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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Frage, wie generative neuronale Mod-
elle zur Lösung nichtlinearer inverser Probleme eingesetzt werden können. Der
Fokus liegt dabei auf dem generalisierten Phase Retrieval-Problem, bei dem ein
Signal x auf Basis der Intensitäten |〈ai,x〉|2 linearer Messungen rekonstruiert
werden soll.

Die Arbeit stellt zwei neue Algorithmen vor: Deep Regularized Gradient De-
scent nutzt trainierte generative neuronale Netze als A-priori-Information über
die Domäne des Signals in einem durch Total-Variation regularisierten Gradien-
tenabstiegsverfahren. Dabei erzielt der Algorithmus bereits bei niedrigen Sam-
plingraten eine höhere Rekonstruktionsqualität als herkömmliche Verfahren,
kann jedoch bei höheren Samplingraten bei gleichzeitigem hohem Modellfehler
des Generators keine sehr hohe Rekonstruktionsqualität erreichen. Das zweite
vorgestellte Verfahren, Deep Regularized Gradient Descent-initialized Random-
ized Kaczmarz, überwindet diesen Nachteil dadurch, dass es Deep Regularized
Gradient Descent nur für die Ermittlung eines geeigneten Startwerts verwendet
und mit diesem das Randomized Kaczmarz -Verfahren ausführt. In einer em-
pirischen Evaluation kann gezeigt werden, dass dieses Vorgehen sowohl höhere
Rekonstruktionsqualität bei niedrigen Samplingraten als auch sehr hohe Rekon-
struktionsqualität bei hohen Samplingraten erzielt. Das Verfahren hat zudem
ein besseres Laufzeitverhalten als herkömmliche Gradienten-basierte Rekonstruk-
tionsalgorithmen.

Des Weiteren zeigt diese Arbeit, dass Deep Regularized Gradient Descent-
initialized Randomized Kaczmarz auch für das Problem des Terahertz Ein-Pixel
Phase Retrieval angewendet werden kann. Dabei soll ein Signal auf der Basis
seiner reellwertigen linearen Messungen bei gleichzeitigen starken Diffraktion-
seffekten rekonstruiert werden. Die in dieser Arbeit durchgeführte Evaluation
auf simulierten Daten zeigt, dass Rekonstruktionsmethoden auf der Basis gen-
erativer neuronaler Modelle auch für praktische Probleme anwendbar sind.
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Abstract

This thesis explores how deep generative models can be utilized for solving
nonlinear inverse problems such as generalized phase retrieval, in which one
wants to reconstruct a signal x from the squared magnitudes |〈ai,x〉|2 of its
linear measurements.

The thesis introduces two new algorithms: Deep Regularized Gradient De-
scent uses a trained deep generative model as a data prior in a total variation-
regularized gradient descent scheme to reconstruct a signal in the range of that
generative model. The thesis empirically shows that this method achieves higher
reconstruction quality than conventional generalized phase retrieval algorithms
already at very low sampling rates. It however fails to deliver very high re-
construction results at high sampling rates when there is significant generator
model error. Deep Regularized Gradient Descent-initialized Randomized Kacz-
marz overcomes this shortcoming by using Deep Regularized Gradient Descent
only to calculate an initial value which is then fed into the Randomized Kacz-
marz method to reconstruct the signal x. The thesis empirically shows that
Deep Regularized Gradient Descent-initialized Randomized Kaczmarz combines
higher reconstruction quality at low sampling rates with very high reconstruc-
tion quality at high sampling rates. The algorithm also demonstrates superior
runtime performance over conventional gradient-based reconstruction methods.

The thesis furthermore experimentally validates the applicability of Deep
Regularized Gradient Descent-initialized Randomized Kaczmarz on the practi-
cal problem of terahertz single-pixel phase retrieval, in which a signal is to be
reconstructed from its real-valued measurements under strong diffraction effects.
This experimental evaluation on simulated data gives first evidence that recon-
struction methods using deep generative models as data priors are suited for
real-world reconstruction problems.
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Notation

a A vector

A A matrix

Ai,j Element at position (i, j) of matrix A

a>, A> Transpose of a vector a or a matrix A

aH, AH Conjugate transpose of a vector a or matrix A

a, A The entrywise complex conjugate of a or A

〈a,b〉 Inner product aHb of a and b

A† Moore-Penrose pseudoinverse of the matrix A

I The identity matrix
∂f
∂x Partial derivative of f with respect to x

∇f Gradient of f

a ∼ p Random variable a has distribution p

N (0, 1) Gaussian distribution with mean 0 and standard deviation 1

p̂(X) Empirical distribution p̂ of a random variable X

D(A) Domain of operator A

R(A) Range of operator A

a� b Point-wise multiplication operator
√

a Point-wise square root operator

|a| Point-wise modulus/absolute operator

‖a‖, ‖a‖2 `2-norm of the vector a

‖A‖F Frobenius-norm of the matrix A

Fx Discrete Fourier transform of x

Tr(X) Trace of matrix X

X � 0 Matrix X is positive semidefinite
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Chapter 1

Introduction and Overview

Inverse problems of the form

find x s.t. y = A(x) (1.1)

(where a measurement y and a map A are given) are ubiquitous in a lot of
scientific disciplines and practical applications.

In computer vision one might want to revert an operation A that has been
applied to an image x. In some rare cases, the operation A will be invertible (for
example inverting the intensities in a black & white image), but most of the time
it will not be (imagine trying to revert a from color to gray scale operation).

This example shows an important property of inverse problems: in most
cases their exact solutions are either not existent or there exist infinitely many
of them. In order to overcome this, one needs to rephrase those problems so that
the existence and uniqueness of a solution can be guaranteed. A convenient way
to do so is to restrict the signals to a certain well-defined domain. The goal is
to make the resulting space of possible solutions small enough so that a unique
solution exists.

Deep learning is a technique to learn approximations of functions by train-
ing networks of biologically inspired computational units (usually referred to as
neurons). The most fundamental class of a neural network, the feed-forward
network, groups neurons together at individual layers, allowing for stacked net-
work architectures which are commonly used in the classical tasks solved by
neural networks: regression, classification and generation. An example of a
feed-forward neural network for classification is given in Figure 1.1. The archi-
tecture of the neural network (the number of layers, number of neurons per layer
or number of connections between one layer and the other) defines its expressive
power (Raghu et al., 2016), and different architectures are more or less useful
for different kinds of problems.

We will exemplify one particular problem here, which is to learn a (finite)
domain X of permissible signals x ∈ X ⊂ X of a space X. We can design a
neural network in such a way that it can learn to encode a signal x ∈ X so
that when it is given a corrupted signal x̃ = x + ε /∈ X the network is able
to reconstruct the original x. Such a neural network is called a (denoising)
autoencoder and is schematically depicted in Figure 1.2. To push this further,
neural networks can also be used to learn infinite domains of permissible signals
and map them to a continuous distribution of a low-dimensional input vector in
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1. Introduction and Overview

Input layer ℝ10 Hidden layer  ℝ6 Hidden layer  ℝ3 Output layer  ℝ1

Figure 1.1: Schematic example of a fully-connected feed-forward network for
binary classification, where the sign of the output value denotes the predicted
class.

such a way that when sampling from this distribution and feeding this sample
into another neural network we are able to easily generate permissible signals.
We call such a model a deep generative model.

This thesis will detail how deep generative models can be utilized in existing
algorithms for solving a very specific type of inverse problem called generalized
phase retrieval, in which the goal is to recover a signal x ∈ Rn from the squared
modulus of m (complex) linear measurements, i.e., in the noiseless case:

yi = |〈ai,x〉|2, ai ∈ Cn, i = 1, ...,m (1.2)

or alternatively written in matrix notation as

y = |Ax|2, A ∈ Cm×n (1.3)

where ai are the rows of A.
This thesis is structured as follows: the remainder of this chapter introduces

nonlinear inverse problems, (generalized) phase retrieval and deep generative
models, and examines prior art in these fields of research. Chapter 2 introduces
some important concepts of numerical optimization, especially gradient-based
local optimization methods, that can be used to solve nonlinear optimization
problems and are of particular interest in this thesis. Chapter 3 formally intro-
duces the basics of machine learning and goes into detail about deep generative
models with a strong focus on variational autoencoders, their properties and
training methods. Chapter 4 is about inverse problems, formalizes the gener-
alized phase retrieval problem and introduces the most popular methods for its
solution. Chapter 5 explains how some of the existing methods to solve the gen-
eralized phase retrieval problem can be extended to incorporate signal domain
information encoded in deep generative networks. It discusses two important
ways to do so, namely by adding deep generative models as signal priors in
the optimization process and by using deep generative models for better ini-
tialization of other reconstruction methods. The chapter concludes with the
introduction of two new algorithms for generalized phase retrieval based on the
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Input layer ℝ10 Hidden layer  ℝ4 Hidden layer  ℝ4 Output layer ℝ10

Figure 1.2: Schematic example of a fully-connected autoencoder for a signal
x ∈ R10.

aforementioned ideas. Chapter 6 provides a detailed empirical analysis of the
stability of the methods introduced in Chapter 5 in a practical application for
the real-world scenario of terahertz single-pixel phase retrieval. It therefore plays
an important part in ensuring the practicality of the proposed methods in real-
world scenarios. The thesis concludes with Chapter 7, which summarizes the
main findings.

1.1 Nonlinear Inverse Problems in Real-World
Applications

A particularly important nonlinear inverse problem is the phase retrieval prob-
lem, which has been extensively studied over the last decades because it arises
in a lot of scientific and industrial applications, e.g. crystallography (Harri-
son, 1993)(Millane, 1990), astronomy (Fienup and Dainty, 1987) and (optical)
imaging (Shechtman et al., 2014). It was originally formulated as the problem
of reconstructing a signal from the magnitude of its Fourier transform (which
arises when imaging a scene by measuring the magnitude of the scene’s reflection
in the far field when illuminated with a coherent electromagnetic field). Because
electronic detectors cannot directly measure phase, we utilize algorithms to re-
cover the phase based on prior knowledge of the signal domain (Shechtman
et al., 2014).

As a practical example, let us consider the problem of reconstructing a real-
world image x ∈ Rn when only the magnitude of its discrete Fourier transform
|Fx| =: y can be measured. Obviously, the discrete Fourier transform F trans-
forms the original real signal x into a complex signal Fx, and the modulus
operator | · | discards the phase information that is crucial in order to directly
reconstruct x from y. Reconstructing the missing phase information is equal to
reconstructing the original signal (because we can then simply invert the prob-
lem using the inverse discrete Fourier transform F−1). Figure 1.3 visualizes the
problem.

3



1. Introduction and Overview

Original image

Discrete Fourier
transform

Amplitude

Phase

Inverse Fourier transform
using only the amplitude

Resulting image

Figure 1.3: Schematic visualization of the discrete Fourier phase retrieval prob-
lem for an image x ∈ Rn. It is easy to see that given only |Fx|, we cannot
directly reconstruct x by applying the inverse discrete Fourier transform.

More generically, the aforementioned problem is also similar to reconstruct-
ing a signal from intensity-measurements of its diffraction pattern. Diffraction
occurs when a wave hits an obstacle (whose size is in the order of the wave-
length) or passes an aperture, and is an effect that drastically influences its
wave pattern. The result is a complex-valued signal. However, as mentioned
before, most detectors can only measure intensity, which motivates the usage of
phase retrieval techniques to recover the original signal. An example of such a
system is the single-pixel imaging device (in other literature also called single-
pixel camera), where a target scene is illuminated with radiation that has passed
a spatial light modulator configured with a random on/off pixel pattern, (where
only on-pixels allow the radiation to pass through the modulator). The mod-
ulated radiation pattern then hits the scene and its transmission is collected
through a collecting optics (e.g. a lens) at a single detector cell (hence the name
single-pixel camera). The illumination is repeated with different on/off pixel
patterns. The so collected information can be used to computationally recover
an image of the original scene (i.e., computational imaging). The (noise-free)
signal model for this scenario can be written as

yi =

∣∣∣∣∣∣
n∑
j=1

(DS→Ddiag(x)DM→Sai)j

∣∣∣∣∣∣
2

(1.4)

where ai ∈ {0, 1}n are real-valued vectors that represent random on/off pixel
patterns for the spatial light modulator and DM→S and DS→D are complex ma-
trices representing the diffraction effects between the spatial light modulator
and the target scene x, and between the target scene and the detector, respec-
tively. The system is schematically described in Figure 6.2. We will go into
detail about the signal model (1.4) and will evaluate some of the reconstruc-
tion algorithms presented in this thesis for the single-pixel use case (including
diffraction) in Chapter 6.

