from
two input images 𝑥𝑚𝑜𝑑1 and 𝑥𝑚𝑜𝑑2. The generation of 𝑧𝑚𝑜𝑑1 and 𝑧𝑚𝑜𝑑2 follows the
same procedure as has been introduced in Section 3.2 for each modality separately.
Let then 𝑄𝑚𝑜𝑑1, 𝐾𝑚𝑜𝑑1, 𝑉𝑚𝑜𝑑1 ∈ R𝑙×𝑑𝑒 and 𝑄𝑚𝑜𝑑2, 𝐾𝑚𝑜𝑑2, 𝑉𝑚𝑜𝑑2 ∈ R𝑙×𝑑𝑒 be the respec-
tive query, key and value matrices derived from each modality. As in Section 3.1,
𝑙 ∈ N denotes the number of feature embedding tokens and 𝑑𝑒 ∈ N denotes the
embedding dimension. Using Eq. 3.1, Cross-Attention can then be defined as shown
in Eq. 5.1 and Eq. 5.2.

Cross-Attention𝑚𝑜𝑑1 = Attention (𝑄𝑚𝑜𝑑2, 𝐾𝑚𝑜𝑑1, 𝑉𝑚𝑜𝑑1) (5.1)

Cross-Attention𝑚𝑜𝑑2 = Attention (𝑄𝑚𝑜𝑑1, 𝐾𝑚𝑜𝑑2, 𝑉𝑚𝑜𝑑2) (5.2)

It can be seen in Eq. 5.1 and Eq. 5.2 that the information from the opposite
modality encoder only influences the calculation of the attention scores through
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Figure 5.5: Visualisation of the information flow in the Cross-Attention layers of
the two encoders employed in Cross-Attention Fusion. Note the crossing
information flow from the query matrices to the opposite encoder.

the query matrices 𝑄𝑚𝑜𝑑1 and 𝑄𝑚𝑜𝑑2. Therefore, through the computation of the
Cross-Attention scores, both matrices only influence which features of the opposite
modality encoder are strengthened or diminished in relevance. Consequently, the
output feature sequence of each encoder layer is still directly derived from the
respective modality of that encoder.

The aforementioned information flow is intended to facilitate a strong inter-
modal information exchange to select the features from both modalities with
the highest relevance for classification. However, both encoders still maintain
a separate class token and extract features for classification separately. Fig. 5.5
visualises the information exchange between the Cross-Attention layers of both
encoders.

While the two encoders are largely separated, it is essential that the embedding
dimension of the processed tokens and the length of the token sequence remain
the same for both encoders. Otherwise, the computation of the Cross-Attention
scores would not be possible as the resulting matrices would not have the required
shapes.
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After passing the two sequences through all encoder layers, their respective
class tokens are extracted. These contain highly condensed features, which should
correlate with the classes present in the input patch. To combine their individual
information, the class tokens are passed through a dedicated fusion layer. The
fusion layer consists of a set of learned linear filters and maps both class tokens to a
combined class token with the same dimension as the input tokens individually. This
additional fusion step combines the highly abstract features from both modalities
directly instead of just influencing the evaluation of their respective relevance,
as was the case in previous layers. The final class token is then utilised by a
classification head to perform the classification in the same manner as in the base
ViT model by mapping the class token features to class prediction scores.

To conclude, the Cross-Attention Fusion method incorporates Cross-Attention into
the fusion process which is a well-established procedure to perform multi-modal
fusion as shown in Chapter 4. It utilises two encoders and employs Cross-Attention
between them to exchange information about the two modalities to improve the
selection of features for the classification tasks.

5.6 Proposed Synchronised Class Token Fusion

Focusing on the classification task of interest in this thesis, a Synchronised Class
Token (SCT) Fusion method is proposed to fuse multi-spectral and SAR images. It
relies on the dedicated fusion of class tokens attending to different modalities,
by exploiting the class tokens to facilitate an information exchange between two
modality-specific encoders. While both encoders maintain separate class tokens,
their information is continuously synchronised between each layer of the encoders
to condense and exchange the most relevant features from both modalities. To the
best of my knowledge, a Transformer-based multi-modal fusion approach relying
on a repeated synchronisation of class tokens has not been investigated previously
in the RS domain.

In the standard ViT architecture, as described in Section 3.2, a special class
token is concatenated to the feature embedding sequence generated from the input
data. This class token is passed through all attention layers and correlated with
all other tokens during the attention computation. However, unlike the standard
feature tokens, at the final classification step, only the class token is forwarded
to the classifier head. The classifier head is an MLP layer and directly maps the
class token features to classification scores for each class. The idea behind this
design is to condense features of high relevance for classification into a relatively
restricted feature space. The same principle is exploited by SCT Fusion to facilitate
multi-modal fusion for a classification task.

Employing different encoders for separate modalities, as the two aforementioned
architectures did, can be very beneficial for modelling the varying features present
in each modality. In such an approach, both encoders maintain separate class
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tokens for both modality sequences. Therefore, the features most relevant for
classification remain separated until the last layer. However, the information
contained in these class tokens could already be relevant in the computation of the
attention scores at earlier layers. Therefore, with SCT Fusion, a fusion method is
proposed to fuse class tokens at earlier layers.

The fusion is achieved by an additional class token synchronisation step between
each Transformer Encoder layer. Two separate Transformer Encoders with distinct
input token sequences compute independent attention scores for the features from
each modality. Each encoder receives a randomly initialised class token, which first
separately passes through an attention layer of each modality-specific encoder. The
attention computation maps features of relevance for the later classification from
the feature tokens to each class token. Afterwards, the class tokens are extracted
from the feature token sequences generated by each encoder. The extracted class
tokens are then concatenated along the feature dimension and passed through a
specialised linear fusion layer which maps to a token with the same embedding
dimension as all other tokens in both sequences. This reduces the available space
for the combined class token information and forces the model to keep only the
most relevant features from both modalities.

To formally define the fusion procedure, let 𝑧𝑚𝑜𝑑1
𝑐𝑙𝑠

, 𝑧𝑚𝑜𝑑2
𝑐𝑙𝑠

∈ R𝑑𝑒 be the two class
tokens from each modality with 𝑑𝑒 ∈ N denoting the embedding dimension. The
concatenated combined class token then becomes 𝑧𝑐𝑜𝑛𝑐𝑎𝑡

𝑐𝑙𝑠
∈ R2𝑑𝑒 . The fusion step

performed in each class token synchronisation layer can then be defined as shown
in Eq. 5.3.

𝑧𝑐𝑙𝑠 =𝑊
𝑐𝑙𝑠𝑧𝑐𝑜𝑛𝑐𝑎𝑡𝑐𝑙𝑠 + 𝑏𝑐𝑙𝑠 (5.3)

Here𝑊 𝑐𝑙𝑠 ∈ R𝑑𝑒×(2𝑑𝑒) and 𝑏𝑐𝑙𝑠 ∈ R𝑑𝑒 refer to the learned weights and bias parame-
ters of the linear fusion layers between each Transformer Encoder layer. The fused
class token is then passed back to both encoders and concatenated to the current
sequence of feature tokens at the class token position. It replaces the original class
tokens from each sequence and introduces information from the opposite modality
to the other modality-specific encoder. During the attention computation of each
layer, the class token contains the same information for both encoders but influ-
ences the attention scores calculation separately. Therefore, different features from
both modalities can be selected in each encoder, influenced by the information the
class token contributes from the other modality. The fusion step for the class token
is repeated with each layer of the Transformer Encoders. Finally, in the last layer,
the fused class token is passed to a classifier head to compute the class prediction
scores. An overview of the entire architecture is visualised in Fig. 5.6.

Due to the fact that trained linear layers perform the fusion step, their weights
can adapt to the type of features present at a specific encoder layer. Additionally,
a learned fusion mapping should encourage the selection of features with higher
importance for the classification task.

The class token only has the same dimensionality as all other feature tokens.
Therefore, the model is encouraged to extract information from both modalities
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Figure 5.6: Visualisation of the full architecture design for the Synchronised Class
Token Fusion model. The class token is consecutively extracted and
fused by dedicated fusion layers. The fused class token is then passed
back to each encoder and used in the next layer to compute attention
scores. Finally, the last class tokens are extracted, fused and employed
for classification.
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more efficiently because both encoders effectively share the same feature space to
store information. Additionally, this strongly limits the inter-modal information
exchange to the most important features, which should have a further condensing
effect on the feature selection. In that sense, the class token functions similarly
to the bottleneck tokens proposed by Nagrani et al. [48]. However, in contrast to
these bottleneck tokens, a more efficient fusion of the respective information is
expected by SCT Fusion due to using the same token for the fusion and the classifi-
cation task. Additionally, the utilisation of fully separate encoders should create
a stronger requirement for inter-modal information flow. Similarly, Chen et al.
[60] also discussed an information exchange through the class token between two
modalities. However, their concept only combines the class tokens in a simplis-
tic addition operation, which does not allow extraction and filtering of the most
relevant features from both class tokens.

In conclusion, the repeated fusion of class tokens in SCT Fusion is intended
to condense the most important information from the two modalities for later
classification. Therefore, SCT Fusion might have an advantage for the classification
task of interest in this thesis over the aforementioned fusion methods. Whether
such an advantage exists is analysed in detail in the comparison between the
investigated fusion methods conducted in the result’s analysis.

5.7 Summary

The chapter introduced six different Transformer-based multi-modal fusion meth-
ods for the fusion of multi-spectral and SAR images which are classified into two
principal categories. The three models in the first category are Early Fusion, Modal-
ity Token Fusion and Channel Token Fusion which have the advantage of only
requiring minor modifications to the underlying Transformer Encoder. Only the
embedding generation procedure is modified. Early Fusion, as the most simplistic
approach, has the lowest demand for processing resources. Conversely, Modality
Token Fusion and Channel Token Fusion have a significantly higher demand for
computational resources due to the longer feature token sequences derived from
the input modalities. Especially Channel Token Fusion generates feature token
sequences of such length that training a model with it can become infeasible. How-
ever, it boasts the advantage of separating the fusion of channel information up to
the attention layers in the Transformer Encoder, which could positively impact the
feature extraction from these channels.

The second category of approaches includes Middle Fusion, Cross-Attention Fu-
sion and SCT Fusion. These models rely on modality-specific encoders to extract
abstract features from each modality separately. The added encoder approxi-
mately doubles the number of learnable parameters of these models, with the
exact increase dependent on various hyper-parameter settings. Therefore, the
processing requirements double because the whole computation is performed
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once for each modality encoder. Consequently, the processing requirements for
all three approaches with modality-specific encoders are lower than for Modality
Token Fusion and Channel Token Fusion, as the impact of an enlarged feature token
sequence is more significant than the added encoder.

Middle Fusion derives abstract features from each modality with distinct Trans-
former Encoders and employs an additional encoder to combine these features. It
works on the idea that abstract feature representations from each modality provide
more relevant information for the fusion process than low-level features.

Cross-Attention Fusion interconnects the two encoders with a Cross-Attention
computation for the feature sequences derived from each modality. Because Cross-
Attention directly correlates the token sequences from two modalities, it is expected
to consider both modalities equally during the selection of features most relevant
for the classification task.