Generalized Phase Retrieval

Phase retrieval can be defined with respect to arbitrary transformations, which
leads to the following definition:

4



1.1. Nonlinear Inverse Problems in Real-World Applications

Definition 1.1.1. We define

find x ∈ Rn s.t. y = |Ax|2 ∈ Rm, A ∈ Cm×n

as the (real-valued) generalized phase retrieval problem.

In Definition 1.1.1 we refer to y as the measured signal. Additionally, we
will call A the sensing matrix and its rows ai the measurement vectors.

For the rest of this thesis, we will discuss how to solve the generalized phase
retrieval problem for real-valued signals x under random measurement matrices
A ∈ Cm×n.

Prior Art

Alternating projections

Classical approaches to solve the generalized phase retrieval problem are meth-
ods based on alternating projections. One of the most famous algorithms that
uses this approach is the Fienup algorithm (Fienup, 1982), which takes its idea
from non-generalized phase retrieval, specifically the problem of recovering a
complex or real image from magnitude Fourier measurements. The algorithm
iteratively imposes real-plane and Fourier-plane constraints and is not guaran-
teed to recover the correct solution (Osherovich, 2012). The Fienup algorithm
will be discussed in more detail in Section 4.2.

Semidefinite programming

Prior work also includes reconstruction algorithms based on semidefinite relax-
ation. One prominent example is PhaseLift (Candes et al., 2011), with the gen-
eral idea being that Definition 1.1.1 can also be understood as a set of quadratic
equations, which are equivalent to linear equations in higher dimensions. This
yields a convex optimization problem that can be solved using semidefinite pro-
gramming techniques and for which many guarantees exist (some of which will
be explained later). Section 4.4.1 gives a more detailed discussion of this ap-
proach.

Sparsity-based methods

Another line of work investigates sparsity-based algorithms, which are incor-
porating prior knowledge of the signal into the (generalized) phase retrieval
problem. The idea comes from the fact that many signals can be (approxi-
mately) represented as sparse vectors in some domain. For example, Figure 1.4
shows that natural images exhibit approximate sparsity in the wavelet domain.
Therefore, the original signal x can be rewritten with a sparsity basis Ψ and a
sparse vector α as:

x = Ψα (1.5)

5



1. Introduction and Overview

Original image Daubechies wavelet representation

Figure 1.4: Natural image and its representation in the wavelet domain. Black
pixels are coefficients close to zero, the signal in wavelet representation is there-
fore approximately sparse.

In this case a reconstruction algorithm can limit its search for the solution
to the set of sparse vectors α. A popular sparsity-based algorithm is GES-
PAR (Shechtman et al., 2013), which will be addressed again in Section 4.4.2,
because the idea of incorporating prior knowledge into the phase retrieval prob-
lem will be exploited heavily in the methods proposed later in this thesis.

Gradient-based methods

In 2014, Candes et al. introduced a gradient descent reconstruction scheme
called Wirtinger Flow (Candes et al., 2015) that solves the generalized phase
retrieval problem by minimizing a non-convex intensity loss function

f(x) :=
1

2m

m∑
r=1

(yr − |〈ai,x〉|2)2. (1.6)

This method was extended to use truncated generalized gradients (Chen and
Candes, 2015) to ensure that the gradients do not become too large, therefore
converging faster to the optimal value.

In 2016, Wang et al. proposed Truncated Amplitude Flow (Wang et al.,
2016), another gradient descent-based reconstruction method which minimizes
the amplitude loss

h(x) :=
1

2m

m∑
r=1

(
√
yr − |〈ai,x〉|)2. (1.7)

Due to the non-convexity of the loss functions in all gradient descent re-
construction schemes, careful initialization is proposed for all methods, some of
which will be described in more detail in Section 4.4.2.

Randomized Kaczmarz method

Another method, introduced by Tan and Vershynin in 2017, uses the observation
that each real-valued measurement

6



1.2. Deep Generative Models

√
yi = |〈ai,x〉| (1.8)

in fact defines two hyperplanes, one corresponding to x and one to −x. The
authors therefore suggest to solve the generalized phase retrieval problem by
iteratively choosing one of the measurements at random and projecting a run-
ning approximation x(k) onto the closer of the two hyperplanes defined by that
measurement (Tan and Vershynin, 2017). We will discuss this algorithm in more
detail in Section 4.4.3.

1.2 Deep Generative Models

Machine learning has been at the core of a multitude of innovations in the last
decade, and it is a powerful tool when it comes to modelling for decision making
where the enumeration of all necessary rules to make the decision is impractical
or impossible. Instead of writing decision rules in code, machine learning allows
to learn these rules from data (more specifically in supervised machine learning,
it learns these rules from the labeled training set, which contains both examples
for data as well as their accompanying decisions) in such a general way that
they can be used on formerly unseen data as well.

Deep learning as a specific subset of machine learning based on neural net-
works has been a very popular field of research in the last years. A particularly
prominent example is Krizhevsky et al.’s paper ImageNet Classification with
Deep Convolutional Neural Networks (Krizhevsky et al., 2012), in which the
authors empirically showed the superior performance of convolutional networks
over traditional machine learning methods for major image classification tasks.

Deep learning is able to model complex nonlinear relationships in data (such
as recognizing shapes and faces in images) which traditional machine learning
techniques are unable to model well. This makes them methods of choice when
working with high-dimensional data (e.g. images or audio).

Depending on what a machine learning technique learns from the data,
we can roughly distinguish discriminative and generative learning techniques.
While discriminative techniques learn the conditional probability p(y|x) of an
output y (e.g. a decision) given its input x (e.g. an image), generative tech-
niques aim to learn a joint probability p(x, y) of input and output. The so
learned generative model can then be used to generate arbitrary pairs of input
and output by sampling from p(x, y) (Jebara, 2004).

In this thesis we will be interested in such generative models, and particu-
larly in deep generative models, which are neural networks trained to work as
generators. An example of such a generative model is the generator part of a
variational autoencoder, which is schematically depicted in Figure 1.5.

1.3 Solving Nonlinear Inverse Problems with Deep
Learning

Due to their ability to approximate arbitrary continuous functions defined on
compact subsets of Rn (Goodfellow et al., 2016, p.192), neural networks are of
specific interest for phase retrieval problems.

7
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…0.23
0.96

Input Output

Figure 1.5: Generator part of a variational autoencoder produces images of
handwritten digits out of R2 inputs.

…

Denoising
Autoencoder

…

Figure 1.6: An autoencoder acting as a denoiser for the MNIST (LeCun, 1998)
dataset.

For example, neural networks can be trained to denoise signals (with the
denoising autoencoder (Goodfellow et al., 2016, p. 501f.) being a prominent
example) while generative neural networks are trained on a huge amount of
signals from some domain to learn the signals’ characteristics, which in turn
enables them to generate signals similar to (or, in the best case, indistinguishable
from) the ones from the original signal domain. Both of these network types
are of interest for the phase retrieval problem.

Not surprisingly, a lot of prior research has been conducted at the inter-
section of deep learning and nonlinear inverse problems, which can be roughly
distinguished into two different classes: deep regularization and deep generative
priors.

Deep Regularization

The idea behind deep regularization is that neural networks trained as denoisers
can improve reconstruction when they are used as regularizers.

A denoiser is a function D that maps a noise-corrupted signal x̃ = x + ε
to another signal x̂ = D(x̃) as similar to the original x as possible. Obviously
from this definition, denoisers are dependent on the class of permissible signals.
Most signal classes will be extremely large, which motivates the usage of machine
learning techniques for the task of learning them. In fact, denoising autoencoders
can learn to approximately denoise signals of such classes. An example of a
denoiser based on an autoencoder is given in Figure 1.6.

8



1.3. Solving Nonlinear Inverse Problems with Deep Learning

prDeep (Metzler et al., 2018) is an algorithm that uses the regularization by
denoising (RED) approach (Romano et al., 2017) to minimize the amplitude-
based objective function of generalized phase retrieval by adding a generative
neural network-based denoiser regularization term:

min
x

1

2
‖√y − |Ax|‖2 + λR(x) (1.9)

with R(x) = x>(x−D(x)) being a regularizer and D(x) a denoiser based on a
generative neural network trained on the signal domain (in the paper, they used
the well-known DnCNN (Zhang et al., 2017) network). The regularizer acts as a
penalty term for an x that shows a large difference between its denoised version
and itself, and for correlations between x and (x−D(x)) (which effectively pre-
vents the removal of structure from x). The resulting optimization problem can
be solved by proximal gradient methods, such as the forward-backward splitting
algorithm (Parikh et al., 2014)(Goldstein et al., 2014).

Deep Generative Priors
Based on the idea that prior knowledge about the signal domain can be incor-
porated into the phase retrieval reconstruction process (as it was the case in
the sparsity-based methods introduced in Section 1.1 and later to be detailed
in Section 4.4.2), some methods have already been proposed which assume that
any valid signal x+ is in the range of a generator function G : Rk → Rn, k < n,
so that G(z+) = x+ for some z+. Therefore, a reconstruction approach may
effectively have the form

find z s.t. y = |AG(z)|2. (1.10)

In 2018, Shamshad and Ahmed as well as Hand et al. proposed to solve
(1.10) by minimizing the amplitude loss function ‖√y−|AG(z)|‖2 with a simple
gradient descent scheme in the domain D(G) of the generator G (Shamshad
and Ahmed, 2018)(Hand et al., 2018). The Deep Regularized Gradient Descent
method proposed in Section 5.1.1 is a regularized intensity loss-based extension
of this algorithm.

In the remainder of this thesis we will not consider deep regularization, but
will instead introduce a third class of algorithms which use the output of a
deep generative prior-based reconstruction algorithm as an initializer for other
reconstruction algorithms. We will call this class deep generative initialization
and will discuss it in Chapter 5.2.

9





Chapter 2

Numerical Optimization

This chapter introduces the basics of numerical unconstrained optimization,
which builds the foundation for the description of the reconstruction methods
in Chapters 4 and 5.

Our general setup is that we want to find a vector x∗ ∈ Rn that minimizes
a scalar function f(x) : Rn → R:

x∗ := argmin
x∈Rn

f(x). (2.1)

If we restrict f to be continuously differentiable, then we can use gradient
descent to find a local solution.

Definition 2.0.1. (Bertsekas, 2016, p.4) We define a vector x∗ as an uncon-
strained local minimum of the function f if there exists an ε > 0 such that

f(x∗) ≤ f(x) ∀x with ‖x∗ − x‖ < ε.

Definition 2.0.2. (Bertsekas, 2016, p.688) A set C ⊂ Rn is called convex if

αx + (1− α)y ∈ C ∀ x,y ∈ C, ∀ α ∈ [0, 1].

A function f : C → R defined on a convex set C is called convex if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y),∀ x,y ∈ C, ∀ α ∈ [0, 1].

If we restrict f even more to be convex, then (2.1) has a global solution which
can be found by a gradient descent algorithm, because any local minimum of f
is also a global minimum.

11



2. Numerical Optimization

Definition 2.0.3. (Bertsekas, 2016, p.4) Analog to Definition 2.0.1 we define
a vector x∗ as an unconstrained global minimum of the function f if

f(x∗) ≤ f(x) ∀x ∈ Rn.

However, because the phase retrieval objective function

f(x) = ‖y − |Ax|2‖ (2.2)

is non-convex and not continuously differentiable, one cannot directly apply
gradient descent, and even if f would be continuously differentiable, one cannot
guarantee that the global optimum can be found in that way. We will see in
the following section how gradient-based algorithms can nevertheless be used to
solve (2.2).

2.1 Gradient Descent
One of the most well-known local optimization methods is gradient descent.
The idea is relatively simple: To minimize a differentiable function f(x), given a
starting position x(0), one descends in some direction x(1)−x(0) so that f(x(1)) ≤
f(x(0)). One proceeds like this until one can no longer find a direction in which
to descend. According to Definition 2.0.1 one has found a local minimum of f .

Definition 2.1.1. The gradient of a differentiable scalar field f(x) : Rn → R is

∇f := [
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn
]>

i.e. the vector of all partial derivatives ∂
∂xi

f (Bertsekas, 2016, p. 766)(Goodfel-
low et al., 2016, p. 82).

The gradient is the direction of steepest ascent (Bertsekas, 2016, p.25).

A natural descent direction for the k-th iteration of this strategy is given
by the negative gradient −∇f(x(k)), which is exactly the direction of steepest
descent per Definition 2.1.1. Figure 2.1 shows on a contour plot how gradient
descent iteratively reaches the minimum of some (convex) function f .

Mathematically, we can therefore write gradient descent as an iterative equa-
tion:

x(k+1) := x(k) − α(k)D(k)∇f(x(k)), (2.3)

where D(k) is a positive definite symmetric matrix (for simplicity we set D(k) =
I, which is sometimes referred to as the method of steepest descent) and α(k) is
the step size at iteration k (Bertsekas, 2016, p.25).

As it only takes into account the gradient of f , (2.3) is also commonly
referred to as first-order gradient descent. The method terminates when the

12
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x1

x2

Figure 2.1: Gradient descent (starting at the solid blue dot) reaching the min-
imum of a convex function f : R2 → R by iteratively descending in the
direction of the negative gradient −∇f

gradient ∇f(x(k)) vanishes, which means that, per Definitions 2.0.1 and 2.1.2,
x(k) is either a local minimum (in case the conditions from both definitions
are fulfilled) or a saddle point (in case the condition from Definition 2.0.1 is
not fulfilled). However, it can be shown that in many practical applications
convergence to a saddle point is extremely unlikely and practically does not
happen in higher dimensions (Lee et al., 2016), so that one can assume that
(2.3) converges to a local minimum.

Definition 2.1.2. (Bertsekas, 2016, p.13) If x∗ is an unconstrained local min-
imum of a function f : Rn → R and f is continuously differentiable in an open
set S containing x∗, then

∇f(x∗) = 0.

Initialization

The initial value x(0) is often chosen as a random vector. However, in the case of
a non-convex function f , setting x(0) close to the desired x∗ (i.e., having a good
initial guess) can lead to the local minimum found by gradient descent actually
being the global minimum. This is the reason why gradient descent schemes can
be used for global non-convex minimization when proper initialization values
can be determined.

We will see later in this thesis that initialization plays a crucial role in the re-
construction quality of phase retrieval algorithms. Figure 2.2 shows an example
of gradient descent finding the global minimum due to good initialization.

13
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x

f(x)
initialization

global
min

Figure 2.2: Gradient descent finding the global minimum of a nonconvex func-
tion due to good initialization.

Step size

Further importance shall be given to the step size α(k) of (2.3). The most simple
step size is a fixed

α(k) = α, k = 1, 2, ... (2.4)

If the step size α(k) is too large, f(x(k+1)) ≤ f(x(k)) might no longer hold
and divergence will occur; if the step size is chosen too small, convergence may
be very slow. An appropriate constant step size must therefore be empirically
determined (Bertsekas, 2016, p.33).

A variety of other step size rules exist, but their coverage is out of scope of
this thesis.

Subgradients

In many cases our function f will not be continuously differentiable. If we take
for example the point-wise modulus/absolute operator f : Rn → Rn : f(x) =
|x|, we can easily see that the gradient of f at x = 0 is not defined. In order to
use descent methods for this function, we can however replace the gradient with
a subgradient of f at x = 0 (Shor, 1985, p.3 ,p.22) (Boyd and Vandenberghe,
2004, p.338).

Definition 2.1.3. (Shor, 1985, p.9)(Bertsekas, 2016, p.731) For a convex func-
tion f : Rn → R and x0 ∈ Rn, a vector gf (x0) is a subgradient of f at point x0

if it satisfies
f(x) ≥ f(x0) + (x− x0)>gf (x0)

for all x ∈ Rn.
The set of all subgradients of a function f at x0 is called subdifferential

∂f(x0).
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f(x)=|x|

x x

f(x)=|x|  ∂f(x)

Figure 2.3: The function f : R→ R : f(x) = |x| (blue solid line; left) with some
exemplary subgradients (red dashed lines; center) as well as its subdifferential
∂f(x) (red solid line; right).

This approach is also often called subgradient method, and it can be itera-
tively defined as

x(k+1) := x(k) − α(k)gf (x(k)), (2.5)

where gf (x(k)) ∈ ∂f(x(k)) is a particular subgradient (Shor, 1985, p.22) at x(k).
To bring a visual example, Figure 2.3 shows the function f : R→ R : f(x) =

|x|, some exemplary subgradients and its subdifferential.
An important observation is that subgradients are not necessarily descent di-

rections. Therefore one commonly keeps track of the best iterate mini=1,..,k f(x(i))
(Boyd, 2014, p.4).

The subgradient method is identical to gradient descent for continuously
differentiable functions because the subdifferential ∂f of a function f is identical
to the gradient ∇f at all points x where ∇f(x) is defined.

Constant step sizes should theoretically not work well with subgradient-
based descent methods because the function f might not be differentiable at
its minimum and the series {gf (x(k))}∞k=1 might not converge to 0 (Shor, 1985,
p.22). However, making use of subgradients is an intuitive way to use gradient
descent for functions that are almost everywhere differentiable and has proven
to work well in practice.
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Chapter 3

Deep Learning

Deep learning is the collective term for a variety of concepts and algorithms that
are based on the idea that one can approximate arbitrary continuous functions
defined on compact subsets of Rn using a feedforward network of simple com-
putational units with nonlinear activation functions (Goodfellow et al., 2016,
p.192).1

Feedforward neural networks (also sometimes referred to as multilayer per-
ceptrons (MLPs) or deep feedforward networks) are the most basic deep learning
models. In the same way as with other machine learning methods, given a func-
tion f , we can train a feedforward network so that it learns to approximate f
over any compact subset in D(f) (the domain of f). During training, we feed
the network with input and output pairs, resulting in changes of the configu-
ration of the network-internal parameters. We refer to this process as learning
(Goodfellow et al., 2016, p.163).

This ability to learn a function makes machine learning and especially feed-
forward neural networks suitable for a multitude of tasks from regression (pre-
dicting the state of a system in a given configuration) to classification (mapping
an input to a certain class or deciding if a certain decision should be taken) or
generation (generating new data based on the internal characteristics of the
data that the network has been trained on), where manually writing down rules
would be inappropriate. These tasks can also be combined or extended to per-
form higher-level tasks, such as machine translation, anomaly detection, missing
value imputation or density estimation (Goodfellow et al., 2016, p.98ff).

This chapter will give an overview of machine learning in general before
defining feedforward neural networks and the special variety of variational au-
toencoders in Sections 3.2 and 3.6.

1A stricter version of this is the universal approximation theorem, which states that "a
feedforward network with a linear output layer and at least one hidden layer with any squashing
activation function [...] can approximate any Borel measurable function from one finite-
dimensional space to another with any desired nonzero amount of error, provided that the
network is given enough hidden units." (Goodfellow et al., 2016, p.192). However, this does
not automatically mean that one will also be able to train the neural network to learn any
such function (Goodfellow et al., 2016, p.193).
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3. Deep Learning

3.1 Machine Learning Essentials

We can divide most machine learning techniques into supervised and unsuper-
vised techniques. While supervised machine learning techniques learn a rela-
tionship between the features of data points X and accompanying labels y,
which allows them to predict labels for unseen data points, unsupervised ma-
chine learning algorithms are trained only on the data points (without labels)
with the aim to learn useful properties from them (Goodfellow et al., 2016, p.95,
p.102). Which properties are useful though is highly dependent on the task at
hand: while for an anomaly detection algorithm the distance of a data point to
the rest of the data points or any other measure of similarity might be highly
useful, another task might demand the machine to learn the general shape or
structure of an object with the goal to learn how to come up with new object
shapes by itself.

Consider the example of trying to learn to predict the function values of
an arbitrary continuous scalar function f : Rn → R, f(x) := y from k pairs of
inputs and noisy outputs (xk, yk+εk) where εk can for simplicity assumed to be
zero-mean Gaussian noise εk ∼ N (0, σ). We call the individual entries of D(f)
features and the ys targets. This is a classic regression analysis setup. Based
on the learning task and the properties of f there are a variety of methods to
address this problem.

Let us assume that our task is to find the best possible linear approximation
of the data in a least squares sense and furthermore that we want to enforce
the resulting regression to depend on as few of the original features as possible
(which might be important to ensure good predictive power). This task can be
written as an optimization problem as follows

β∗ := argmin
β

1

n
‖y −Xβ‖22 + λ‖β‖1 (3.1)

where X = [x1, ...,xk]> is the data (or covariate) matrix, y is the vector of
targets (or outcomes) and β ∈ Rn is the vector of feature weights of the linear
regression model. This problem is often called LASSO (least absolute selection
and shrinkage operator) (Hastie et al., 2009) and is a commonly used technique
in machine learning and many other disciplines. Its objective function is non-
linear, not everywhere differentiable (due to the presence of the regularization
term ‖β‖1) and has no closed-form solution (Hastie et al., 2009, p.68).

Despite not having a closed form solution, (3.1) is convex (because both the
least-squares operator and the `1-norm are convex) and can therefore be solved
using the subgradient method introduced in Section 2.1. The resulting β∗ is the
vector with the weights for the individual features, so we can use it to compute
a prediction ŷ = β∗>x.

Empirical risk minimization

As we have seen, machine learning can be understood in terms of an optimization
problem. Let us consider again a function f : X → Y (and call this function
hypothesis) which we want to learn from data X and labels Y . We will also
assume that there exists a joint probability distribution p(X,Y ) and that our
dataset consists of k samples drawn i.i.d. from this distribution p(X,Y ).
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3.2. Feedforward Neural Networks

We want to fit a linear function f to our available data pairs (xi ∈ X, yi ∈ Y )
in a least squares sense which, if written down for each data point, gives us a
quadratic loss function

L(ŷ, y) = (ŷ − y)2 = (f(x)− y)2. (3.2)

A loss function is a non-negative scalar function that maps two labels to
a value that indicates their difference, which in our case is the squared error
(ŷ − y)2. We call

R(f) = E(x,y)∼p(X,Y )L(f(x), y) (3.3)

the risk associated with our hypothesis f .
The goal of machine learning is to find the best hypothesis f∗ such that the

risk is minimized, i.e.
f∗ := argmin

f
R(f) (3.4)

which, however, due to the joint probability p(X,Y ) being unknown can only be
approximated using the empirical distribution p̂(X,Y ), i.e. the set (xi, yi), i =
1, ..., n of known data pairs. Therefore, we call

Remp(f) = E(x,y)∼p̂(X,Y )L(f(x), y) =
1

n

n∑
i=1

L(f(xi), yi) (3.5)

the empirical risk and can thus rephrase the goal of a machine learning algorithm
to solve the empirical risk minimization

f̂ := argmin
f

Remp(f). (3.6)

instead (Goodfellow et al., 2016, p.268f)(Vapnik, 1992).

3.2 Feedforward Neural Networks
Despite the vast applicability of traditional machine learning methods, there
are some real-world challenges for which most of them have been shown not to
work well. If one thinks of the central challenges in artificial intelligence, such
as object or speech recognition, we have seen a specific class of machine learning
methods show superior performance compared to traditional techniques. Deep
neural networks have broken barriers of performance on many computer vision
and machine understanding tasks, notably the already mentioned ImageNet on
image classification (Krizhevsky et al., 2012) or the partly neural network-based
AlphaGo program beating one of the world’s best Go players in 2016 (Silver
et al., 2017).

This section will deal with only one variety of deep neural networks, which
are also the most basic ones: fully-connected feedforward neural networks. These
networks consist of layers of many individual computational units called neu-
rons, which are connected in a feedforward manner from the input layer towards
the output layer, while every neuron in one layer is connected to every neuron
in the next layer. The input layer has a number of neurons that is equal to the
number of features of the data and the output layer is commonly modeled to
have as many neurons as the label has dimensions. This can be a single neuron
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Figure 3.1: Exemplary architecture of a simple feedforward neural network and
close-up of a single neuron. The neuron computes its output h by calculating
the sum of the inputs xi weighted by wi (plus an additional bias b) and applying
a nonlinear activation function g afterwards.

for a simple one-dimensional regression problem or k neurons for a classification
problem with k classes, where the output of every neuron in the output layer
can be understood as an indicator (e.g. probability) for class membership. Fig-
ure 3.1 shows an exemplary architecture of a simple feedforward neural network.

Every single neuron is defined by its inputs x (plus a separate bias b), input
weights w, a nonlinear activation function g : R → R and its output h (Duda
et al., 2001, p.285). The neuron’s output is given by

h = g(w>x + b). (3.7)

The activation function g is usually chosen to be the same for all neurons of
a single layer, so we can write the vectorized version of (3.7) as

h = g(W>x + b) (3.8)

with W being a matrix with rows wi as the input weights, b being the vector
of all biases of the layer and g being applied point-wise (Goodfellow et al., 2016,
p.187, p.191).

Popular activation functions in neural networks are the sigmoid, tanh or the
rectified linear unit. The sigmoid(x) : R → [0, 1] function (Goodfellow et al.,
2016, p.65) is defined as

sigmoid(x) :=
1

1 + exp(−x)
(3.9)

and is an activation function that is particularly often used in the output layer
to scale the output to the range [0, 1].