SCT-Fusion extends the functionality of the class token in the architecture by
introducing a repeated synchronisation step between the layers of each modality-
specific encoder. This modifies the class token to perform a limited information
exchange between both modality-specific encoders. Additionally, the repeated
exchange steps should allow an SCT Fusion model to effectively condense the most
relevant information from both modalities for the later classification task.

Overall, all introduced fusion methods modify a specific principle of the informa-
tion processing of the two modalities with a Transformer-based model. Therefore,
a comparison between all methods should reveal valuable insights on the validity
of Transformer-based multi-modal fusion for multi-spectral and SAR images.
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6 Dataset and Experimental Setup

This chapter first provides a detailed description of the dataset utilised for training
the multi-modal fusion methods. Afterwards, the experimental setup for training
the models is described by listing the utilised hardware and software components
as well as the settings for important training options and hyper-parameters. To
conclude, the relevant metrics used for the later evaluation and data augmentation
strategies are introduced in detail.

6.1 BigEarthNet-MM Dataset

The BigEarthNet-MM dataset, released by Sümbül et al. [14], is a remote sensing
dataset with one of the largest collections of labelled satellite images available.
It was built with the intent to be used for training deep neural network architec-
tures and evaluating their performance in the field of remote sensing. The dataset
consists of a collection of labelled ground patches sampled from different regions
within Europe. For each patch two types of sensor modalities captured by different
satellite missions are available. In total, it is made up of 590 326 patches with each
patch corresponding to a geographic region of about 1200m × 1200m respectively.
The two modalities provided for each patch divide the dataset into two separate
subsets. The first subset, BigEarthNet-S2, solely contains multi-spectral satellite
images while the second subset, BigEarthNet-S1, consists of SAR images. The fol-
lowing sections give a detailed description of the data provided by the two subsets
as well as a description of the classes assigned to each patch.

BigEarthNet-S2

The BigEarthNet-S2 is a subset of the full BigEarthNet-MM dataset but was released
before the full multi-modal version as a standalone dataset by Sümbül et al. [61].
The individual patches were compiled from 125 Sentinel-2 tiles which were cap-
tured within a time frame from June 2017 to August 2018. The Sentinel-2 mission
consists of a constellation of two satellites in a sun-synchronous polar orbit cap-
turing images from the vast majority of geographical regions on the planet [15, p.
10]. The mission satellites were launched with the aim to provide high-resolution
multi-spectral imagery at a relatively high revisiting time for research and civil
applications.

The satellites capture 13 spectral bands from the electromagnetic spectrum of
which 12 are utilised to form the BigEarthNet-S2 dataset. The band B10 has been
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Figure 6.1: All spectral bands captured by the Sentinel-2 mission and their position
and extent on the electromagnetic spectrum [15, p. 13].

discarded as it only provides atmospheric measurements which have no relevance
for land cover classification tasks. An overview of the spectra captured by each
sensor can be seen in Fig. 6.1.

The bands differ in their spatial resolution with the ground level resolution of a
single pixel being either 10m, 20m or 60m respectively. The 10m bands consist of
the bands B2, B3, B4 and B8. The bands B2, B3 and B4 capture at spectral ranges
corresponding to the classical RGB colours while band B8 is sensitive to a relatively
broad range of NIR wavelengths. The 20m bands consist of the bands B5, B6, B7,
B8a, B11 and B12 which are all sensitive to various spectra in the NIR and SWIR.
They offer a better spectral resolution for the NIR spectrum than band B8 which
can be beneficial to differentiate vegetation types [62].

The 60m bands B1 and B9 are not considered for the training of models in this
thesis, because their spatial resolution is often too low to discern many spatial
features on the surface.

To serve as input to deep learning models the 10m and 20m bands must be
transformed to have the same spatial dimensions. This necessitates the up-scaling
of the 20m bands and the corresponding interpolation of their pixel values. Up-
scaling could theoretically impact the capabilities of a model to extract information
from the 20m bands. However, it is expected that this impact would be marginal
as effectively no significant information loss should occur. An alternative option
to align the spatial dimensions of all spectral bands would be to down-sample the
10m bands to the same resolution as the 20m bands. However, such an operation
would incur a significant loss of information in the 10m bands and is therefore
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Figure 6.2: Visualisation of the 10m and 20m bands for an example S2 patch. Note
the varying contrast of some visible features between the bands
relating to different spectral reflectance behaviour of materials.

undesirable. Fig. 6.2 shows all 10 bands which are utilised in this thesis for an
example patch.

Due to the time span over which the patches were collected, they can contain
significant variations in their depicted surface conditions depending on the ac-
quisition time. Many patches in the BigEarthNet-S2 dataset depict a significant
amount of snow cover which strongly influences the spectral response compared
to other variations in surface conditions. Additionally, despite having filtered all
patches to have a small cloud cover percentage, some patches still contain clouds
and cloud shadows which can also strongly influence spectral signatures. In total
the two aforementioned conditions affect 70 987 patches in the whole dataset. Due
to significantly altering the spectral response of such patches, Sümbül et al. [61]
recommend removing them when training deep neural network architectures.
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Overall, the S2 patches in the BigEarthNet-S2 provide relevant information on
spectral surface properties to differentiate between various land cover types, mak-
ing it an ideal candidate for deep learning research in the RS domain.

BigEarthNet-S1

The other subset of the BigEarthNet-MM dataset is the BigEarthNet-S1, which is
composed of patches captured by the Sentinel-1 mission satellites. The Sentinel-
1 mission is an imaging radar mission with the aim to provide high-resolution
SAR data over a vast geographic area covering almost all major landmasses [63,
pp. 9-10]. As raw SAR data is usually not directly usable, the mission’s data is
available at multiple processing levels. Each processing level pertains to different
amounts and types of processing steps performed on the raw SAR measurements.
The BigEarthNet-S1 dataset was entirely constructed from patches processed to
the Ground Range Detected (GRD) product level. For all GRD products, multi-
looking was performed and all signals were mapped to ground range by utilising
an ellipsoid approximation model of the Earth’s surface [63, p. 78]. It is noteworthy
that in the GRD format all phase information is lost entirely and only the amplitude
information is available for each pixel.

All data was originally collected using the Interferometric Wide Swath mode by
the satellites. This mode scans the ground in a series of strips by repeatedly shifting
the beam direction in both azimuth and range directions. It generates three strips
which together cover the entire swath. The Interferometric Wide Swath mode
presents the main acquisition mode of the Sentinel-1 mission satellites above land.

The Sentinel-1 satellites can send and capture signals in two polarisation channels.
These are either polarised horizontally or vertically and are denoted as H and V
respectively. The images used for the BigEarthNet-S1 were all captured with dual
polarisation. They are referred to as the VV and VH channels correspondingly.
The V at the beginning indicates that for both channels the radiation was sent
with vertical polarisation. The V and H at the end denote that the response was
separately received at vertical and horizontal polarisation.

The archive was constructed from 321 full GRD patches which overlapped with
the acquisition areas of all patches in BigEarthNet-S2. These were then separated
into smaller images with spatial dimensions of 120 by 120 pixels with a spatial
resolution of 10m per pixel. Each of these patches precisely matches the geographic
location of a corresponding patch in BigEarthNet-S2. Overall, patches from both
Sentinel-1 satellites were utilised. All patches in the dataset were acquired between
June 2017 and May 2018 which largely overlaps with the acquisition time frame
of the corresponding Sentinel-2 patches. However, it should be noted, that the
Sentinel-2 and Sentinel-1 patches showing the same geographic location in the
BigEarthNet-MM dataset, were not acquired on the exact same data.

All patches were additionally processed by Sümbül et al. [14]. These processing
procedures included the application of orbit files and geometric correction steps to
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Figure 6.3: Visualisation of the VV and VH channels for a selection of S1 patches
from the BigEarthNet-S1 and the corresponding RGB images from the
BigEarthNet-S2. Note how some features are visible in the RGB images
but do not appear in the SAR images.

map from range images to ground ranges by utilising a digital elevation model. Addi-
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tionally, the images were radio-metrically calibrated and border and thermal noise
were removed. The final values were converted from linear backscatter responses
to decibel values. A speckle filter was not applied to the patches composing the
dataset as the choice of a specific speckle filter is application dependent. In Fig. 6.3
a few SAR patches from the dataset can be seen together with the corresponding
RGB images from the BigEarthNet-S2 dataset.

In conclusion, the S1 images present a valuable addition to the BigEarthNet
dataset, as they substantially extend the information provided by the S2 patches.
The resulting BigEarthNet-MM dataset is, therefore, well suited for research on
multi-modal fusion of RS image data.

Classes and Class Distribution in the BigEarthNet dataset

In the BigEarthNet-MM dataset, every patch is assigned to a set of classes depending
on the type of land cover present at that respective geographical location. Two
types of labelling nomenclatures are provided for the dataset but in this work, only
the newer and recommended 19 class nomenclature is used. The original label
information was derived from the CORINE Land Cover (CLC) database from the
label collection for the year 2018 to be aligned with the acquisition period for the
original Sentinel-2 patches in the BigEarthNEt-S2 dataset. The original CLC labelling
is available at three levels of detail with the third level of labels serving as the basis
for the first set of labels proposed for the BigEarthNet dataset. In a later revision
with the proposal of the BigEarthNet-MM[14] the more broadly defined 19 class
labelling nomenclature was then created by collapsing many classes with similar
spectral signatures from the previous CLC-3 classes into one class. Additionally,
some classes were also removed entirely. The number of classes was therefore
reduced from 43 original classes to the 19 classes used in this thesis. Table A.1
shows all 19 classes and the number of images belonging to each class.

Most classes correspond to a relatively dominant type of land cover present at a
geographic location. For example, all types of human buildings and settlements
belong to the “Urban fabric” and “Industrial or commercial units” classes. Addi-
tionally, only three types of forest classes are differentiated depending on their
respective leaf type, regardless of the type of tree species present at a location.
Additionally, there are multiple classes for different types of agricultural uses and
different types of water bodies and wetlands.

As can be seen from Table A.1 the whole dataset exhibits a strong class imbal-
ance which necessitates the use of adequate evaluation metrics to measure the
performance of models. It can also be seen that some classes should have a rela-
tively distinguishable spectral signature. Such a property might incline a model to
rely more on Sentinel-2 data for classification in multi-modal scenarios. However,
the addition of the Sentinel-1 data could possibly contribute to better identifying
classes such as the various types of forests or the different artificial building types.
These classes should generate relatively distinguishable backscatter signatures
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corresponding to structural differences present on the surface.
Note that the classes are not evenly distributed over all geographic regions

present in the dataset. Patches from the class “Agro-forestry areas” for example
only occur in Portugal while patches belonging to the class “Urban fabric” are
relatively evenly distributed over the entire dataset but centred around urban
centres [64, pp. 35-36].

To summarise, the BigEarthNet-MM dataset provides a vast collection of labelled
multi-spectral and SAR satellite images at a high resolution. Therefore, it is highly
suitable for training and evaluating the multi-modal fusion methods investigated
in this thesis.

6.2 Experimental Setup

The implemented multi-modal fusion methods as well as the classical ViT model
utilised in this thesis are all implemented in PyTorch [65]. PyTorch is an advanced
tensor processing library specifically designed for implementing and training neu-
ral networks. More specifically, all methods investigated in this thesis are derived
from an implementation of the ViT architecture in the PyTorch Image Models
library [66]. This library provides a multitude of efficient and tested implemen-
tations for various state-of-the-art deep learning architectures for CV tasks. The
implementation of the ViT model provided by the library served as the basis for
the implementation of the encoders utilised in the advanced multi-modal fusion
methods.

All training runs for all models were performed on a Nvidia® V100 Graphics
Processing Unit (GPU) with 32 Gigabytes of Video Random Access Memory (VRAM).
The V100 GPU can perform a high number of floating point tensor operations and
is optimised for deep learning applications.

Due to training models for multi-label predictions, the last layer activation func-
tion is a logistic sigmoid function. The binary cross entropy function is used as
the loss function for training all models. The multi-label classification problem is
thereby interpreted as a problem with multiple binary classifiers for each label in
the dataset.

For training the models the well established Adam optimiser [67] is utilised with
the default parameters of 𝛽1 = 0.9 and 𝛽2 = 0.999. All runs were initialised with
a learning rate of 0.001 and a cosine annealing learning rate scheduler [68] is
employed to optimise the learning rate during the training process. The number of
epochs for all training runs is set to 60 epochs as a significant degree of convergence
to an optimum could normally be registered at that point. The batch size is set to
1024 input images per batch if possible but could be set to lower values for models
with an extensive demand for GPU VRAM. The input image dimension of 120 is
fixed for all runs with the 20m bands of the BigEarthNet-S2 being up-scaled to fit
this size.
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The original train, validation and test split proposed for the BigEarthNet-MM
dataset [14] are used throughout all training runs. This ensures that the results
are directly comparable to previous research conducted on the classification of
BigEarthNet patches.

The following sections introduce the metrics utilised to evaluate all models in
this thesis. Additionally, a set of data augmentations for both single-modality and
multi-modal training scenarios is defined.

Utilised Classification Metrics

To accurately evaluate the performance of the multi-modal fusion methods for the
classification task a set of established classification metrics is selected to serve as
the standard comparison method for further results analysis.

The fact that the BigEarthNet-MM dataset is a multi-label dataset introduces
numerous challenges for the selection of evaluation metrics. In multi-label classifi-
cation, a given prediction cannot be easily determined to be accurate. Some classes
might be identified correctly while others are either missed or wrongly assigned to
an image. Multiple strategies exist to handle multi-label predictions simultaneously.
Some metrics are inherently capable to evaluate the quality of one-hot-encoded
vectors representing multiple class predictions. An example of such a metric would
be the Hamming Loss which is also employed in this thesis. Other metrics measure
the performance of a model by evaluating the ratio between correct and wrong
predictions for different classes.

Additionally, due to the class imbalance present in the BigEarthNet-MM dataset,
the performance of a model must be evaluated while taking the performance on
the individual classes into account. This is required, as a model might for example
perform exceptionally well on the larger classes but more poorly on smaller ones,
which is usually not desirable.

Therefore, different averaging procedures are employed for some metrics to
evaluate the impact of class imbalance on the performance of the multi-modal
fusion methods. While multiple averaging strategies exist, for evaluations in this
thesis, only micro and macro averaging are employed.

When micro averaging a metric, the amounts of correct and wrong predictions
are computed for all class labels for all images in an evaluation set. All these results
are then directly averaged to compute a metric over the whole evaluation set. Due
to giving equal weight to all predictions for all images, a model performing well in
a micro averaged metric generally performs better for a larger number of images
from the whole dataset.

In contrast, when macro averaging, the amounts of correct and wrong predictions
are computed for each class label individually and aggregated to compute a mean
metric score for a specific class label. The resulting scores for each class label are
then averaged while giving equal weight to each class label. Therefore, a high
macro averaged metric indicates that the model performs better over all types
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of classes, regardless of the number of images belonging to each class. Macro
averaging can be quite relevant for evaluations on the BigEarthNet-MM as it gives
more weight to the smaller classes which would otherwise only weakly impact the
overall metric. Noteworthy, when no imbalance is present in a dataset both the
micro and macro averaged scores for a metric would be equal.

Another problem in multi-label classification pertains to the confidence of a
model in whether a specific class is present in an input. Models for multi-label
classification output a vector where each vector position corresponds to a score
denoting how strongly the classifier detected the presence of a specific class in
the given image. The confidence score is the output of a Sigmoid function, which
outputs values between 0 − 1, but does not restrict the size of the individual scores
relative to each other. This necessitates the selection of an arbitrary threshold
to determine if a score corresponds to a detection of a class. All scores above
the threshold are then interpreted as a positive class prediction. However, the
threshold is not present during the training process since the model would not
be differentiable anymore, which is a necessary condition to perform gradient
descent. Therefore, the threshold has to be selected as an additional parameter
for the inference step after training. For the metrics utilised in this thesis, which
require definitive predictions, a threshold of 0.5 is used. While the threshold
parameter could be selected in an additional optimisation step, it would introduce
further complexity. Instead, the problem of optimal threshold selection will be
addressed by the introduction of a specialised metric, which evaluates a model
over multiple thresholds simultaneously.

To provide a generalised definition of each metric, the term sample is used
throughout this chapter to denote an arbitrary individual input to a model. A
sample can, therefore, either consist of the data from only one or both modalities,
depending on the corresponding use case. Overall, the metrics utilised in this
thesis are the F2 score, the Hamming Loss and the Average Precision. The following
sections introduce each metric and provide details on its advantages and downsides.

Precision, Recall and F2 Score

Precision and recall are well-established standard metrics in the field of classifi-
cation. Given a set of samples and corresponding class predictions the precision
measures the fraction of correct predictions for a class out of all samples that
actually belong to that class. This directly relates to how many samples belonging
to a class the classifier missed in its predictions. Conversely, recall measures the
fraction of correct predictions out of all predicted samples for a specific class. In
other words, it corresponds to how many samples have wrongly been assigned a
certain class label. The definitions for both metrics are given in Eq. 6.1 and Eq. 6.2
respectively.

Precision =
TP

TP + FP
(6.1)
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Recall =
TP

TP + FN
(6.2)

Here TP or true positives refers to the number of all samples that belong to a
class and were predicted as such by the classifier. FP or false positives denotes
the number of samples that were assigned to a class by the classifier but are not
actually labelled as such. Lastly, FN or false negatives is the number of samples
belonging to a class but which were not classified as such by the classifier.

Individually, precision and recall measure important qualities of the prediction
capabilities of a classifier. However, optimising for only one of these metrics would
usually result in a model performing poorly in the other metric. Therefore, to
measure the performance of a classifier in both metrics they are combined in the
F𝛽 score to balance their respective influences. The definition of the F𝛽 score is
given in Eq. 6.3

F𝛽 = (1 + 𝛽2) · Precision · Recall
(𝛽2 · Precision) + Recall

(6.3)

Here, 𝛽 denotes a weight parameter which can be used to influence the impact
of the recall on the output score. Higher values for 𝛽 increase the impact of recall
while lower values decrease it. Throughout the evaluation of all models in this
thesis, a value of 𝛽 = 2 will be utilised. The recall metric is considered slightly
more important in evaluating the classification performance on the BigEarthNet-
MM dataset due to the significant level of imbalance in the number of samples
belonging to each class. Therefore, good precision scores for the large classes might
overestimate the overall performance of a model, necessitating a higher emphasis
on the recall in the computation of the F𝛽 score.

In conclusion, due to combining the advantages of precision and recall effectively,
the F𝛽 score is employed as a standard metric to evaluate the multi-modal fusion
methods explored in this thesis.

Hamming loss

The Hamming Loss (HL) is often utilised to evaluate multi-label classification tasks
due to it inherently being able to evaluate the quality of one-hot encoded class
predictions without requiring the computation of ratios.

It is derived from the Hamming distance which, given two input sequences of
equal length, is defined as the number of non-matching positions in both sequences.
To define it, let 𝑋,𝑌 ∈ {0, 1}𝑛𝑠𝑚𝑝×𝑛𝑐𝑙𝑎𝑠𝑠 be two matrices with 𝑛𝑠𝑚𝑝 denoting the amount
of samples to evaluate and 𝑛𝑐𝑙𝑎𝑠𝑠 denoting the number of classes in the dataset.
The rows of these matrices then represent the individual samples and the columns
represent the respective class assignments. Let 𝑋 contain the predictions from a
model for all samples while 𝑌 contains all true label assignments for the same set
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of samples. The definition of the HL can then be given as shown in Eq. 6.4.

Hamming Loss =
1

𝑛𝑠𝑚𝑝 · 𝑛𝑐𝑙𝑎𝑠𝑠
·
𝑛𝑠𝑚𝑝∑︁
𝑖=1

𝑛𝑐𝑙𝑎𝑠𝑠∑︁
𝑗=1

𝑥𝑖, 𝑗 ⊕ 𝑦𝑖, 𝑗 (6.4)

Here 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 denote the individual entries of 𝑋 and 𝑌 respectively while ⊕
is the standard XOR operation. The XOR operation can be applied directly as all
𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 are either 0 or 1. It is important to note that the HL is a loss function
and therefore lower scores denote a better classification performance, which is
different to all other metrics employed in this thesis.

A significant limitation of the HL is that the metric relies on true or false pre-
dictions and is unable to determine the performance of the model solely based
on logit outputs. It therefore also requires the selection of a threshold like the
aforementioned metrics and is susceptible to evaluating a model’s predictions at a
sub-optimal threshold value. To remedy this effect the following section introduces
a metric capable of evaluating the performance of a model over multiple threshold
values.

Average Precision

The Average Precision (AP) differs from the aforementioned metrics significantly
as it does not require definitive class predictions for each sample to be computed.
As has been described previously, one big problem with precision and recall is that
they can only be determined for a specific threshold.

AP instead is computed over a multitude of thresholds. Its value corresponds to
the area under the precision-recall curve. The precision-recall curve is defined by
a function 𝑝(𝑟) which assigns a precision value to each recall value computed at
the same threshold. This function expresses the relationship between precision
and recall values for multiple thresholds. However, because comparing plotted
function curves directly introduces further complexity, the performance achieved
over all thresholds is summarised by the AP in a single metric score. Eq. 6.5 gives
the formal definition for the AP.

AP =

∫ 1

0
𝑝(𝑟)𝑑𝑟 (6.5)

In practice, the integral in Eq. 6.5 is only approximated by using a specific set
of threshold values between 0 and 1. Therefore, let 𝑝𝑖 and 𝑟𝑖 be the precision and
recall computed for the same fixed threshold 𝑖 and let 𝑛𝑡 be the number of overall
threshold scores. Then the approximate AP can be defined as shown in Eq. 6.6.