The rectified linear unit (ReLU ) (Goodfellow et al., 2016, p.187)

relu(x) := max{0, x} (3.10)
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Figure 3.2: Plots of the sigmoid, tanh and the rectified linear unit activation
functions commonly used in neural networks.

is another activation function which is especially fast to derive (although not
directly differentiable in 0) and therefore despite its similarity very often used
in deep neural networks. A very popular extension of the ReLU is the leaky
ReLU, which is defined2 as

leakyrelu(x) := max{0.01x, x} (3.11)

Figure 3.2 plots the sigmoid, tanh and the relu activation functions.
All l layers in the network together form the neural network with input x and

output ŷ, which allows us to concisely write down the full network in vectorized
form as

ŷ := g(l)(W(l)> · · · g(3)(W(3)>g(2)(W(2)>x + b(2)) + b(3)) · · ·+ b(l)). (3.12)

Note that the input layer (technically layer 1 here) does not appear in the
equation as it is usually only mentioned for a better understanding but not
explicitly modeled.

Training a neural network

To fit an untrained neural network, we feed training data (pairs (x, y) of features
x and targets y, which we will for simplicity assume to be scalar, although y
can be a vector if the output layer of the network contains multiple neurons)
to the input layer, pass it through the network and take the output ŷ at the
output layer to compare it to the target value y. A non-negative function of
the difference between y and ŷ is called loss and is a scalar function L(ŷ, y)
as explained in Section 3.1. Our aim is to minimize this loss, which means to
match the network outputs ŷ with the desired outputs y as closely as possible
(Duda et al., 2001, p.294f).

2https://github.com/FluxML/NNlib.jl/blob/52b9c39e0be6423afa1867838bf68472a87692dd/
src/activation.jl
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We can define the total loss J with respect to the model parameters θ (in-
cluding weights W and model biases b) as a function of the loss L with a
potentially added regularization term Ω(θ):

J(x, y;θ) := L(f(x;θ), y) + Ω(θ). (3.13)

Using this total loss J , we can update our network parameters θ for every
training pair (x, y) by performing a gradient descent step using the gradients
with respect to biases and weights calculated using the well-known backpropa-
gation algorithm described in Algorithm 1.

Algorithm 1: Backpropagation algorithm for training neural networks
(cf. (Goodfellow et al., 2016, p.206))
Data: input x

target y
the model’s weight matrices W(k) for all layers k = 1, ..., l
the activations at all layers k = 1, ..., l: a(k) := b(k) + W(k)h(k−1)

h(k) := g(k)(a(k)) for all layers k
Result: gradients ∇b(k)J and ∇W(k)J for all layers k to be used in a

gradient descent update step
After the forward pass (3.12) through the network has been computed,
compute the gradient on the output layer: γ ← ∇ŷJ := ∇ŷL(ŷ, y)
for k = l, l − 1, ..., 1 do

Propagate output layer’s gradients into the nonlinear activations:
γ ← ∇a(k)J := γ � ∂

∂a(k) g
(k)(a(k))

Now compute gradients on weights W(k) and biases b(k):
∇b(k)J := γ + λ∇b(k)Ω(θ)
∇W(k)J := γh(k−1)> + λ∇W(k)Ω(θ)

Now propagate gradients to the next-lower layer:
γ ← ∇h(k−1)J := W(k)>γ

end

It is important to notice that while the method described in Algorithm 1 is
technically correct (and most commonly known as stochastic gradient descent,
because it performs a gradient descent step based on one (randomly chosen)
(x, y) at a time), most practical applications usually make use of minibatches,
where the gradient is calculated not with respect to only one (x, y) pair, but to
a (usually small) number of them.

3.3 Algorithmic Differentiation
In order to execute Algorithm 1, we need to be able to solve for the gradients of
J programmatically in a timely and exact manner. To do this, we have a num-
ber of options: we could (1) manually differentiate all necessary functions and
implement them in code, we could(2) numerically differentiate all functions, we
could (3) symbolically differentiate the complete algorithm (Goodfellow et al.,
2016, p.206) or we could (4) change our code on-the-fly so that variables are
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f(x):
  for i = 1:3
    x = x - x*x
  return x

f’(x):
  (x, dx) = (x, 1)
  for i = 1:3
    (x, dx) = (x - x*x, dx - 2*x*dx)
  return (x, dx)

original code code generated by algorithmic differentiation

Figure 3.3: Pseudocode of a function and its derivative with respect to x created
using automatic differentiation. Every occurrence of the variable x is replaced
by a tuple consisting of a variable for x and one for its derivative dx, and every
(basic) operation affecting x is replaced by a tuple consisting of the operation
itself and its derivative. Adapted from (Baydin et al., 2015).

saving additional information for their derivatives and all operators know their
derivatives which they propagate per the chain rule of differential calculus (Bay-
din et al., 2015).

Manual differentiation (1) can get out of hand and is prone to error for very
large functions. Numerical differentiation (2), while easy to implement, can
be very inexact due to rounding and truncation errors (Jerrell, 1997). Sym-
bolic differentiation (3) requires the functions to be defined as a closed-form
mathematical expression, therefore making it unattractive given the potentially
complex control flow of a program (Baydin et al., 2015).

Method (4) is also commonly called automatic or algorithmic differentiation
and is at the core of many deep learning libraries (such as Python’s PyTorch3

or Julia’s Flux 4). It usually involves having explicit symbolic derivatives of
all the programming language’s basic operators (e.g. +, *, / ) and standard
functions (e.g. exp(x), abs(x), max(x, y)) and creating specialized code for
the program to get derivatives or gradients for arbitrary inputs. Algorithmic
differentiation does not suffer from truncation errors (Griewank and Walther,
2008, p.2) and is a low-overhead way to differentiate through arbitrarily complex
computer programs, which includes, but is obviously not limited to, deep neural
networks. In fact, automatic differentiation is used in many other cases outside
of deep learning, and we will use it to compute gradients for the deep generative
model-supported algorithms in Chapter 5.

Figure 3.3 shows in pseudocode how the derivative of a simple function is
created using automatic differentiation.

As seen in the the list of standard functions in the last paragraph, some
elemental functions or constructs of programming languages are inherently non-
differentiable (such as abs(x), max(x, y) or if-else-statements). If we can, how-
ever, ensure that a function f : D→ Rn is piecewise differentiable on an open do-
main D, which means that there exists a selection of functions f (k) : D(k) → Rn
that are continuously differentiable on their open domains D(k), then we can
differentiate them at any point in

⋃
k=1,...,lD

(k). As a result, we can (of-
ten) get meaningful replacements for gradients at points of non-differentiability
(Griewank and Walther, 2008, p.335, p.342).

3https://pytorch.org/
4https://fluxml.ai/
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As an example, the absolute operator abs(x) : R → R is piecewise differen-
tiable, and we can write it down as

abs(x) = |x| =


x =: abs(1)(x) : R→ R, if x > 0

0 =: abs(2)(x) : R→ {0}, if x = 0

−x =: abs(3)(x) : R→ R, if x < 0.

(3.14)

While we cannot directly derive abs(x) at x = 0, we can instead derive
abs(2)(x) at x = 0 because it is continuously differentiable.

As the topic of algorithmic differentiation is much more complex than in-
troduced here and out of scope of this thesis, the interested reader may refer
to Griewank and Walther for a deeper discussion on the topic (Griewank and
Walther, 2008).

3.4 Convolutional Neural Networks
As this thesis deals with the reconstruction of images, we want to briefly intro-
duce a certain kind of neural network that is specifically designed for grid-like
data, such as images (2D) or time series (1D) data.

We call a neural network convolutional if it uses a convolution operator in-
stead of the general matrix multiplication in at least one of its layers. Moreover,
convolutional neural networks typically make use of sparse interactions, which
results in not every neuron of layer l being connected to every neuron of the
subsequent layer l + 1 anymore (in comparison to the fully-connected layers
in regular networks). This is achieved by using convolution kernels which are
smaller than the size of the image/grid at layer l (Goodfellow et al., 2016, p.321,
p.325). Convolutional networks are trained in the same way as regular neural
networks, but (instead of weights) the convolution kernels are learned.

Definition 3.4.1. (Goodfellow et al., 2016, p. 332) The convolution of a 2-
dimensional image M with a 2-dimensional kernel K is defined as

(M ∗K)i,j :=
∑
m

∑
n

Mm,nKi−m,j−n.

We can describe a convolutional layer as a sequence of two operations:

1. A convolution operation where the input data (i.e. the output from the
previous layer) is convolved with a kernel K.

2. An (optional) detector operation, in which a nonlinear activation function
is applied point-wise to the output of the convolution stage.

Another important concept besides convolution is pooling, which is essen-
tially a summary operator (for example the max function, then also commonly
referred to as maxpooling) applied with a certain neighborhood size (just like
the regular convolution). Pooling allows to learn e.g. invariances to spatial
translations (by applying spatial pooling operations at one or multiple stages of
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Figure 3.4: Schematic view of a convolutional neural network for the classifica-
tion of handwritten digits of the MNIST dataset. At the first layer, the image is
convolved with different masks, resulting in multiple new intermediate images,
which are again convolved at the second layer with further masks. The resulting
intermediate images are vectorized so that they can be consumed by the fully-
connected third layer. The output layer consists of ten neurons, which serve
as indicators for class membership. In this example, the network is assigning
a high value to the output-layer neuron 7, indicating that the image has been
classified as a 7. Figure based on (O’Neill, 2006).

the network). We call a layer that performs a pooling operation a pooling layer
(Goodfellow et al., 2016, p.330).

Both pooling and convolutional layers can be parameterized by a stride
width, which defines the number of pixels to skip in each direction between
each convolution operation. This effectively downsamples the image.

Common convolutional neural networks make use of many convolutional
and/or pooling layers and also combine them, depending on the task, with
regular fully-connected layers. Figure 3.4 schematically shows a convolutional
neural network used to classify handwritten digits.

The topic of convolutional neural networks is again much broader and only
the basics needed for the understanding of the models used in the next chapters
have been introduced here, so we refer to Goodfellow et al. (Goodfellow et al.,
2016) for a deeper discussion on the topic.

3.5 Generative Machine Learning

A useful way to distinguish machine learning models is on the basis of what
kind of probability distributions they learn from the data. In the example in
Section 3.1 we have seen that LASSO learns to predict an outcome y ∈ Y
based on an input x ∈ X. LASSO does not learn any information about the
probability distribution p(X,Y ) that underlies the data and the labels, i.e., it
is agnostic to the way how the data has been generated.

There are, however, other machine learning methods that are able to learn
the joint probability distribution p(X,Y ) of data and labels. Those machine
learning models are typically called generative models, and knowledge about
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3. Deep Learning

p(X,Y ) allows us to solve for and therefore also sample from p(X). Sampling
from p(X) is equivalent to generating new (unseen!) data points from the source
distribution of the data X. This property makes generative models particularly
interesting for certain machine learning tasks (such as density estimation) and
will serve us very well in the following sections.

One example for a generative machine learning technique is the variational
autoencoder, which will be explained in the next section.

3.6 Variational Autoencoders

Before we come to the introduction of the variational autoencoder, we need to
take a look at a certain type of networks, the differentiable generator networks.
These are differentiable functions g(z;θ) (where θ represents the model param-
eters) which transform samples of a variable z to samples or to distributions of
x parameterized by θ. The variables z are often drawn from a probability dis-
tribution (for example the normal distribution N (0, 1)) themselves (Goodfellow
et al., 2016, p.684f).

Let our goal be to generate samples from a very complicated distribution,
which we assume to be the distribution p(X) underlying our training data X.
We will assume that based on our limited amount of samples, we cannot di-
rectly specify p(X), so we use a feedforward network to learn an approximation
pmodel(X) of this probability distribution p(X).

A variational autoencoder (VAE) is a neural network that uses a differ-
entiable generator network g : Z → X (called the generator or decoder) in
combination with an inference network e : X → Z (called the encoder) to learn
the probability distribution pmodel(X). These two networks are linked together
in the following way: a training data point x gets fed into the encoder network
which outputs a sample of the latent (encoded) representation z = e(x) ∼ q(z|x).
This z is fed into the generator which is able to translate it to an approximation
x̂ = g(z) ∼ pmodel(x|z) of the original x (Goodfellow et al., 2016, p.687f).

A core idea of variational autoencoders is to train the encoder together
with the generator : we train the encoder so that (1) q(z|x) follows a pre-
defined probability distribution pmodel(z) (for example N (0, 1)) and that (2)
Ez∼q(z|x)pmodel(x|z) is maximized.

Definition 3.6.1. (Duda et al., 2001, p. 632) The Kullback-Leibler divergence
is a measure of difference between two probability distributions p(X) and q(X)
over the same random variable X and is defined as

DKL(p‖q) :=
∑
x∈X

p(x) log
p(x)

q(x)
.