AP =

𝑛𝑡∑︁
𝑖=1

(𝑟𝑖 − 𝑟𝑖−1) · 𝑝𝑖 (6.6)
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As can be seen, the computed precision score for a threshold is weighted by the
achieved improvement in the recall score compared to the previous threshold. This
connects both metrics so that an improvement in one of them can not come at the
cost of the other without decreasing the resulting AP score.

The main advantage of the AP is of course the evaluation of a model over multiple
thresholds. Considering multiple thresholds in the evaluation is advantageous
because the optimal threshold for a specific model is not determined by the loss
function and can therefore differ for different models. Additionally, the metric
combines both precision and recall into one metric. This allows the resulting AP
score to represent both metrics equally without a manually selected weighting
as is defined for the F2 score. However, AP still requires an averaging procedure,
because its computation is dependent on precision and recall which are based on
ratios between the number of true positives, false positives and false negatives.
Therefore, throughout the later evaluations both micro and macro averaged AP
scores are provided to identify performance differences among the different classes
present in the BigEarthNet-MM dataset.

To conclude, due to the aforementioned properties, the AP is utilised as the
primary metric for evaluating the classification performance of the various multi-
modal fusion methods investigated in this thesis.

Data Augmentations

Data Augmentations are artificial augmentations applied to the input data of a deep
learning model to create a more difficult learning scenario. Due to their success in
improving the generalisation capabilities of many models and their effectiveness in
introducing regularisation to a training process, data augmentations have become
a standard method in many deep learning applications. Unlike other regularisa-
tion techniques, data augmentations do not directly impact the information flow
internal to the model and only influence it indirectly through introducing more
variation in the training inputs.

The data augmentations considered for model training in this thesis, are restricted
to only modifying the arrangement of values in an image without modifying the
actual values themselves except for eliminating them entirely. Many common data
augmentations in other CV tasks modify the individual channel values. Such aug-
mentations potentially encourage a model to mainly rely on the spatial information
in an image to derive a prediction. For many CV tasks, such an augmentation is
reasonable because many classes in standard CV datasets such as ImageNet [11]
can exhibit large variability in their internal colour distribution and are mostly
identifiable by the spatial features present in an image.

However, when classifying satellite images, most land cover classes of interest
often exhibit clearly identifiable spectral signatures while spatial feature compo-
sition takes a secondary role. Therefore, not considering such augmentations is
intended to preserve the spectral information contained in the multi-spectral in-
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Figure 6.4: Example visualisations for the flipping data augmentation. Two
patches from the BigEarthNet dataset are shown and their possible
corresponding variants which could be produced by the flipping
augmentation.

puts. The following sections introduce various types of data augmentations applied
to the multi-spectral and SAR images for training the multi-modal fusion methods
investigated in this thesis.

Random Flipping and Cropping

Flipping and cropping augmentations are two standard data augmentations utilised
in this thesis. Both are randomly applied to the samples in all training scenarios
throughout the conducted experiments.

The flipping augmentation flips the image and all its channel values on either the
horizontal or vertical axis. Such an operation is equivalent to rotating the image
by a random amount of 90° degree steps with an equal likelihood for all positions.
The flipping augmentation is intended to encourage the model to learn features,
which are independent of rotations of the input data. It can have a significant
impact on the generalisation capabilities of a deep neural network by preventing it
from overfitting on the spatial features present in an image. However, as satellite
images are inherently not oriented, the effect is likely diminished compared to
traditional CV applications. On the other hand, rotating satellite images does
effectively increase the variability in images presented to a model, which should
have a positive effect on the generalisation capability of a model. More complex
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Figure 6.5: Example visualisations for the cropping data augmentation. Two
example patches from the BigEarthNet dataset are shown and some
possible resulting variants which could be produced by the cropping
augmentation.

rotations with arbitrary degrees of rotation could also be considered but were not
investigated further in this thesis as such rotations would require the interpolation
of spectral values. Fig. 6.4 visualises the possible flipping results for some example
patches.

Another standard augmentation applied in all training runs in this thesis is the
cropping augmentation. Here a random sub-region within the image is selected
and then resized to the spatial resolution of the original image. The size of the
sub-region is determined by a scaling parameter, which is randomly selected from
a preset range of possible values. The augmentation, therefore, scales the features
present at a specific location in the image and cuts off all other features. Some
regions containing features corresponding to a specific class present in the image
might potentially be cut off during the operation. However, this should not occur
so frequently to negatively impact the capabilities of a model as most land cover
classes occupy a relatively large portion of an image. Occasionally dropping classes
from images, might also have a regularising effect on the training as it prevents
overfitting on specific class features. Overall, the augmentation is intended to
encourage the model to learn features which are invariant to the scale of spatial
features present in the input samples. It should also have a strong regularising
effect as it significantly alters the composition of features in these inputs. Fig. 6.5
visualises some possible cropping results on satellite image data as an example.
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For multi-modal training, both aforementioned augmentations can either be
applied combined to both modalities or individually in a desynchronised manner
to each modality. Desynchronising the augmentation could be advantageous as
it decouples the spatial features in both modality inputs. Especially for the crop-
ping augmentation, the desynchronisation should encourage a model to exchange
information about missing regions in each modality.

Therefore, the desynchronised flipping and cropping of the multi-spectral and
SAR images could have a positive effect on the performance of the multi-modal
fusion methods investigated in this thesis. Additionally, another augmentation
which affects the two modalities unequally is introduced in the next section to
further strengthen the inter-modal information exchange within a model.

RandomModality Dropping

The Random Modality Drop augmentation forces a model to rely equally on both
modalities during the training process. When training deep learning models on
multi-modal data, it may occur that one modality dominates the training process
and a model will learn to only rely on one modality to derive predictions. The issue
can especially arise with datasets, where one modality provides significantly more
features than the other modality, as is the case in the BigEarthNet-MM dataset.
The Random Modality Drop prevents such an overreliance on one modality by
setting all channels of a randomly selected modality to zero while leaving the other
modality unchanged. It was originally proposed for multi-modal training on the
BigEarthNet dataset by Wang et al. [42].

While the augmentation is intended to eliminate the reliance on one specific
modality in single encoder models, it should have two additional effects on models
with dedicated modality encoders. Firstly, dropping one modality forces one of
the encoders to only rely on the information provided by the constraint informa-
tion exchange, necessitating the adaptation of internal weights to facilitate such
information flow adequately. Secondly, the final classification step cannot always
rely on the output of one encoder for classification as it might have insufficient
information to provide an accurate prediction. Therefore, the layers facilitating
both of these steps are forced to learn weights that equally consider both modalities
for predictions.

Overall, introducing augmentations which modify both modalities independently
is expected to positively impact the performance of the multi-modal fusion methods.
To ascertain such an effect, experiments with different augmentation settings are
compared in Section 7.4.

Speckle Filtering

Synthetic Aperture Radar images are inherently noisy due to the mechanism by
which SAR data is acquired. The beam bursts send out by a SAR imaging satellite
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are initially in-phase but can become out-of-phase due to complex backscattering
behaviour or time delays in the receiving of the response signal. As a result, at the
time the radar sensor receives the backscattered signals, the out-of-phase radiation
can constructively and destructively interfere with one another. This interference
is noticeable in the generated SAR images as a salt-and-pepper noise, called speckle,
uniformly distributed over the image. It affects all areas of the resulting image
because the interference occurs over the entire acquisition area. To mitigate the
influence of the aforementioned noise on the performance of classification models
and other analysis tasks, various speckle filtering techniques have been proposed
[69–71]. Most speckle filters function by identifying pixels with a significant differ-
ence from surrounding pixels and either removing them or smoothing their effects
over a larger area.

To investigate the potential of speckle filtering for the multi-modal fusion of MSI
and SAR data, a speckle filtering step is incorporated into the preprocessing pipeline
of images from BigEarthNet-S1. Specifically, a median filter was selected due to its
simplicity. A median filter functions by applying a median filter kernel to the entire
image in which the centre pixel is replaced with the median of surrounding pixel
values. This has the effect of removing outlier values which strongly differ from
the surrounding region. However, legitimate spikes in backscattering strength and
general sharp edges are also removed or blurred by the median kernel. The strength
of the blurring can be controlled by setting the size of the kernel to relatively low
values. Fig. 6.6 shows some example patches from BigEarthNet-S1 after processing
with a median filter with varying kernel sizes.

Nevertheless, the blurring can incur an information loss on the SAR image which
might eliminate features of relevance to distinguish between classes. Therefore,
most applications which require speckle filtering of SAR data rely on more sophisti-
cated filtering procedures such as the one proposed by Lee [69]. While other types
of speckle filters might not suffer from such a strong blurring effect, all methods still
inherently remove information from the SAR image. Additionally, more advanced
filters are relatively complex in nature and a positive effect on the training of deep
neural networks is not certain because such models could inherently learn better
filters to adapt to the noise.

Therefore, a simplistic method was chosen with the median filter for initial tests
to ascertain the general influence of speckle filtering on the overall performance.
Experiments were conducted by training models on the S1 data with varying kernel
sizes to determine the effect of speckle filtering on the performance of a model.
The corresponding results are discussed in the following chapter in Section 7.4.
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Figure 6.6: Visualisation of S1 patches and their corresponding filtered variants
which were generated by a median filter with a kernel size of 3 and 5
respectively. Only images received at vertical polarisation are shown.
Note the significant blurring and reduced intensity which can be
observed in the images processed with a kernel size of 5.
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7 Results
The chapter provides a detailed analysis of the multi-modal fusion methods de-
scribed in Chapter 5. The internal layer composition and information flow within
the ViT architecture and its derived multi-modal fusion models are governed by a
set of hyper-parameters. These hyper-parameters can have a significant effect on
the overall performance of a model. Therefore, the hyper-parameter settings used
to train a specific model are provided throughout the whole chapter. One of the
most important hyper-parameters is the patch size of the patches extracted from
the input image tensor as has been defined in Section 3.2. Another one is the depth
of the encoders utilised within a model, which defines the number of layers within
a Transformer Encoder. Additionally, the embedding dimension and the number of
heads used in the computation of MSA are also highly relevant to the performance
of a model. Table 7.1 shows the standard settings of hyper-parameters as they
are used for the following comparison experiments. The choice of these parame-
ters was experimentally determined with the corresponding results provided in
Section 7.4.

Another set of important parameters is the collection of different regularisation
methods used during the training process. Two standard regularisation methods
were utilised over all experiments. The first one is the dropout rate [72], and the
second one is the stochastic depth [73]. However, following the results obtained
by Steiner et al., [74] such regularisation methods were only used conservatively,
and a greater emphasis was put on data augmentations. Therefore, by default,
no dropout was employed, and stochastic depth was set to 0.25 for the training
of all models. The positive influence of these regularisation methods and data
augmentations on the multi-modal fusion performance is analysed in a dedicated
section in the ablation studies.

Throughout the following evaluations, both the micro and macro averaged AP
scores are provided. Therefore, it can be directly compared how well a model
performs on either the different classes or over all samples in the dataset. At the
same time, all provided F2 score results are always micro averaged to reduce the
visual overload.