We can achieve (1) by minimizing the Kullback-Leibler divergence between
q(z|x) and the predefined probability distribution pmodel(z). To achieve (2),
instead of maximizing Ez∼q(z|x)pmodel(x|z) directly, we will maximize Ez∼q(z|x)
log pmodel(x|z). Overall, we can rewrite the training objective as a loss function
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GeneratorEncoder

Sampling from
latent state
distribution

Latent state:
mean

Latent state:
variance

Figure 3.5: Schematic architecture of a variational autoencoder. The encoder
part produces a latent representation which follows the two-dimensional Normal
distribution (modeled explicitly by two neurons for the means of the latent
representation and two neurons for the variances of the latent representation).
The decoder part samples from the latent state distribution and generates the
output by propagating the values through its network.

ShepploganMNIST

Figure 3.6: Exemplary output of the generator parts of two variational autoen-
coders trained on the MNIST and Shepp-Logan dataset when sweeping through
parts of the two-dimensional latent distribution.

for a maximization problem as follows

L(q) = ELBO(q) = Ez∼q(z|x) log pmodel(x|z)−DKL (q(z|x)‖pmodel(z)) (3.15)

which is in other literature also known as the evidence lower bound (ELBO)
(Goodfellow et al., 2016, p.687).

Learning now means maximizing L by adapting the parameters θ of the
encoder and generator networks, which we can do using backpropagation by
sampling from the training data.

After the training, we can use the generator part of the variational autoen-
coder to produce new samples from the distribution pmodel(x|z) after randomly
sampling z ∼ pmodel(z) (in practice, pmodel(z) will often be Gaussian), by feeding
z into the generator g.

Figure 3.5 shows an exemplary architecture of a variational autoencoder and
highlights its most important parts. Additionally, Figure 3.6 shows the output
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3. Deep Learning

of the generator part of a variational autoencoder for inputs z sweeping through
parts of a two-dimensional distribution pmodel(z).

Variational autoencoders can also be combined with other techniques such
as convolutional neural networks. The fully-connected feedforward networks for
generator and encoder networks are then replaced with convolutional neural
networks.
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Chapter 4

Inverse Problems

We will now take a look at a generalization of the initial problem statement
from Chapter 1. Given some map A : D(A) ⊂ X → Y (where X and Y are
finite-dimensional normed spaces) and a measurement y ∈ Y , we are interested
to recover the original signal x ∈ X:

find x s.t. ||y −A(x)||Y ≤ δ (4.1)

where δ ≥ 0 is a small constant to account for measurement errors.
We will call A from now on the forward operator. This is a very generic

definition of an inverse problem as we do not impose any constraints on the
map A (Mueller and Siltanen, 2012, p.140).

We call an inverse problem of the form (4.1) well-posed if all of the following
Hadamard conditions are fulfilled (Mueller and Siltanen, 2012, p.139):

• There is a unique solution for every y ∈ Y ;

• The solution is stable under perturbations of y, i.e. the operator A−1 is
defined on all Y and is continuous.

For many interesting problems the Hadamard conditions will however not
be fulfilled (such a problem is also called ill-posed), which means that we will
not be able to find a backward operator A−1 which is applicable to all y ∈ Y .
Under certain assumptions on the forward operator A and if we restrict our x to
belong to a permissible signal domain X ⊂ X, we might however have a chance
to recover x from y.

In the next section, we will investigate how to solve (4.1) for certain linear
forward operators A, while Sections 4.2 and 4.3 will explore the problem for a
certain class of nonlinear forward operators, which will result in the definition
of the generalized phase retrieval problem. This problem is a fundamental one
that occurs in many disciplines, and we will focus on how to solve it for the rest
of this thesis.

4.1 Linear Inverse Problems
Before we start looking at nonlinear inverse problems, we first want to look at
a technique for solving linear inverse problems of the form

find x s.t. y = Ax, A ∈ Cm×n, x ∈ Cn, y ∈ Cm. (4.2)

29



4. Inverse Problems

In the case that A is invertible, all Hadamard conditions are fulfilled, and
the solution to (4.2) is directly provided by

x = A−1y. (4.3)

Definition 4.1.1. (Goodfellow et al., 2016, p. 45f) The Moore-Penrose pseu-
doinverse A† of a matrix A is defined as

A† = lim
α→0

(A>A + αI)−1A>.

However, in most practical use cases, A will not be quadratic, and therefore
will not be invertible. A natural approach, then, would be the usage of the
Moore-Penrose pseudoinverse A† (cf. Definition 4.1.1), which yields the solution
to the following least squares problem:

A†y := argmin
x
‖Ax− y‖2. (4.4)

For some applications, this can deliver an appropriate approximation of the
true value x (this is the simplest case of a linear regression). However, in many
cases, the least squares solution will not be appropriate.

Besides solving (4.4) to obtain an approximation of x, there exist a variety of
other methods. The LASSO method has already been introduced in Section 3.1
and obtains an estimate of x by solving

argmin
x
‖Ax− y‖2 + λ‖x‖1, (4.5)

which is basically selecting an x that is close to the least squares solution but
also to some extent (characterized by the factor λ) minimizes the regularization
term, which is the `1-norm of x. The collective minimization of the data fidelity
term ‖Ax−y‖2 and the regularization term ‖λx‖1 in (4.5) yields results which
are often very desirable, because they promote the sparsity of x. We will now
explore a field of research on linear inverse problems called compressed sensing
that is particularly interested in finding such sparse solutions.

4.1.1 Compressed Sensing
Compressed sensing looks at (4.2) from a slightly different angle. The rela-
tively new field of research (which has been introduced by the seminal works
of Donoho (Donoho, 2006) and Candes and Tao (Candes and Tao, 2006)) is
interested in the reconstruction of signals x from measurements y = Ax under
the assumption that x is k-sparse, i.e. that x has only a maximum of k non-zero
entries, or that x is at least compressible, i.e. that only very few of its entries
are large and the others are very small in comparison.

Many natural signals exhibit this property if they are represented in another
basis. The wavelet basis for example allows for a compressible representation of
natural images, which was already shown in Figure 1.4. We can therefore also
(approximately) express our true image x as a multiplication of a sparsity basis

30



4.2. Nonlinear Inverse Problems

and a sparse vector (x = Ψα). This observation is the key insight that allows
us to compress signals (e.g. JPEG for images) and recover them without major
information loss.

Let us imagine that we want to take a photograph of a scene. A modern
digital camera takes an image by saving the intensities of every pixel of its 2D
light sensor array (i.e. we directly sample x = Ix). Afterwards, it compresses
this data (to reduce the file size) and saves it to its data storage. One might
ask the question: If we know that our signal (in this case, an image) is actually
sparse (or compressible) in a known basis, then do we really need to sample
all pixels individually? Can we not find a different way to sample so that we
capture only the absolute minimum of information that is needed to recreate
our true image?

Translated into our theoretical framework, the resulting question is therefore:
Knowing that x is k-sparse, can we design a measurement matrix A in such a
way that we can recover the true x from an underdetermined system y = Ax?

Research shows that explicitly designing such matrices optimally in terms
of sampling rate is extremely hard, but that matrices based on some probabil-
ity distributions are suitable for that purpose, for example Gaussian matrices
(Ai,j ∼ N (0, 1) or Ai,j ∼ N (0, 1/2) + iN (0, 1/2)) (Baraniuk et al., 2008).1

This means that using a Gaussian measurement matrix A, with overwhelm-
ing probability we are able to recover a sparse x given y from y = Ax.

Recovering x from y = Ax is now no different than solving any other inverse
problem, and one approach (of many!) is to apply the aforementioned LASSO,
which, in the compressed sensing community, is sometimes also called basis
pursuit (Chen et al., 1998).

4.2 Nonlinear Inverse Problems
We can as well aim to solve inverse problems in which the forward operator A
is nonlinear in a least-squares sense by solving the minimization problem

min
x
‖y −A(x)‖22. (4.6)

Assuming only differentiability of A and without knowledge of an inverse
operator A−1, a generic approach to solve this problem is the usage of gradient
descent methods (Mueller and Siltanen, 2012, ch.11). As in the linear case, we
could add a regularization term (such as the `1-regularizer ‖x‖1 or a regular-
izer based on discrete (anisotropic) total variation ‖x‖TV (Condat, 2017) (see
Definition 4.2.1)) to the objective and solve for x iteratively (Engl and Kügler,
2005). Since A is most probably not convex, those methods will get stuck in
local minima though, so proper initialization is needed.

Definition 4.2.1. Condat (Condat, 2017) defines

||X||TV :=

n1∑
i=1

n2∑
j=1

|Xi+1,j −Xi,j |+ |Xi,j+1 −Xi,j |

1For a deeper discussion on the properties that A needs to fulfill, see the works by Candes
and Tao (Candes and Tao, 2005) and (Eldar and Kutyniok, 2012).
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as the discrete anisotropic total variation (norm) of an image X ∈ Rn1×n2

(Chambolle et al., 2009).
Based on this, we say that

||x||TV := ||X||TV

is the total variation (norm) of the signal x ∈ Rn1·n2 if the vector x implicitly
defines a matrix X (e.g. when representing a 2D image as a vector instead of
as a matrix).

Note also that as in the linear case, for such an ill-posed problem without
any further assumptions on A, our chances might be low that we are actually
able to recover the original signal x from the measurement y: imagine the most
extreme case of A(x) ≡ 0, where every x becomes a valid global minimum of
(4.6). In that case, we obviously cannot recover any x as all information about
the signal is lost in A.

We will therefore only look at nonlinear inverse problems where A does not
discard too much information about the signal. One prominent such nonlinear
inverse problem (where reconstruction is often possible) is the Fourier phase
retrieval problem. It is defined as:

find x s.t. y = |Fx| (4.7)

where Fx denotes the Fourier transform of the signal x.
We know that the Fourier transform has a well-defined inverse, the inverse

Fourier transform F−1, but we have seen earlier in Figure 1.3 that due to the
absolute operator | · | in (4.7) we cannot simply apply F−1 to y to recover our
signal x.

Fienup algorithm for Fourier phase retrieval

There are, however, other methods available to address the Fourier phase re-
trieval problem. A prominent one is the Fienup algorithm, which solves prob-
lem (4.7) by iteratively applying real-space and Fourier constraints. The Fourier
constraint is a constraint on the magnitude of the Fourier image, while for the
real-space constraint non-negativity is used. Multiple versions of the Fienup
algorithm are suggested in the original paper (Fienup, 1982); in Algorithm 2
we describe the most commonly used hybrid input-output method (Osherovich,
2012).

Figure 4.1 shows the schematics of Fienup’s hybrid input-output algorithm
for Fourier phase retrieval. However, there is no proof that the algorithm con-
verges to a global optimum (Shechtman et al., 2014) (Osherovich, 2012).

There exist a variety of other methods to solve the Fourier phase retrieval
problem, which are also applicable to a more generalized version of the problem,
which will be introduced in the next section.
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Algorithm 2: Fienup Hybrid Input-Output algorithm for Fourier phase
retrieval (cf. (Shechtman et al., 2014))

Data: Estimate x(0) of original signal x (e.g. real-space magnitude, if
available, or measured Fourier magnitude with additional random
phase)
Fourier magnitude measurement |Fx| ∈ Rl
Error threshold ε

Result: x(k+1) that fulfills both real-space magnitude constraints
|x(k+1)| ≈ |x| and Fourier magnitude constraints
|Fx(k+1)| ≈ |Fx|

repeat

1. Fourier transform: z(k) ← Fx(k)

2. Impose Fourier magnitude constraint: z′(k) ← |Fx| z
(k)

|z(k)|

3. Inverse Fourier transform to obtain a real-space image estimate:
x′(k+1) ← F−1z′(k)

4. Apply correction to the real-space image estimate:

x
(k+1)
i ←

{
x
′(k+1)
i , i /∈ γ

x
(k)
i − βx

′(k+1)
i , i ∈ γ

where β is a small parameter and γ the set of indices for which x′(k+1)

violates the real-space assumptions (e.g. non-negativity, ...)

until
∑
i

∣∣|Fx(k+1)|i − |Fx|i
∣∣2 ≤ ε;

Fourier transform (1)

Impose Fourier
constraint (2)

Inverse Fourier
transform (3)

Apply real-space
correction (4)

measured magnitude
with random phase

(initialization)

Figure 4.1: Schema of Fienup hybrid input-output algorithm. Figure based on
(Shechtman et al., 2014).
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4.3 Phase Retrieval from General Measurements
Taking a look at Definition 1.1.1 from Chapter 1, one can formulate the (noise-
free) generalized phase retrieval problem in a least squares sense:

min
x

m∑
k=1

(yk − |〈ak,x〉|2)2 ≡ min
x
‖y − |Ax|2‖2 (4.8)

where the yk ∈ R are the measurements, the vectors ak ∈ Cn are called the
measurement vectors and x ∈ Rn (or ∈ Cn) (Shechtman et al., 2014).

For the rest of this thesis, we will assume x to be real-valued, and will refer
to Problem 4.8 as real-valued generalized phase retrieval.

Stated differently, generalized phase retrieval is the problem of recovering a
signal from only the squared absolute values of its linear measurements. These
measurements are also often called intensity measurements (Bandeira et al.,
2014).

This sparks a number of questions, namely for which measurement vectors ak
reconstruction is possible, how many measurements yk are needed for successful
recovery and what kind of signals can be recovered.

If we assume that our data y consists of quadratic absolute measurements
of an unknown input x ∈ Rn, then Eldar and Mendelson have shown that
O(n) measurement vectors drawn from a Gaussian distribution are sufficient
to ensure with overwhelming probability that a unique solution can be found
(for the noise-free, real-valued case). For that reason one typically assumes the
measurement vectors to be Gaussian, i.e. ai ∼ N (0, I) or ai ∼ N (0, I/2) +
iN (0, I/2) random measurements (Eldar and Mendelson, 2014).

A solution is obviously unique only up to its sign, i.e. given |Ax|2, we will
not be able to distinguish x and −x (Eldar and Mendelson, 2014).

Definition 4.3.1. (Pisier, 2016, eq.1.4) A complex-valued random variable X
is called C-subgaussian if there is a constant s ≥ 0 such that for any x ∈ C

E exp Re(xX) ≤ exp
s2|x|2

2
.

Other subgaussian distributions are also sometimes used as a random model
for the measurement vectors, such as the Rademacher distribution ai ∼ {−1, 1}n
(Eaton, 1970) or the (symmetric) Bernoulli distribution ai ∼ {0, 1}n, for which
other uniqueness results and other constraints on the domain of admissible sig-
nals x hold (Krahmer and Liu, 2018)(Krahmer and Stöger, 2019). A deeper
discussion on suitable distributions for phase retrieval measurement vectors is
a field of active research and beyond the scope of this thesis.

4.4 Numerical Reconstruction Methods for Gen-
eralized Phase Retrieval

This section will give an overview of some important reconstruction algorithms
for the generalized phase retrieval problem. The first class of algorithms con-
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sists of methods that make use of semidefinite programming, the second are
the already mentioned gradient-type methods. The third class is geometrically-
motivated. While semidefinite programming methods will not be used later in
this thesis, they are included in this section because global convergence guaran-
tees exist for them, and to be comprehensive in the documentation of the most
important modern approaches to phase retrieval.

4.4.1 Semidefinite Relaxation Methods
This class of methods is based on the observation that yk = |〈ak,x〉|2 actually
describes a set of quadratic equations. Let X = xxH and Ak = aka

H
k , then

yk = |〈ak,x〉|2 = xHaka
H
k x = xHAkx = Tr(AkX). (4.9)

The constraint X = xxH (which is also commonly referred to as lifting) can
be translated to X having rank 1 and being positive semidefinite. Our phase
retrieval problem can therefore be stated as a semidefinite program, (Shechtman
et al., 2014):

find X
s.t. yk = Tr(AkX) k = 1, ...,m

X � 0
rank(X) = 1

(4.10)

which is equivalent to the rank minimization problem

minimize rank(X)
s.t. yk = Tr(AkX) k = 1, ...,m

X � 0.
(4.11)

Since solving problem (4.11) is known to be NP-hard, we relax the rank(X)
minimization objective with the usage of the convex trace Tr(X), yielding the
semidefinite program

minimize Tr(X)
s.t. yk = Tr(AkX) k = 1, ...,m

X � 0,
(4.12)

which can be solved by most convex semidefinite optimization tools (e.g. MO-
SEK 2 or CVX 3). This method is also known as PhaseLift. It is able to recover
the original vector x with high probability from O(n log n) random Gaussian
measurements. Unfortunately, problem (4.12) is higher-dimensional in compar-
ison to the original problem and computationally extremely demanding and is
therefore more of theoretical than of practical use for very large signal vectors.
(Candes et al., 2011)

4.4.2 Gradient-type Methods
Gradient-based methods that aim at solving the phase retrieval problem with
local minimization methods and good initialization have seen significant attrac-
tion in the last years. We will introduce some of them here, as they will serve
as baseline methods for the generative model-supported methods that will be
explored in Chapter 5.

2https://www.mosek.com/
3http://cvxr.com/cvx/
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Wirtinger Flow

In 2015, Candes et al. proposed the Wirtinger Flow algorithm, which is essen-
tially a gradient descent scheme applicable for both real and complex signals x.
In the complex case it makes use of Wirtinger calculus to minimize the following
nonconvex objective

f(x) :=
1

2m

m∑
r=1

L(yr, |aH
r x|2), (4.13)

where L(ŷ, y) is a loss function, typically L(ŷ, y) = (ŷ − y)2. The algorithm
iterates until convergence (or until a maximum amount of iterations is reached)
with the following update rule:

x(k+1) := x(k) − µ(k+1)

‖x(0)‖2
∇f(x(k)) (4.14)

where
µ(k) := min{1− exp(

−k
k0

), µ(max)} (4.15)

with k0 ≈ 330 and µ(max) ≈ 0.4 experimentally found by the original authors
(Candes et al., 2015).

For x ∈ Rn, the gradient ∇f(x) is easily defined, but for x ∈ Cn, f :
Cn → R is not complex-differentiable. The solution to this problem is the usage
of Wirtinger derivatives (cf. (Wirtinger, 1927) or (Bouboulis, 2010)) for the
complex case (Candes et al., 2015). This thesis will only explore the generalized
phase retrieval problem for real-valued x, and will therefore not go into any
more detail about the complex-valued case here.

Being a local optimization method, Wirtinger Flow has shown best empirical
results when its initialization x(0) is chosen close to the optimal value. The
authors therefore suggest a spectral method for this purpose, which sets x(0) as
the leading eigenvector of the positive semidefinite Hermitian matrix

∑
r yrara

H
r

normalized to a scaling factor dependent on the size and the intensity sums of
the entries of ar (Candes et al., 2015). The method is described in pseudocode
as Algorithm 3.

Algorithm 3: Basic Wirtinger Flow algorithm (cf. (Candes et al., 2015))
Data: measurements yr ∈ R, r = 1, ...,m

measurement vectors ar ∈ Rn, r = 1, ...,m
number of iterations kmax

Result: reconstruction x(kmax)

λ2 := n
∑

r yr∑
r ‖ar‖2

Set x(0) as the leading eigenvector of Y = 1
m

∑m
r=1 yrara

H
r normalized to

‖x(0)‖ = λ.
for k = 0 to kmax − 1 do

x(k+1) := x(k) − µ(k+1)

‖x(0)‖2∇f(x(k))

end

Wirtinger Flow with spectral initialization has been shown to work for both
real and complex Gaussian measurements ar (with convergence at a linear rate
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if the number of measurements m are in the order of n(log n)2) as well as for
measurements sampled i.i.d. from a random variable d for which

Ed = 0, Ed2 = 0 and E|d|2 = 2(E|d|2)2 (4.16)

holds (Candes et al., 2015).
Also, Chen et al. were able to show in 2019 that for real or complex Gaussian

measurements, a gradient descent scheme converges to the true solution for
m & n poly logm even when randomly initialized (Chen et al., 2019).

Truncated Wirtinger Flow

An extension of the Wirtinger Flow algorithm has been proposed in 2015 by
Chen and Candes (Chen and Candes, 2015), in which both the initialization
and the iterative gradient update steps are regularized by restricting them to
a subset of indices that varies with each iteration. The authors also proposed
to fix the step size for all iterations and to exchange the loss function L of the
original Wirtinger Flow algorithm with the Poisson log-likelihood function

L(x, yi) := yi log(|aH
i x|2)− |aH

i x|2 (4.17)

which results (for the real case) in the fast to calculate gradient

∇L(x, yi) = 2

(
yi − |a>i x|2

a>i x
ai

)
(4.18)

and which assumes a Poisson data model, i.e.

yi ∼ Poisson(|〈ai,x〉|2). (4.19)

The Truncated Wirtinger Flow algorithm then breaks down into two steps:

• As initialization, we compute an estimate x(0) using a spectral method as
in the Wirtinger Flow method, but applying it only to a subset T (0) of
our measurements yi which are not too large. The idea comes from the
observation that the initialization method of Wirtinger Flow, which uses
the first eigenvector of

∑
i yiaia

H
i , is subject to issues arising from very

large yi dominating the whole sum and therefore essentially not providing
a good initial estimate.

• We iterate using the gradient of the Poisson log-likelihood loss function
but also restrict it to only use the gradient components that are again not
too large or too small (because in the case of the gradient of this specific
loss function they can be seen as outlier components). Figure 4.2 shows
the locus over all unit vectors of ai of the negative gradient of the Poisson
log-likelihood function for some exemplary running estimate z and true
value x and shows that good descent directions can be found by restricting
the length of the gradient components to not be too large or too small.

The full Truncated Wirtinger Flow algorithm is given in pseudocode in List-
ing 4.

The authors of the original paper showed that under Gaussian measure-
ments, Truncated Wirtinger Flow achieves exact recovery from O(n) measure-
ments and furthermore suggest that the method is applicable to other subgaus-
sian measurement vectors as well, although truncation thresholds need to be
tweaked (Chen and Candes, 2015).
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x z

Figure 4.2: Locus over unit vectors of ai of the negative gradient of the Poisson
log-likelihood function |a

H
i z|2−|aH

i x|2

aH
i z

ai for running estimate z and true value x.
Based on a figure by (Chen and Candes, 2015).

Algorithm 4: Truncated Wirtinger Flow algorithm (cf. (Chen and Can-
des, 2015))
Data: measurements yi ∈ R, i = 1, ...,m

measurement vectors ai ∈ Rn, i = 1, ...,m
number of iterations kmax

parameters albz (default 0.3), aubz (default 5), ah (default 5), ay
(default 3), µk (default 0.2)

Result: reconstruction x(kmax)

λ0 :=
√

1
m

∑m
i=1 yi

Let x̃ be the leading eigenvector of Y := 1
m

∑m
i=1 yiaia

H
i 1{|yi|≤a2yλ2

0}

x(0) :=
√

mn∑m
i=1 ‖ai‖2λ0x̃

for k = 0 to kmax − 1 do
x(k+1) := x(k) + 2µk

m

∑m
i=1

yi−|aH
i x(k)|2

x(k)Hai
ai1Ei1∩Ei2

where E i1 :=
{
albz ≤

√
n

‖ai‖
|aH

i x(k)|
‖x(k)‖ ≤ a

ub
z

}
,

E i2 :=
{
|yi − |aH

i x(k)|2| ≤ ahKk

√
n

‖ai‖
|aH

i x(k)|
‖x(k)‖

}
and Kk := 1

m

∑m
l=1 |yl − |aH

l x(k)|2|
end
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Sparsity-based Methods

Another important subclass of gradient-based methods are sparsity-based meth-
ods, which assume that the signal to recover is k-sparse, i.e. it has a maximum
of k nonzero entries. GESPAR (Greedy Sparse Phase Retrieval) (Shechtman
et al., 2013) is such an iterative algorithm that solves problem (4.6) under the
prior knowledge that the sought-after signal x is sparse in some known rep-
resentation. As already stated in the introduction, this means that x can be
expressed in terms of a sparsity basis Ψ and a sparse vector α as

x = Ψα. (4.20)

The details of the GESPAR algorithm are out of scope of this thesis, but on a
high-level, the algorithm works like this: starting from an initial random support
set for x, GESPAR executes a gradient descent (damped Gauss-Newton) method
to obtain an estimate of x based on which it is updating its support set. This
continues until convergence (Shechtman et al., 2013)(Shechtman et al., 2014).

With knowledge of the sparsity factor k and the sparsity basis, GESPAR
has shown to provide fast and accurate results for a variety of phase retrieval
applications.

The important bottom line of sparsity-based methods is that we can im-
prove solutions to the (generalized) phase retrieval problem by introducing prior
knowledge about the domain of permissible signals. In a lot of practical cases,
signals will not be arbitrary but will be part of a family of permissible signals.
We can use this information in our reconstruction processes.

4.4.3 Randomized Kaczmarz Method

The last method that will be explored in this chapter is based on the Randomized
Kaczmarz method for solving linear equations (Strohmer and Vershynin, 2007).
In the setting of the original paper, the system

y = Ax (4.21)

is understood as defining a set of hyperplanes yi = 〈ai,x〉. The idea of the
algorithm is now to iterate by projecting the running estimate of x onto the
hyperplane of a randomly chosen equation. Strohmer and Vershynin proved
that this method converges linearly to the true solution for a large class of
matrices A (Strohmer and Vershynin, 2007).