First, the performance of the standard ViT architecture on singular modality
inputs is analysed. Afterwards, a comprehensive analysis of all multi-modal fusion
methods investigated in this thesis is conducted with different combinations of
multi-modal input data. Lastly, the chapter concludes with detailed ablation studies
to evaluate the impact of hyper-parameter settings as well as data augmentations
and regularisation methods on the fusion performance of the investigated fusion
methods.
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Table 7.1: The hyper-parameter settings used throughout the majority of
experiments.

Hyper-parameter Value

Patch Size 20
Depth 8
Embedding Dimension 256
Number of Attention Heads 8

7.1 Analysis of Modality-Specific Performance

In the following, the performance of the standard ViT architecture on inputs from
only one modality is analysed to establish a baseline performance to which to
compare the fusion methods. The modalities analysed here naturally consist of
the multi-spectral Sentinel-2 image data and the SAR Sentinel-1 data described
in Chapter 6 but also includes the RGB subset of channels from the Sentinel-2
data. These images with reduced channel dimensions are included to evaluate
the effect of the amount of information in the multitude of channels present in
Sentinel-2 data on the classification performance. This is especially important for
the later analysis of the performance of multi-modal fusion methods as the amount
of information present in Sentinel-2 bands could already generate good results,
seemingly diminishing the effect of the second modality on performance. For
all modalities, a standard ViT model was employed. The architecture-dependent
hyper-parameters were set to the standard configuration as introduced previously.
Additionally, standard flipping and cropping augmentations were applied. Table 7.2
presents the overall results obtained on the three types of modalities analysed.

The results show that the best overall performance was achieved by a model
relying on the full multi-spectral information provided by the S2 data. This could
be explained by the breadth of information provided by the different spectral
bands, which should allow for a fine distinguishment of the various classes in the
BigEarthNet dataset. The effect is further emphasised when directly comparing the
results obtained on the S2 and RGB bands. While the AP under micro averaging does
not fall too significantly, a more severe drop can be observed in the AP score under
macro averaging, indicating that the removal of specific bands disproportionately
affects the capability of the model to identify specific classes. A similar effect can be
observed when analysing the results obtained on the S1 modality. Here again, the
micro averaged metrics show a less significant difference in performance than the
macro averaged metrics. Here the drop in performance can likely be explained by
the fact that some classes in the BigEarthNet dataset might exhibit similar features
in the SAR data. As the underlying information SAR data represents strongly relates
to the geometric shape of objects on the surface or the surface itself, classes with
no significant surface features should generate similar backscatter responses. Such
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Table 7.2: The performance achieved by a ViT model trained on either full
Sentinel-2, Sentinel-1 or RGB channels data.

Modality AP (micro) AP (macro) F2 HL

S2 0.8924 0.8164 0.7819 0.0602
RGB 0.8710 0.7739 0.7519 0.0666
S1 0.8106 0.6754 0.6705 0.0822

an effect could, for example, occur if the general surface geometry is mainly flat,
as would be the case for different types of fields.

The aforementioned results already indicate that separate modalities provide
different features which can aid the distinguishment of specific classes. To further
investigate these differences, Table 7.3 shows the results obtained by the previously
introduced models on the individual classes present in the BigEarthNet dataset.

Here it can be seen that similar to the overall metrics, for nearly all classes,
training on S2 data still outperforms training on RGB data while both outperform
training on S1 data. However, the differences in class-wise performance are sub-
stantial.

When comparing the performance on S2 and RGB data, it becomes apparent that
some of the classes most notably affected are the classes “Coastal wetlands”, “Inland
wetlands”, “Moors, heathland and sclerophyllous vegetation” and “Permanent
crops”. This could be explained by the fact that the missing bands constitute all of
the NIR bands, which provide vital information for the differentiation of vegetation
types in a specific location [62].

When comparing the performances to the model trained on S1 data, one can again
identify significant differences among classes. Here, the strongest divergence occurs
for the classes “Beaches, dunes, sands”, “Coastal wetlands”, “Inland wetlands”
and “Moors, heathland and sclerophyllous vegetation”, “Natural grassland and
sparsely vegetated areas” and “Permanent crops”. As observed, the same classes as
previously discussed for the S2 and RGB data are again included. However, this time
other classes are also affected. Most likely, all of these classes generate a relatively
similar backscatter response to at least one other class present in the dataset. It
would also seem that these classes all correspond to some type of flatland, but it
could also be that the wetland classes again appear similar in the data due to the
water content. Interestingly, it seems that the model trained on S1 data performs
well on classes with distinct objects on the surface such as the ones corresponding
to forests or human buildings.

Overall, most differences in performance can likely be attributed to the inherent
properties of the respective modalities, and no unexpected variations could be
identified. The performance on the individual modalities defines a lower bound,
which has to be exceeded by the multi-modal fusion methods to fuse the discussed
modalities successfully.
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Table 7.3: The class-wise AP scores generated by a ViT model trained on either full
Sentinel-2, Sentinel-1 or RGB channels data.

Class name S2 RGB S1

Agro-forestry areas 0.8744 0.8346 0.7248
Arable land 0.9490 0.9367 0.9005
Beaches, dunes, sands 0.6617 0.6331 0.4873
Broad-leaved forest 0.8917 0.8638 0.7703
Coastal wetlands 0.7177 0.5393 0.4112
Complex cultivation patterns 0.8014 0.7762 0.6931
Coniferous forest 0.9546 0.9423 0.8931
Industrial or commercial units 0.5774 0.5222 0.4850
Inland waters 0.9287 0.8964 0.9041
Inland wetlands 0.7457 0.6969 0.5337
Land principally occupied by agriculture, with
significant areas of natural vegetation 0.7647 0.7492 0.6804

Marine waters 0.9991 0.9979 0.9930
Mixed forest 0.9211 0.9017 0.8361
Moors, heathland and sclerophyllous vegetation 0.7778 0.6753 0.4746
Natural grassland and sparsely vegetated areas 0.6412 0.5970 0.3633
Pastures 0.8830 0.8609 0.7817
Permanent crops 0.7708 0.7015 0.4537
Transitional woodland, shrub 0.7817 0.7532 0.6796
Urban fabric 0.8697 0.8256 0.7662

7.2 Analysis of Multi-Spectral and SAR Data Fusion

The performance of the investigated fusion methods is compared on the same
scene classification task as the aforementioned single modality experiments. Again
for the training of all methods, the standard hyper-parameter configuration and a
stochastic depth of 0.25 was used. Unlike all other models, Early Fusion achieved
the best performance with a dropout setting of 0.1 during training. The same effect
could not be observed for the other methods, which therefore did not utilise any
dropout.

The modality-specific data augmentations introduced in Section 6.2 were applied
in all experiments, which includes the desynchronised flipping and cropping of the
modality input patches as well as randomly dropping one of the modalities during
training. The positive effect of these augmentations on the training performance
was experimentally verified and is discussed further in Section 7.4. The overall
performance achieved by each multi-modal fusion method is given in Table 7.4.

When comparing the performance of the various methods, it is immediately
apparent that all methods achieve scores within close proximity to each other.
Therefore, additional experiments were conducted to show that random fluctua-
tions in performance between different experiments are not responsible for the
observed differences. The corresponding results can be found in Table A.3 and
Table A.4 and support the findings reported in Table 7.4.

Channel Token Fusion and SCT Fusion achieve the best classification performance
for all metrics. The difference between all fusion methods is marginal when only

62



7.2 Analysis of Multi-Spectral and SAR Data Fusion

Table 7.4: The results achieved by each of the investigated multi-modal fusion
methods on fusing MSI and SAR data to classify images in the
BigEarthNet dataset.

Model name AP (micro) AP (macro) F2 HL

Early Fusion 0.8963 0.8253 0.7768 0.0591
Modality Token Fusion 0.8937 0.8202 0.7779 0.0598
Channel Token Fusion 0.9004 0.8295 0.7870 0.0578
Middle Fusion 0.8955 0.8244 0.7815 0.0595
Cross-Attention Fusion 0.8910 0.8193 0.7765 0.0606
SCT Fusion 0.8990 0.8292 0.7849 0.0582

considering the micro averaged AP or the F2 score. However, when comparing
the macro averaged AP score and the HL, Channel Token Fusion and SCT Fusion
outperform the competition. Therefore, the performance of the fusion methods
must differ considerably in their individual performance for each of the classes
present in the dataset.

Overall, all investigated multi-modal fusion methods show an improvement over
the single modality training cases discussed previously. However, the observed
improvement is usually within a range of about one per cent, with the maximum
improvement achieved sitting at 1.6% for the macro averaged AP. This can likely
be attributed to the class imbalance present within the BigEarthNet dataset. Some
classes in the dataset are assigned to a large number of patches. Therefore, if
these classes are easily identifiable, it should increase the aggregated metrics to
such a point where improvements for the smaller classes are only marginally
recognisable.

Due to these shortcomings of the aggregated metrics and to better analyse the
performance of the fusion methods on individual classes Table 7.5 presents the class-
wise performance of all fusion methods for each of the classes in the BigEarthNet
dataset.

In Table 7.5, it can be noticed that for most classes, Channel Token Fusion achieves
the best scores. At the same time, SCT Fusion generates the best results for the
second-highest number of classes, which aligns with the aggregated results pre-
sented previously. However, when analysing the absolute difference between all
methods, the improvements among different methods are relatively small for most
classes. The most significant absolute difference can be observed for the class
“Coastal wetlands” where SCT Fusion generates the best score. However, the class
“Coastal wetlands” contains only a very small amount of samples, as is shown in
Table A.1. Therefore, random fluctuations might have a more noticeable influence
on the class than would be the case for other classes. The same is true for the class
“Beaches, dunes, sands” where, interestingly, Early Fusion, Modality Token Fusion
and Cross-Attention Fusion outperform the other three methods.
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Table 7.5: The class-wise performance of the different multi-modal fusion methods
on fusing MSI and SAR images. All scores given are the AP.

Class name Early Modality Channel Middle Cross- SCT
Fusion Token Token Fusion Attention Fusion

Fusion Fusion Fusion

Agro-forestry areas 0.8781 0.8780 0.8798 0.8791 0.8744 0.8888
Arable land 0.9508 0.9497 0.9540 0.9497 0.9480 0.9522
Beaches, dunes, sands 0.7026 0.7086 0.6989 0.6997 0.7052 0.6892
Broad-leaved forest 0.8945 0.8915 0.8989 0.8936 0.8903 0.8972
Coastal wetlands 0.7378 0.7068 0.7340 0.7409 0.7481 0.7565
Complex cultivation patterns 0.8063 0.8042 0.8114 0.8055 0.8012 0.8089
Coniferous forest 0.9568 0.9546 0.9575 0.9560 0.9539 0.9571
Industrial or commercial units 0.5806 0.5738 0.5959 0.5883 0.5651 0.5915
Inland waters 0.9348 0.9327 0.9428 0.9383 0.9304 0.9384
Inland wetlands 0.7603 0.7594 0.7719 0.7605 0.7469 0.7698
Land principally occupied by agri-
culture, with significant areas of
natural vegetation

0.7738 0.7676 0.7771 0.7694 0.7628 0.7750

Marine waters 0.9993 0.9993 0.9995 0.9993 0.9989 0.9995
Mixed forest 0.9221 0.9209 0.9251 0.9218 0.9197 0.9258
Moors, heathland and sclerophyl-
lous vegetation 0.7850 0.7781 0.7895 0.7888 0.7768 0.7962

Natural grassland and sparsely veg-
etated areas 0.6659 0.6493 0.6709 0.6521 0.6482 0.6653

Pastures 0.8857 0.8831 0.8886 0.8846 0.8819 0.8864
Permanent crops 0.7867 0.7751 0.7859 0.7786 0.7728 0.7879
Transitional woodland, shrub 0.7869 0.7831 0.7911 0.7820 0.7790 0.7903
Urban fabric 0.8734 0.8685 0.8871 0.8746 0.8633 0.8794

Overall, the class-wise results achieved by almost all fusion methods exceed the
performance of the ViT model trained only on S2 data. This affirms that the fusion
process contributes positively to the capabilities of a model to discern most classes
in the dataset while not diminishing it for others.