The method can also be applied to the generalized phase retrieval problem
with magnitude measurements (Wei, 2015):

√
yi = |〈ai,x〉|, x ∈ Rn, ai ∈ Cn (4.22)

and is based on the observation that each equation (4.22) defines two hyper-
planes, one corresponding to x and one to −x (Tan and Vershynin, 2017). The
method now projects the running estimate of x onto the closer of the two hy-
perplanes of a randomly chosen equation.

Based on an initialization value x(0), which can be found e.g. using a spectral
initialization method described in the last sections, we can now iteratively define
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x1

x2

Figure 4.3: Intuition for the Randomized Kaczmarz method for a system of two
equations 3x1 + 4x2 = ±12 and x1 − 3x2 = ±6. The blue dot is the initial
estimate, and the dashed line indicates the update steps towards a true solution
(black dot).

the randomized Kaczmarz update rule:

x(k+1) := x(k) +

(
sign(〈ar(k+1),x

(k)〉)√yr(k+1) − 〈ar(k+1),x
(k)〉

‖ar(k+1)‖22

)
ar(k+1)

(4.23)
where r(k) describes the index of the randomly (with a probability proportional
to ‖ar(k+1)‖22) chosen equation at iteration k.

Despite its simplicity, Wei was able to show that the Randomized Kaczmarz
method achieves good performance for the generalized phase retrieval problem
based on a variety of experiments using real and complex Gaussian random
measurement vectors (Wei, 2015).

Figure 4.3 shows the intuition behind the algorithm for a very simple 2-
dimensional real-valued phase retrieval case.
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Chapter 5

Solving Nonlinear Inverse
Problems with Deep
Generative Models

We have seen in the last chapter that prior information about permissible signals
x can drastically improve the reconstruction process of gradient-based methods,
and it is this observation that we want to use to motivate the usage of generative
models (see Section 3.5) as prior information for generalized phase retrieval
algorithms.

Generative models based on deep (feedforward) neural networks are partic-
ularly interesting as they are able to learn to generate samples even from very
complicated signal distributions (such as e.g. natural images (Gulrajani et al.,
2016) or faces (Karras et al., 2018)).

There are two major approaches that we want to distinguish in this chapter:

• Using deep generative models as data priors. Here, the inverse problem is
again stated as an optimization problem, but this time, the desired signal
x ∈ Rn is replaced by the output of a generator network G : Rk → Rn
trained on the signal domain X that x ∈ X ⊂ Rn belongs to. The resulting
problem is

min
z∈Rk

m∑
i=1

L(yi, |〈ai, G(z)〉|2), (5.1)

which for a quadratic loss results in

min
z∈Rk

‖y − |AG(z)|2‖22. (5.2)

• Using deep generative-model supported reconstruction methods as initial-
izers for traditional reconstruction methods. In this approach, we take
advantage of the good (but not perfect) results of the methods that will
be introduced in Section 5.1 and use them as initial values in traditional
generalized phase retrieval methods (which we explored in Section 4.4).
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5. Solving Nonlinear Inverse Problems with Deep Generative Models

5.1 Deep Generative Models as Priors

Using deep generative models as priors follows the idea that if we have a differ-
entiable generator network G that is able to approximately generate the domain
X ⊂ Rn of all permissible signals x, then we can replace each occurrence of x
in the optimization objective with G(z).

We therefore get the following non-convex optimization problem in empirical
risk formulation:

z∗ := argmin
z∈D(G)

m∑
i=1

L(yi, |〈ai, G(z)〉|2), (5.3)

which we solve using gradient descent methods. Instead of reconstructing our
signal x∗ directly, we solve problem (5.3) to obtain z∗ and then plug this into
our generator G to yield the reconstruction G(z∗) = x∗.

Remark. Hand et al. were able to prove in 2018 that for differentiable genera-
tor networks consisting of layers with ReLU activation functions, the objective
function in (5.3) does not (with overwhelming probability) have spurious local
minima away from neighborhoods of the true solution (or negative multiples
thereof) under a squared loss and Gaussian ai (Hand et al., 2018).

An analogous proof has been provided by Hand and Voroninski in 2017 for
the linear inverse problem formulation

min
z∈D(G)

m∑
i=1

(yi − 〈ai, G(z)〉)2 (5.4)

(Hand and Voroninski, 2017), which is in line with the results of Bora et al. (Bora
et al., 2017), who proved that the linear problem (5.4) can be solved with high
probability for d-layer generators G : Rk → Rn of variational autoencoders
or generative adversarial networks with arbitrary activation functions using
O(kd log n) measurements. Furthermore, in 2019, Asim et al. were experi-
mentally validating an approach to solve the regularized linear problem

min
z∈D(G)

m∑
i=1

(yi − 〈ai, G(z)〉)2 + λ‖z‖2 (5.5)

using L-BFGS with great success on important computer vision datasets (Asim
et al., 2019).

Based on this prior research, we hypothesize that we can solve equation (5.3)
using gradient descent methods also for generator networks that are not exclu-
sively based on ReLU activation functions. We will experimentally validate this
assumption in the next sections.

We we will now explore an exemplary gradient-based method for the solution
of a regularized version of problem (5.3) and will evaluate its performance in
Section 5.3.
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5.1. Deep Generative Models as Priors

Figure 5.1: 6 × 6 samples from the generator range of a badly trained neural
network on the Shepp-Logan dataset.

5.1.1 Deep Regularized Gradient Descent
Let G : Rk → Rn be a generator which has been trained in a way that its range
approximately resembles the signal domain X of a signal x ∈ X ⊂ Rn and let
y =

[
|〈a1,x〉|2, ..., |〈am,x〉|2

]> be the measurements. We are now interested in
solving the following regularized optimization problem

min
z∈D(G)

m∑
i=1

(
(yi − |〈ai, G(z)〉|2)2

)
+ λ‖G(z)‖TV (5.6)

or in matrix-vector notation

min
z∈D(G)

‖y − |AG(z)|2‖22 + λ‖G(z)‖TV (5.7)

This problem is similar to the formulation of problem (5.3), but adds a
discrete anisotropic total variation norm term λ‖G(z)‖TV (see Definition 4.2.1)
to account for and remove noise-like artifacts in the range of the generator
(which can be the case especially when the generator has not been properly
trained – Figure 5.1 shows examples of artifacts in the range of a badly trained
generator).

Remark. In general, the quality of the generator, i.e. how well the generator
is able to represent the signal domain, is upper-bounding the reconstruction
quality. A badly trained (non-expressive) generator will mean that the best
approximation G(z) ≈ x of a signal x might be poor (meaning that the model
error ||x−G(z)|| will be large), which in turn will result in poor reconstruction
results because the reconstruction has to be part of the generator range R(G).

The approach to solve (5.7) is based on the work by Asim et al. and
Shamshad and Ahmed on generative prior-based reconstruction methods for
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5. Solving Nonlinear Inverse Problems with Deep Generative Models

linear problems (Asim et al., 2019) and phase retrieval (Shamshad and Ahmed,
2018) and extends the latter by the additional regularization term λ‖G(z)‖TV

to improve the overall reconstruction results.
We will solve problem (5.7) using standard (sub-)gradient descent with a

fixed step size as is suggested in Algorithm 5. However, the objective function
being composed of two separate terms would also motivate the usage of a proxi-
mal method (Parikh et al., 2014), e.g. the proximal gradient method (otherwise
also known as forward backward splitting algorithm), which we will not discuss
in this thesis.

Algorithm 5: Deep Regularized Gradient Descent (DRGD) generalized
phase retrieval algorithm

Data: measurements y = [y1, ..., ym]
> ∈ Rm

sensing matrix A = [a1, ...,am]
> ∈ Rm×n

differentiable generator network G(z) : Rp → Rn
step size η
regularization parameter λ
number of iterations kmax

Result: reconstruction x(kmax)

Randomly initialize z(0) ∈ Rp
for k = 0 to kmax − 1 do

z(k+1) ← z(k) − η∇z(k)

(
‖y − |AG(z(k))|2‖22 + λ‖G(z(k))‖TV

)
end
x(kmax) ← G(z(kmax))

5.2 Deep Generative Initialization
Given the shortcomings of the deep generative prior-based reconstruction meth-
ods described in Section 5.1.1 with respect to the generator’s model error, we
now want to investigate a hybrid approach that takes the reconstruction result
of a generative prior-based method (e.g. Deep Regularized Gradient Descent)
and uses that as the initializer of another method (e.g. Truncated Wirtinger
Flow or the Randomized Kaczmarz method).

Conceptually, this hybrid algorithm works like this:

1. We first reconstruct an approximate x̃ using a randomly initialized gener-
ative prior-based reconstruction method, which solves (5.3):

x̃ := G

(
argmin
z∈D(G)

m∑
i=1

L(yi, |〈ai, G(z)〉|2)

)
. (5.8)

As we have seen, the similarity of x̃ to the true x is depending on the
generator G’s ability to correctly model the signal domain.

2. We then use x̃ as the initializer x(0) for one of the traditional reconstruc-
tion methods in order to solve

argmin
x∈Rn

m∑
i=1

L(yi, |〈ai,x〉|2). (5.9)
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Doing this, we overcome the model error of the generator G but are still
able to use the prior knowledge encoded into it without compromising
reconstruction quality.

Our hypothesis is that based on this data-driven initialization x(0) of the
reconstruction method, we get better reconstruction results as we start closer
to the true value of x. We furthermore need less iterations to get to comparable
reconstruction errors.

In comparison to the spectral initialization method employed by most re-
construction methods, our initialization method is also significantly faster. Fig-
ure 5.12 shows comparisons of both initialization methods with respect to run-
time.

We want to highlight the combination of the Deep Regularized Gradient De-
scent and Randomized Kaczmarz algorithms, which we will consequently name
Deep Regularized Gradient Descent-initialized Randomized Kaczmarz (DRGD-
RK). We will use this method as an example of deep generative initialization and
will evaluate its performance in Section 5.3. The pseudocode of the algorithm
can be found in Listing 6.

Algorithm 6: Deep Regularized Gradient Descent-initialized Randomized
Kaczmarz (DRGD-RK) generalized phase retrieval algorithm

Data: measurements y = [y1, ..., ym]
> ∈ Rm

sensing matrix A = [a1, ...,am]
> ∈ Rm×n

differentiable generator network G(z) : Rp → Rn
step size η
regularization parameter λ
number of iterations of the initializer imax

number of iterations of the randomized Kaczmarz method kmax

Result: reconstruction x(kmax)

Randomly initialize z(0) ∈ Rp
for i = 0 to imax − 1 do

z(i+1) ← z(i) − η∇z(i)

(
‖y − |AG(z(i))|2‖22 + λ‖G(z(i))‖TV

)
end
x(0) ← G(z(imax))
for k = 0 to kmax − 1 do

x(k+1) ← x(k) +

(
sign(〈ar(k+1),x

(k)〉)√yr(k+1)−〈ar(k+1),x
(k)〉

‖ar(k+1)‖22

)
ar(k+1)

end

5.3 Numerical Experiments
In this section we will present an experimental numerical evaluation of our
methods (Deep Regularized Gradient Descent (DRGD) and Deep Regularized
Gradient Descent-initialized Randomized Kaczmarz (DRGD-RK)) against tra-
ditional generalized phase retrieval methods (Wirtinger Flow (WF), Truncated
Wirtinger Flow (TWF), and Randomized Kaczmarz (RK)) on one standard test
dataset and one synthetically generated dataset.
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5. Solving Nonlinear Inverse Problems with Deep Generative Models

We evaluate the reconstructions based on structural similarity index SSIM
and peak signal-to-noise ratio PSNR, two important quality metrics commonly
used for image quality evaluation tasks.

Definition 5.3.1.

PSNR(x̂,x) := 10 · log10

(
MAX2

x

1
n

∑
i (x̂i − xi)2

)

(where MAXx is the maximal value that each entry of the signal vector x can
take) is the peak signal-to-noise ratio between a predicted or reconstructed signal
x̂ = [x̂1, ..., x̂n]> ∈ Rn and the original signal x = [x1, ..., xn]> ∈ Rn (Hore and
Ziou, 2010) (Madisetti, 1997, ch. 32.5).

Definition 5.3.2. The structural similarity index for image quality (Wang
et al., 2004) is defined as

SSIM(X,Y) :=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µx, µy are local means, σx, σy are local standard deviations and σxy is the
local cross-covariance of images X,Y. c1, c2 are defined based on the dynamic
range of the input image.1

5.3.1 MNIST dataset

The first dataset on which to evaluate the reconstruction methods is the well-
known MNIST dataset (LeCun, 1998), which is a classic machine learning
dataset consisting of 60, 000 handwritten digits represented as 28 × 28 pixel
greyscale images. It is usually separated into 50, 000 images in the training set
and 10, 000 images in the test set. Figure 5.2 shows samples from the MNIST
dataset.