When examining the performance of the fusion methods, specifically on the
classes that showed the most significant divergence in the single modal training
case, some interesting things can be noticed. For these classes, adding the SAR
modality likely provides the least amount of additional discriminative features. For
three of these classes, SCT Fusion generated the best overall performance. These
are namely the classes ”Coastal wetlands”, ”Moors, heathland and sclerophyllous
vegetation” and ”Permanent crops”. Such results might hint at an advantage of
SCT Fusion over the other methods in extracting discriminative features from both
modalities.

While it seems that Channel Token Fusion has a slight edge on SCT Fusion, it
should be noted that Channel Token Fusion requires considerably more computa-
tional resources than all other multi-modal fusion methods analysed in this thesis.
The increased processing requirements are caused by the excessive amount of
feature tokens generated by Channel Token Fusion, for which attention scores need
to be computed. The marginal gains in classification performance do not justify
such an increase in computational demand, significantly impeding the usefulness

64



7.3 Analysis of RGB and SAR Data Fusion

of Channel Token Fusion.
Consequently, SCT Fusion is likely the best out of the investigated fusion methods

suitable for the particular task of fusing MSI and SAR data. It combines a high
performance on the BigEarthNet-MM dataset at a reasonable processing demand.

Early Fusion and Middle Fusion seem to perform similarly well, with both meth-
ods achieving good overall scores. Notably, for Middle Fusion, the depth of the
modality encoders and the feature encoder can be scaled separately, resulting in
an additional hyper-parameter which can significantly impact the overall perfor-
mance. The impact of varying the depth settings for both encoder types is analysed
in the ablation studies.

Notably, Cross-Attention Fusion and Modality Token Fusion perform considerably
worse than the other fusion methods when considering the aggregated metrics.
Analysing their class-wise performance reveals that this drop is related to drops in
the performance on specific classes such as, for example, “Moors, heathland and
sclerophyllous vegetation” or “Urban fabric”. These results indicate that the fusion
of modality features does not work as effectively as possible in both of these fusion
strategies.

As discussed previously, the multi-spectral images contain considerably more
features than the SAR images. Therefore, to analyse the impact of this difference in
features on the fusion performance, the following section conducts a comparison
of all investigated fusion methods on fusing RGB and SAR images for the same
classification task.

7.3 Analysis of RGB and SAR Data Fusion

The S1 and S2 modalities exhibit significant variation in the quality and quantity of
information they can provide to differentiate the classes present in the BigEarthNet
dataset. As shown previously, such a difference leads to considerable variability in
the achieved performance when training models on a single modality.

As a result, the substantial contrast in the complexity of both modalities could lead
to S2 data largely dominating the fusion process. Therefore, the fusion performance
of the fusion methods was evaluated on an additional fusion task where the S2
modality is replaced with only the RGB channels extracted from the S2 data. An
RGB image should provide much less information for the classification than a
multi-spectral image, especially for specific classes as was analysed previously.

For these experiments, the same hyper-parameter settings used for S2 and S1
fusion were utilised to ensure the comparability of results. Table 7.6 shows the
aggregated results obtained for the fusion of RGB and SAR remote sensing images.

Again it can be observed that compared to the training scenario employing only
RGB data, all fusion methods improve the overall performance. Therefore, the
methods seem to again successfully derive relevant features from both modalities.

Apparently, for the reduced fusion task, the Channel Token Fusion again dom-
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Table 7.6: The results achieved by each of the investigated multi-modal fusion
methods on fusing RGB and SAR data to classify images in the
BigEarthNet dataset.

Model name AP (micro) AP (macro) F2 HL

Early Fusion 0.8792 0.7921 0.7570 0.0643
Modality Token Fusion 0.8818 0.7977 0.7607 0.0635
Channel Token Fusion 0.8893 0.8119 0.7715 0.0614
Middle Fusion 0.8810 0.7938 0.7601 0.0638
Cross-Attention Fusion 0.8806 0.7951 0.7611 0.0638
SCT Fusion 0.8804 0.7942 0.7572 0.0639

inates the overall performance, clearly outperforming all other methods. The
difference in performance between Channel Token Fusion and the other methods
is considerably larger than in the previously examined S1 and S2 fusion. Addi-
tionally, the other fusion methods show markedly different results compared to
the previous fusion task. Both Early Fusion and SCT Fusion have lost their perfor-
mance advantage and now generate results very similar to the remaining three
methods. When not considering Channel Token Fusion, the variance in the metric
scores between the other five methods is significantly lower than for the S1 and
S2 fusion task. Especially the macro averaged AP scores exhibit a low variance
which implies that only slight fluctuations in the class-wise performance occurred
for these methods. As a result, the impact of random variations could be stronger,
which would further support the observation that all methods except Channel
Token Fusion perform similarly well. The class-wise results show a similar overall
effect as the aggregated metrics. For most classes, Channel Token Fusion achieves
the best results, while all other methods perform similarly well on most classes.
Therefore, the class-wise performance is not discussed in detail as no significant
further details of interest could be identified. For the sake of completeness the
class-wise results are provided in Table A.2.

Overall, Channel Token Fusion seems to be more viable for such a reduced
fusion task due to its outstanding performance. However, it still requires more
computational resources than the other methods, even though the total number of
channels and therefore feature tokens that need to be processed is considerably
lower. For the other methods, the results show that Early Fusion and SCT Fusion
are unable to reproduce their performance advantage, which they achieved on
S2 and S1 fusion. Compared to the remaining fusion methods, their performance
results are relatively similar over all metrics. However, the similarity in results
might be explained by the fact that SCT Fusion and Early Fusion could be better
suited to fusing modalities with a considerable difference in the number of features
in each modality provides. Therefore, the results would indicate that Early Fusion
and SCT Fusion are not better fusion methods in general but are instead specifically
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well suited for the fusion of multi-spectral and SAR images.
The results for Modality Token Fusion and Cross-Attention Fusion show that

both methodologies present viable fusion methods for general multi-modal fusion
tasks. However, they seem to suffer from an inability to effectively fuse multi-
modal data with a significant differential in the number of discriminative features
provided by each modality which could explain their weak performance on fusing
multi-spectral and SAR images.

To summarise, while Channel Token Fusion clearly outperforms the competition
on the reduced fusion task no second-best method could be identified. Instead, all
other five methods produce very similar results, which stands in contrast to the
MSI and SAR fusion task analysed previously. It is hypothesised that the divergence
is caused by the stark difference in the number of features multi-spectral and RGB
images can provide but further research is required to ascertain the underlying
causes.

7.4 Ablation Studies

The following ablation studies are conducted to determine the impact of hyper-
parameter settings on the performance capabilities of the investigated multi-modal
fusion methods. This includes models utilising the standard ViT architecture as
an encoder as well as the more advanced fusion architectures, which significantly
alter the information flow within their internal encoders. All tests were conducted
on the full multi-modal BigEarthNet data set with all channels from the S2 and S1
data.

Additionally, these ablation studies enable the comparison of the different fusion
methods under various hyper-parameter settings. Because these hyper-parameters
directly govern the size of internal layers within the architecture and the amount
of information processing performed by a model, varying them changes the overall
computational requirements of a model. This might reveal specific advantages or
disadvantages of the analysed fusion approaches for operations on systems with
reduced or improved processing capabilities.

To reduce the amount of information discussed here, only the results for Early
Fusion and SCT Fusion are presented for all hyper-parameters. These were se-
lected according to their best overall performance on the full S1 and S2 fusion
task when not considering Channel Token Fusion due to its excessive computation
requirements. However, for specific hyper-parameters, the results for other fusion
methods are presented as well, if they are deemed to provide valuable insights. In
general, during the training of the models, the full range of data augmentations
was utilised. The stochastic depth was set to 0.25 and no dropout was employed to
ensure comparability to the results used for the previous comparisons. As a result,
the performance of Early Fusion is slightly lower in most cases due to it profiting
from using dropout during training.
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Table 7.7: Classification performance of Early Fusion and SCT Fusion over varying
patch sizes.

Patch size
Early Fusion SCT Fusion

AP (micro) AP (macro) AP (micro) AP (macro)

10 0.8987 0.8269 0.8995 0.8204
15 0.8963 0.8227 0.9018 0.8345
20 0.8949 0.8197 0.8990 0.8286

First, the influence of varying the patch size is analysed. The results obtained by
training the two aforementioned models under different patch size configurations
are presented in Table 7.7. It should be noted that a patch size of 10 presents the
lowest bound at which the training of most of these architectures remains feasible
with the available hardware. By lowering the patch size with the standard patch
embedding procedure, the amount of generated feature tokens effectively quadru-
ples, which increases the processing requirements. With other patch embedding
methods, such as modality-specific patches or channel patches, the effect is even
more drastic.

Apparently, lowering patch sizes directly corresponds to an improved classifica-
tion performance, which aligns with initial expectations because the original ViT
model trained on single modal inputs exhibits the same behaviour [10]. Interest-
ingly, SCT Fusion did not generate the best results at a patch size of 10. However,
by increasing the dropout rate for the S2 encoder to 0.1 for SCT Fusion at a patch
size of 10 leads to an increase in performance. Similarly, increasing the dropout
rate for Early Fusion also improves its performance, hinting at a general trend.
The corresponding results can be found in Table A.5. However, the improvement
for SCT Fusion with dropout still does not significantly improve upon the macro
averaged AP score, indicating that a patch size of 15 might be an optimal setting for
SCT Fusion on the MSI and SAR fusion task. Overall, the presented results show that
the improved fusion performance of the respective models is mostly maintained
over different patch sizes.

Next, the impact of changing the depth hyper-parameter, which controls the
number of layers in the encoders, is investigated. Table 7.8 shows the results over
a range of depth values from 2 to 12 for Early Fusion, Cross-Attention Fusion and
SCT Fusion.

The results show that scaling the depth of the Transformer Encoder for each of
the multi-modal fusion methods directly impacts the overall performance. For all
shown models, higher depth values do not seem to induce a higher performance
of the respective fusion method. Such behaviour was unexpected as higher depth
values result in deeper encoders with more parameters which have usually been
shown to achieve better performances on other classification tasks [10]. Potentially,
deeper models might require more regularisation. However, further research is
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Table 7.8: Classification performance of Early Fusion, Cross-Attention Fusion and
SCT Fusion over varying depth settings.

Depth
Early Fusion Cross-Attention Fusion SCT Fusion

AP (micro) AP (macro) AP (micro) AP (macro) AP (micro) AP (macro)

2 0.8871 0.8081 0.8892 0.8087 0.8887 0.8080
4 0.8929 0.8170 0.8976 0.8277 0.8947 0.8200
8 0.8949 0.8197 0.8976 0.8281 0.8990 0.8286

12 0.8935 0.8229 0.8974 0.8280 0.8985 0.8286

required to analyse the benefit of deeper models on the fusion performance.
Interestingly, when analysing the effect of lowering the depth value, it can be

observed that the performance is only degrading slowly. Relatively shallow models
with only 4 encoder layers are still able to produce strong results. A possible
explanation could be the fact that some classes present in the BigEarthNet dataset
are naturally identifiable by distinct spectral responses. Further support for this
hypothesis is provided by the stronger degradation on the macro averaged than
on the micro averaged AP scores. All presented results reinforce the selection of a
depth value of 8 for the multi-modal fusion comparison.

The performance of Cross-Attention Fusion is shown to highlight an interesting
observation. Cross-Attention Fusion seems to achieve a better performance than
the other approaches at low depth values. Therefore, Cross-Attention might have
an advantage in fusing cross-modal features at earlier layers than the other fusion
approaches. Such a property might make the Cross-Attention Fusion method more
applicable for an environment with low processing resources, but further research
would be required to ascertain the effect.

Another series of experiments was conducted to analyse the impact of different
depth settings for the two encoder types employed in the Middle Fusion architecture.
The results of these experiments are provided in Table A.7. Based on these results,
the depth of the modality encoders was set to 6 and the depth of the fusion encoder
was set to 2 for all other experiments. Interestingly, the Middle Fusion method
seems to produce better results with deeper modality encoders which could imply
that multiple self-attention computations on modality-specific features before the
fusion step is beneficial for multi-modal fusion on the BigEarthNet-MM dataset.

Additionally, the impact of varying the embedding dimension was also assessed.
The corresponding results can be found in Table A.6. However, no major impli-
cations could be observed for the tested fusion methods. Notably, SCT Fusion’s
performance dropped significantly at higher embedding dimension values. Such a
performance drop could be mitigated by imposing stronger regularisation during
the training phase but was not investigated further.
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Table 7.9: Experimental results with Early Fusion and SCT Fusion to select the
optimal value for the stochastic depth regularisation method.

Stochastic depth
Early Fusion SCT Fusion

AP (micro) AP (macro) AP (micro) AP (macro)

0 0.8874 0.8084 0.8922 0.8169
0.25 0.8949 0.8197 0.8990 0.8286
0.5 0.8971 0.8236 0.8987 0.8262

Impact of Regularisation Methods and Data Augmentations

Two main groups of methods to introduce regularisation during training of the
various models were utilised in this thesis. The first group consists of the data
augmentation techniques introduced in Section 6.2. The second group constitutes
the regularisation methods stochastic depth [73] and dropout [72].

Dropout refers to the standard dropout applied between layers in the model
[72] as well as the attention dropout, which drops outputs from the attention
computation randomly [75]. The second type of regularisation method is called
stochastic depth, and it was proposed by Huang et al. [73]. The value for stochastic
depth defines the probability of omitting entire layers during training and replacing
them with the identity operation.

Dropout was only used conservatively during the training of most models be-
cause a generally positive impact on all fusion methods could not be identified.
Especially when employing data augmentations, dropout seemed to inhibit the
performance potential of the models. Such an effect could also be identified by
Steiner et al. [74] who showed that data augmentations should be preferred when
training ViT models. In accordance with these results, a larger emphasise was put
on data augmentations, and other regularisation methods were only employed
conservatively. The value of 0.25 used for stochastic depth throughout all experi-
ments was selected due to results showing an overall performance improvement
even under the utilisation of data augmentations. The corresponding results are
provided in Table 7.9.

All multi-modal fusion methods compared previously were trained with the same
data augmentation settings. These data augmentations are the desynchronised
flipping and cropping augmentation as well as the random dropping of whole
modality inputs. Experiments were conducted to evaluate the impact of these
augmentations on the fusion performance with the corresponding results provided
in Table 7.10. Overall, the results show a generally positive impact of employing
the aforementioned data augmentations, validating their use during training the
multi-modal fusion methods for the previous comparisons.
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Table 7.10: The classification performance of Early Fusion and SCT Fusion under
varying data augmentation settings. The standard augmentation type
refers to using combined flipping and cropping augmentations.

Augmentation Type
Early Fusion SCT Fusion

AP (micro) AP (macro) AP (micro) AP (macro)

Standard 0.8916 0.8171 0.8980 0.8253
Desynchronised
Flipping & Cropping 0.8919 0.8180 0.8980 0.8256

Modality Dropping 0.8938 0.8205 0.8988 0.8294
All Augmentations 0.8949 0.8197 0.8990 0.8286

Impact of speckle filtering

Speckle filtering of the S1 data was also investigated as a potential method to
improve the fusion performance with SAR data. Speckle filtering represents a highly
utilised tool to improve the interpretability of SAR data for various applications
[70]. To this end, a median speckle filter was integrated into the preprocessing
pipeline for S1 data as has been described in Section 6.2. Table 7.11 shows the
results obtained by training a ViT model on S1 data without filtering and with a
median speckle filter with a kernel size of 3 and 5 respectively.

Evidently, the classification performance of the trained models suffers in all
experiments where the speckle filter was applied. Potentially, the models are able
to learn an internal filter to differentiate between noise and relevant information
that performs better than the median filter employed here. A possible explanation
would be that a classical speckle filter inherently removes information present
in input images by blurring or removing pixel values even if they are not caused
by noise. Deep learning models, on the other hand, might be able to discern
between valuable information and noise at such a level by learning filters that can
dynamically extract relevant features and drop irrelevant ones.

Additionally, applying a speckle filter significantly increases the computational
demand for preprocessing during training compared to the standard preprocessing
pipeline. While the preprocessing could likely be optimised or even performed
once for all samples before starting the training, it still introduces more complexity
into the training procedure which is undesirable.

Potentially, a more sophisticated speckle filter such as a Lee filter [69] could
result in a better performance. However, all speckle filters effectively reduce the
available information from an input image. More sophisticated speckle filters
require significantly more processing resources, further increasing the complexity
of the training procedure. Therefore, a positive effect on the performance was not
deemed likely, and this direction was not further pursued.
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7 Results

Table 7.11: Performance comparison of ViT models trained on S1 data with and
without speckle filtering. The models all used the same standard
hyper-parameter settings without any regularisation settings.

Speckle Filtering Setting AP (micro) AP (macro) F2 HL

Without Speckle Filtering 0.8068 0.6676 0.6684 0.0833
Speckle Filtering Kernel Size 3 0.8044 0.6605 0.6682 0.0839
Speckle Filtering Kernel Size 5 0.7962 0.6536 0.6576 0.0857

Impact of S1 data normalisation

SAR and optical image data inherently represent different types of information. As
a result, the range of values present in both data types used in this thesis varies
considerably. While the multi-spectral data consists of linearly scaling sensor
readings, the SAR data is provided in decibels which are logarithmic measurements.

Therefore, utilising a different normalisation procedure might be beneficial for
SAR data. When standardising an image, the pixel values are mapped to a range of
values so that all pixels follow a standard normal distribution with a mean of zero
and unit variance. These properties are beneficial for training neural networks
because they result in better gradient computation during gradient descent.

However, other types of normalisation procedures are also utilised for various
machine learning tasks depending on the type of data. One of the most prominent
ones is the min-max-scaling operation, where all values are scaled to a range
between 0 − 1. This is achieved by computing the minimum and maximum values
for all samples in the training set and setting these values as the minimum and
maximum bounds for the mapping operation. All pixel values are then mapped to
a range between 0− 1 with their ratio to the minimum and maximum value staying
equal before and after the mapping operation.

To test which type of normalisation procedure is most beneficial for the BigEarth-
Net’s SAR data, experiments were conducted to compare the classification per-
formance under different normalisation schemes. Table 7.12 presents the results
obtained from these experiments. The three configurations tested are no normali-
sation, a min-max scaling normalisation as well as a standardisation normalisation
as would typically be performed in the CV domain.

Apparently, standardisation outperforms both other methods to such a degree
that no further testing with multi-modal fusion methods is performed. As a result,
all other experiments conducted for this thesis employed a standardisation nor-
malisation. Other normalisation techniques would likely negatively impact the
performance of models.
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7.4 Ablation Studies

Table 7.12: Comparison of the results obtained by ViT models trained on S1 data
under different normalisation strategies. The models used the standard
hyper-parameter settings without any regularisation settings.

Normalisation Technique AP (micro) AP (macro) F2 HL

Standardisation 0.8068 0.6670 0.6680 0.0833
Min-Max Scaling 0.6861 0.4760 0.4710 0.1101
Without Normalisation 0.7916 0.6430 0.6440 0.0867

Summary

Overall, the ablation experiments validate the hyper-parameter selection used for
the previously conducted comparison between the different fusion methods. While
a potential for improvements in the overall performance could be identified by
using a reduced patch size, such a modification would incur a significant increase
in computational demand. Interestingly, reducing the depth parameter does not
significantly reduce the performance of the tested fusion models until the number
of layers is below a threshold of four.

The positive impact of data augmentations and stochastic depth could also be
ascertained. Additionally, some experiments showed that modifications to the
hyper-parameter settings can require a reevaluation of the employed regularisa-
tion strategies, especially the dropout rate. However, further research would be
required to accurately evaluate the extent of this effect.

The results obtained with a simple median speckle filter showed that such filtering
of the SAR data negatively impacts the classification performance of a ViT model
trained on S1 images. Similarly, training a ViT model on standardised S1 images, as
is common practice in the CV domain, outperforms both training on unprocessed
images as well as on min-max scaled images.

In general, it could be shown that the multi-modal fusion methods investigated
in this thesis achieve good results over varying hyper-parameter settings. Fur-
thermore, the obtained results support the selection of hyper-parameters for the
previous comparisons of the multi-modal fusion methods.

73





8 Conclusion and Discussion
This thesis investigates the capabilities of utilising the ViT architecture to fuse
multi-spectral and SAR remote sensing images. To this end, multiple multi-modal
fusion methods based on the standard ViT architecture are proposed and evaluated
by comparing their performance on a scene classification task. All proposed ap-
proaches adapt specific properties of the ViT architecture to identify a modification
strategy that yields the best overall performance on the classification task.

The investigated fusion methods can be divided into two principal categories.
The first category of methods functions by modifying the procedure by which fea-
ture embeddings are generated from both modalities but rely on the standard ViT
model for processing the generated input sequences. Early Fusion derives input
embeddings directly from a tensor of both modalities concatenated in the channel
dimension. Conversely, Modality Token Fusion generates separate patch embed-
dings from each input modality and combines all derived patches into one input
sequence. Channel Token Fusion further extends this separation by deriving patch
embeddings from individual channel patches for all channels in both modalities
and combining them in one input sequence.

The second type of fusion methods encompasses three approaches which per-
form multi-modal fusion by exchanging information between separated modality-
specific encoders based on the ViT model. Middle Fusion relies on separate Trans-
former Encoders to derive abstract features from each modality and employs a
third encoder to combine the abstract feature representations. Cross-Attention Fu-
sion replaces the self-attention in two Transformer Encoders with a Cross-Attention
computation between the feature sequences derived from each modality. The
newly proposed SCT Fusion exchanges information between two modality-specific
encoders by continuously fusing the class tokens between the attention layers to
extract and condense the most relevant information for the classification task.

The performance of these fusion methods is evaluated in detail on the large-scale
remote sensing archive BigEarthNet-MM, which provides considerable quantities
of labelled multi-spectral and SAR images. Because all fusion methods receive the
same data as inputs but process it differently, a fusion model’s overall performance
on the classification task provides insights into its capabilities in effectively deriving
information from multiple modalities.

Results showed that Channel Token Fusion and SCT Fusion achieve the best
overall performance for fusing MSI and SAR data. Early Fusion and Middle Fusion
follow closely by generating good but subpar scores on all metrics. However, the
performance of Modality Token Fusion and Cross-Attention Fusion could only
marginally improve upon results from a model trained on single modality input
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8 Conclusion and Discussion

data.
From all investigated fusion methods, Channel Token Fusion is considerably less

viable for most applications due to its excessive computational requirements and
only marginal improvements it could provide over SCT Fusion. Therefore, SCT
Fusion presents the best-performing candidate for the fusion of multi-spectral and
SAR images with practical applicability among the investigated methods. Early
Fusion and Middle Fusion also provide decent overall results, with Early Fusion
having the additional advantage of requiring even less computational resources
than all other models.

Additional comparisons on a reduced fusion task consisting of RGB and SAR
images were conducted to assess the impact of the difference in features provided
by each modality on the fusion performance. While Channel Token Fusion achieved
the best overall results on the reduced fusion task, all other methods generated
results in a very similar range to each other. This implies that the performance
advantages achieved by SCT Fusion on the MSI and SAR fusion task potentially
stem from a higher capability of SCT Fusion to discern important features from
modalities with highly disparate amounts of features. On the contrary, Modality
Token Fusion and Cross-Attention Fusion might be more susceptible to such dif-
ferences, which would explain their poor performance on the MSI and SAR fusion
task.

Detailed ablation studies were conducted to assess the impact of specific hyper-
parameters on the fusion performance of the different fusion methods. The results
show that reducing the patch size of a fusion method holds the highest potential
for further performance improvements. Interestingly, experiments on reducing
the number of layers in the Transformer Encoders indicate that the investigated
fusion methods can still reliably generate competitive results even with relatively
shallow models.

It could be shown that the application of data augmentations and other regu-
larisation strategies has a positive impact on the overall performance achieved
by the fusion methods. However, regularisation was used conservatively during
the training, and future exploratory studies on the selection of optimal dropout
rate and data augmentations might reveal further potential for improvements.
Experiments on speckle filtering or applying different normalisation strategies to
the SAR images were also performed, but no significant potential for improvement
could be identified here.

A possible direction for future improvements could be to combine the fusion
methodologies from the best-performing methods, namely Channel Token Fusion
and SCT Fusion. Here it would be of significant interest to investigate how the
processing requirements of Channel Token Fusion could be reduced while still
retaining its performance advantage. Furthermore, even better performance im-
provements might be enabled by incorporating Channel Token Fusion with the
condensing of class-related information from both modalities performed in the
SCT Fusion approach.
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Additionally, the experiments revealed that data augmentations that modify both
modalities differently could significantly impact the generalisation capabilities of
the various fusion methods. However, the data augmentation strategies employed
in this thesis are relatively simplistic. Future research could focus on the integration
of more sophisticated data augmentation techniques. Potential ideas for data
augmentations of interest could be the partial or complete masking of channels
or the distortion of pixel information at a specific location in an image from one
modality to force the model to derive inputs from the other modality.

Similarly, other research in the multi-modal fusion domain for remote sensing
images has incorporated a reconstruction step of the original modalities from the
encoded features into the training phase. Including such a step into the training of
the investigated fusion methods could also improve the overall performance.

Furthermore, due to the inherent variability of SAR images depicting the same
location, it could be beneficial to add additional SAR samples to the dataset de-
picting each location captured from different directions. Such additions might
better convey the relationship between specific backscatter responses and their
underlying ground geometry. The generation of artificial adversarial SAR samples
could also be considered to aid in learning the connection between backscatter
responses and their underlying causes. Moreover, testing the multi-modal fusion
methods on other relevant tasks from the remote sensing domain, such as LULC
classification or CBIR, could provide more insight into the generalisability of the
results obtained in this thesis.
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A Appendix

Table A.1: The different classes present in the BigEarthNet-MM dataset as well as
the total number of samples belonging to each class. Note that patches
often belong to multiple classes and therefore count towards each of
these separately.

Class name Number of patches

Agro-forestry areas 30 649
Arable land 194 148
Beaches, dunes, sands 1536
Broad-leaved forest 141 300
Coastal wetlands 1566
Complex cultivation patterns 104 203
Coniferous forest 164 775
Industrial or commercial units 11 865
Inland waters 67 277
Inland wetlands 22 100
Land principally occupied by agriculture, with signifi-
cant areas of natural vegetation 130 637

Marine waters 74 877
Mixed forest 176 567
Moors, heathland and sclerophyllous vegetation 16 267
Natural grassland and sparsely vegetated areas 12 022
Pastures 98 997
Permanent crops 29 350
Transitional woodland, shrub 148 950
Urban fabric 74 891
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A Appendix

Table A.2: The class-wise performance of the different multi-modal fusion
methods on fusing RGB and SAR images. All scores given are the AP.

Class name Early Modality Channel Middle Cross- SCT
Fusion Token Token Fusion Attention Fusion

Fusion Fusion Fusion

Agro-forestry areas 0.8501 0.8530 0.8685 0.8545 0.8528 0.8511
Arable land 0.9416 0.9429 0.9478 0.9428 0.9428 0.9422
Beaches, dunes, sands 0.6619 0.6594 0.7091 0.6408 0.6680 0.6728
Broad-leaved forest 0.8732 0.8759 0.8835 0.8747 0.8737 0.8724
Coastal wetlands 0.6174 0.6477 0.6700 0.6216 0.6283 0.6206
Complex cultivation patterns 0.7835 0.7884 0.7994 0.7854 0.7869 0.7836
Coniferous forest 0.9453 0.9469 0.9499 0.9459 0.9461 0.9462
Industrial or commercial units 0.5531 0.5649 0.5806 0.5610 0.5569 0.5609
Inland waters 0.9189 0.9225 0.9337 0.9261 0.9218 0.9252
Inland wetlands 0.7166 0.7230 0.7444 0.7204 0.7222 0.7196
Land principally occupied by agri-
culture, with significant areas of
natural vegetation

0.7561 0.7603 0.7697 0.7588 0.7590 0.7576

Marine waters 0.9987 0.9989 0.9991 0.9990 0.9989 0.9989
Mixed forest 0.9064 0.9084 0.9152 0.9071 0.9075 0.9069
Moors, heathland and sclerophyl-
lous vegetation 0.7079 0.7176 0.7404 0.7090 0.7115 0.7136

Natural grassland and sparsely veg-
etated areas 0.6222 0.6322 0.6498 0.6238 0.6261 0.6159

Pastures 0.8692 0.8708 0.8778 0.8683 0.8705 0.8690
Permanent crops 0.7226 0.7290 0.7517 0.7289 0.7264 0.7207
Transitional woodland, shrub 0.7625 0.7669 0.7735 0.7648 0.7644 0.7662
Urban fabric 0.8433 0.8474 0.8623 0.8496 0.8432 0.8466

Table A.3: The results of additional training runs performed for Early Fusion to
verify the stability of training the multi-modal fusion methods. The
Early Fusion results are inferior to the ones reported in the comparison
because no dropout was employed.

Experiment AP (micro) AP (macro) F2 HL

Experiment 1 0.8949 0.8197 0.7802 0.0594
Experiment 2 0.8942 0.8212 0.7814 0.0597
Experiment 3 0.8938 0.8203 0.7823 0.0599

Table A.4: The results of additional training runs performed for SCT Fusion to
verify the stability of training the multi-modal fusion methods.

Experiment AP (micro) AP (macro) F2 HL

Experiment 1 0.8993 0.8295 0.7848 0.0582
Experiment 2 0.8990 0.8286 0.7848 0.0582
Experiment 3 0.8990 0.8292 0.7849 0.0582
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Table A.5: The performance of Early Fusion and SCT Fusion with a patch size of 10
and a dropout rate of 0.1.

Fusion Method AP (micro) AP (macro)

Early Fusion 0.9016 0.8318
SCT Fusion 0.9031 0.8343

Table A.6: Classification performance of Early Fusion and SCT Fusion over varying
embedding dimensions.

Embedding Dimension
Early Fusion SCT Fusion

AP (micro) AP (macro) AP (micro) AP (macro)

128 0.8948 0.8208 0.8978 0.8263
256 0.8949 0.8197 0.8990 0.8286
384 0.8922 0.8182 0.8305 0.6772

Table A.7: Classification performance of Middle Fusion under varying depth
settings for the modality encoders and the fusion encoder.

Modality Encoder Depth Fusion Encoder Depth AP (micro) AP (macro)

1 7 0.8929 0.8194
2 6 0.8926 0.8199
4 4 0.8953 0.8222
6 2 0.8955 0.8244
7 1 0.8952 0.8207

89


	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 Fundamentals of Remote Sensing Data
	2.1 Multi-Spectral Satellite Images
	2.2 Synthetic Aperture Radar Data

	3 Vision Transformer Architecture
	3.1 Transformer Encoder
	3.2 Vision Transformer

	4 Related Work
	4.1 Multi-Modal Fusion in Remote Sensing Image Classification
	4.2 Transformer-based Multi-Modal Fusion

	5 Multi-Modal Fusion Methods
	5.1 Early Fusion by Modality Channel Concatenation
	5.2 Proposed Modality Token Fusion
	5.3 Proposed Channel Token Fusion
	5.4 Proposed Middle Fusion with Separate Modality Encoders
	5.5 Proposed Cross-Attention Fusion
	5.6 Proposed Synchronised Class Token Fusion
	5.7 Summary

	6 Dataset and Experimental Setup
	6.1 BigEarthNet-MM Dataset
	6.2 Experimental Setup

	7 Results
	7.1 Analysis of Modality-Specific Performance
	7.2 Analysis of Multi-Spectral and SAR Data Fusion
	7.3 Analysis of RGB and SAR Data Fusion
	7.4 Ablation Studies

	8 Conclusion and Discussion
	A Appendix