To evaluate the performance of our deep generative model-supported recon-
struction algorithms, we trained two generative models on this dataset:

• Variational Autoencoder: Our variational autoencoder consists of two
fully-connected leakyrelu (see (3.11)) layers as the encoder and a fully-
connected leakyrelu and fully-connected sigmoid layer as the generator.

We are using an `2-regularized ELBO (see (3.15))

L(q;θ) = ELBO(q) + 0.01||θ||2 (5.10)

1The implementation used in this thesis follows the default values in https://www.cns.
nyu.edu/~lcv/ssim/ssim.m.
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5.3. Numerical Experiments

Figure 5.2: 30 samples taken from the MNIST dataset.
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Figure 5.3: Architecture of the variational autoencoder trained on MNIST and
the Shepp-Logan dataset.

as the loss function (where θ is the vector of parameters of the generative
model).

Figure 5.3 shows the architecture of the variational autoencoder trained
for 50 epochs on the 50, 000 image MNIST training set.

• Convolutional Variational Autoencoder:

For our evaluations, a convolutional variational autoencoder has been
trained for 5 epochs.

The convolutional variational autoencoder consists of four convolutional
and two fully-connected tanh layers as the encoder, and one fully-connected
tanh plus four convolutional layers as the generator. Figure 5.4 shows
the architecture of the convolutional variational autoencoder trained on
MNIST.

The loss function used for the convolutional variational autoencoder is
identical to the one used in the variational autoencoder (5.10).

5.3.2 Shepp-Logan dataset
This synthetically generated dataset is inspired by the well-known Shepp-Logan
phantom (see Figure 5.5) by randomizing some of its parameters (see Appendix
A.1 for the code that was used to generate the samples). Each image is again
28× 28 pixels in size and greyscale. The overall dataset has 250, 000 randomly
generated images. Figure 5.6 shows samples of this dataset.
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Figure 5.4: Architecture of the convolutional variational autoencoder trained
on MNIST and the Shepp-Logan dataset.

Figure 5.5: Shepp-Logan phantom image as defined in (Shepp and Logan, 1974).
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Figure 5.6: 30 samples taken from the synthetically generated Shepp-Logan
dataset.

We again evaluated the performance of all algorithms on two generative
models:

• Variational Autoencoder: We are using the same network design (but
with different layer sizes, see Figure 5.3), the same number of epochs and
the same regularized loss function (5.10) as for the MNIST dataset in
Section 5.3.1.

• Convolutional Variational Autoencoder: For our evaluations, the convolu-
tional variational autoencoder has been trained for 5 epochs.

Again, we are using the same network design and loss function (5.10) as
in Section 5.3.1.

5.3.3 Noise-free Measurements

All evaluations are performed under a noise-free measurement model y = |Ax|2
using complex random Gaussian measurement matrices A. We evaluate the
methods based on their reconstruction quality and runtime.

The methods used in this evaluation are parameterized as follows:

1. Wirtinger Flow uses kmax = 50 iterations.

2. Truncated Wirtinger Flow uses kmax = 200 iterations.

3. Randomized Kaczmarz uses kmax = 100000 iterations.2

4. Deep Regularized Gradient Descent uses kmax = 200 iterations with a step
size of η = 0.1 and a regularization factor of λ = 0.1.

5. Deep Regularized Gradient Descent-initialized Randomized Kaczmarz uses
for the initializer imax = 200 iterations with a step size of η = 0.1 and a
regularization factor of λ = 0.1, and for the Randomized Kaczmarz part
an iteration count of kmax = 100000.

2Note that Randomized Kaczmarz, unlike Wirtinger Flow or Truncated Wirtinger Flow,
is not a gradient-based method and that iteration counts therefore are not comparable. In
general, Randomized Kaczmarz iterations are much faster to execute than gradient steps.
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Figures 5.7 and 5.8 visually show the reconstruction results for selected im-
ages from the MNIST and Shepp-Logan datasets and highlight the most impor-
tant results.

Figures 5.9 to 5.11 show the evaluation results with respect to reconstruction
quality under SSIM and PSNR for the MNIST and the Shepp-Logan dataset.

Main findings and observations

One can see that for both datasets, Deep Regularized Gradient Descent-initialized
Randomized Kaczmarz and Deep Regularized Gradient Descent show superior
reconstruction quality in the lower sampling regime (at sampling rates of 12.5%
to around 400%). Reconstruction quality of Deep Regularized Gradient Descent-
initialized Randomized Kaczmarz is slightly lower for the high sampling rate
in comparison to Truncated Wirtinger Flow, Wirtinger Flow and Randomized
Kaczmarz. This effect can be attributed to the fixed number of randomized
Kaczmarz iterations (100000) in this experiment and is especially visible in the
results with respect to the peak signal-to-noise ratio PSNR.

Because it only allows solutions that lie in the range of the generator, Deep
Regularized Gradient Descent fails to deliver competitive reconstruction results
for high sampling rates due to an inability of the (convolutional) variational
autoencoder to model the original signal distribution well enough. This effect
is not visible in reconstructions using the Deep Regularized Gradient Descent-
initialized Randomized Kaczmarz algorithm, because in this method the final
solution is not bound to be in the range of the generator network.

The difference in reconstruction quality between Deep Regularized Gradi-
ent Descent(-initialized Randomized Kaczmarz) based on variational autoen-
coders and Deep Regularized Gradient Descent(-initialized Randomized Kacz-
marz) based on convolutional variational autoencoders is marginal in our exper-
iments and is suspected to be due to the different model errors of the variational
autoencoders and convolutional variational autoencoders. We see however that
Deep Regularized Gradient Descent(-initialized Randomized Kaczmarz) based
on convolutional variational autoencoders has a slightly better runtime behav-
ior due to the efficiency of the convolution operations.

The evaluation results below clearly show the superior runtime performance
of Deep Regularized Gradient Descent-initialized Randomized Kaczmarz and
Deep Regularized Gradient Descent compared to Truncated Wirtinger Flow and
Wirtinger Flow (see Figure 5.11). It also shows that Deep Regularized Gradi-
ent Descent-initialized Randomized Kaczmarz achieves preferable reconstruction
quality over traditional generalized phase retrieval methods given a differentiable
generator network which is able to model the signal domain well enough.

Spectral initialization vs. deep generative initialization

We also compare the runtime of the well-known spectral initialization method
(compare the initialization from Algorithm 3) with a deep generative initial-
ization (as introduced in Section 5.2). The results (averaged over 5 randomly
chosen images) are shown in Figure 5.12.
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Figure 5.7: Results of the reconstruction process for a selected MNIST test
image for all algorithms and selected sampling rates. DRGD and DRGD-RK
make use of a trained variational autoencoder. Important results are highlighted
with a dashed red box.
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Figure 5.8: Results of the reconstruction process for a selected Shepp-Logan
test image for all algorithms and selected sampling rates. DRGD and DRGD-
RK make use of a trained variational autoencoder. One can see that DRGD is
unable to perform a good reconstruction due to an inability of the variational
autoencoder to model the original signal distribution well enough. Important
results are highlighted with a dashed red box.
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Figure 5.9: Evaluation results for the MNIST and Shepp-Logan datasets with
respect to the structural similarity index for image quality SSIM. All results
are averaged over five different images. The term in brackets (VAE/CVAE )
describes the type of generative model used as the data prior for the respec-
tive reconstruction method. The reconstruction quality of DRGD-RK (VAE),
DRGD-RK (CVAE) and RK is upper-bounded by the number of iterations
of the Randomized Kaczmarz algorithm. One can see that DRGD (VAE) and
DRGD (CVAE) fail to deliver competitive reconstruction results for high sam-
pling rates.
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Figure 5.10: Evaluation results for the MNIST and Shepp-Logan datasets with
respect to the peak signal-to-noise ratio PSNR. All results are averaged over
five different images. The term in brackets (VAE/CVAE ) describes the type
of generative model used as the data prior for the respective reconstruction
method. Note that the reconstruction quality of DRGD-RK (VAE), DRGD-
RK (CVAE) and RK is upper-bounded by the number of iterations of the
Randomized Kaczmarz algorithm, which is visible by the quality plateau that
all of these algorithms reach.
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Figure 5.11: Evaluation results for the MNIST and Shepp-Logan datasets with
respect to the reconstruction time. Note the log scale of the vertical axis. All
results are averaged over five different images. The term in brackets (VAE/C-
VAE ) describes the type of generative model used as the data prior for the
respective reconstruction method.
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Figure 5.12: Comparison of the runtime of spectral initialization against deep
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results are averaged over five different images.
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Chapter 6

Deep Generative Models for
Terahertz Single-Pixel Phase
Retrieval

After having discussed both traditional and deep generative prior-supported re-
construction algorithms for generalized phase retrieval from a theoretical point
of view and having numerically validated their performance with random com-
plex Gaussian measurements, this chapter builds the bridge to a practical ap-
plication of the proposed algorithms for a simulated experimental setup.

A single-pixel imaging device is a system that allows to take an image of a
scene using only one single detector (instead of a 2D detector array as is usual in
most optical systems, for example in digital cameras). There are many reasons
why choosing only a single detector might be advantageous: detectors might
be very expensive and building an array of them might not be economically
reasonable, or building a detector array might not be technically feasible due to
the degree of miniaturization that would be needed for a practical application.

In the optical realm, such a system is called a single-pixel camera, and has
gained a lot of interest in research and practical applications in the last decade
after work done by Baraniuk et al. showed that such a system is possible using
the methods of compressed sensing (as introduced in Chapter 4.1.1) (Baraniuk,
2007) (Duarte et al., 2008).

Terahertz Single-Pixel Imaging Device

In this chapter we will look at a similar system in the terahertz regime. Tera-
hertz radiation is of special interest in many different applications, most notably
security, as it is non-ionizing and at the same time able to penetrate many non-
conducting materials. This suggests its usage for imaging and motivates the
following setup.

We are interested in reconstructing the transmission of a scene illuminated
with terahertz radiation (at a wavelength of 0.000856m, which equals to ap-
proximately 0.35 THz). However, since we restrict ourselves to only have a
single detector cell, we illuminate the scene with a random but known radia-
tion pattern and collect the transmission radiation through a collecting optics
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(b)(a)

Figure 6.1: Bernoulli random masks represented as row vectors in a measure-
ment matrix.

(e.g. a lens) which focuses the transmitted radiation into a single detector cell
that is able to measure the intensity (i.e. squared amplitude) of the incoming
radiation. This process is repeated with multiple different patterns to obtain
multiple measurements, which are then used to reconstruct the original signal
(this is also often referred to as a structured illumination approach). This follows
the system setup from Augustin et al. (Augustin et al., 2017).

The random radiation patterns are achieved by the usage of so-called masks
applied by a spatial light modulator (also called optical switch), a special de-
vice that modulates a radiation beam in a way that it only allows radiation to
pass through at certain selectable areas (which are defined by the masks). The
masks are 2-dimensional patterns which can be discretely represented as matri-
ces {0, 1}n1×n2 (see Figure 6.1(a)). These 2-dimensional matrices {0, 1}n1×n2

can also be represented as vectors {0, 1}n1·n2 (where n1 · n2 = n, see Fig-
ure 6.1(b)). We will call these vectors the real-valued measurement vectors
ai ∈ {0, 1}n.

Figure 6.2 shows a schematic view of the experimental setup.
It is, however, of importance to note that every electromagnetic wave is

subject to diffraction effects when propagating through space after hitting an
obstacle or propagating through an aperture (see Figure 6.3) in the size similar
to its wavelength. In the optical regime (e.g. using a standard optical camera)
these diffraction effects are negligible for many practical applications due to the
extremely short wavelength of the visible light (between approximately 380nm
and 740nm). However, in our setup, we will assume our target of interest to be
of a size that is similar to the wavelength, especially will we assume that the
pixel size of the image of the scene that we want to recover is approximately
the wavelength of the radiation.

Technically, this means that we will have to model the diffraction effects
taking place between the spatial light modulator and the scene and between the
scene and the detector. Diffraction effects between the terahertz source and
the spatial light modulator can be neglected as the radiation can be seen as
coherent.

We will model the diffraction effects using the Discrete Diffraction Trans-
formations introduced by Katkovnik et al. (Katkovnik et al., 2009) (Katkovnik
et al., 2008) similarly to how it has been used by Nickel (Nickel, 2018), which
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Figure 6.2: Schematic view of the experimental setup. The optical switch is
controlled by visible light and allows the transmission of the terahertz radiation
at the parts of the mask which are set to 1, thereby imposing the pattern on
the transmitted terahertz radiation. The terahertz pattern is propagated to the
scene x and its transmission is collected using a collecting optics that focuses
the radiation onto a singe detector cell. Figure adapted from work by Augustin
et al. (Augustin et al., 2017).

Figure 6.3: Schematic view of the phenomenon of diffraction of a coherent wave
coming from the left side passing an aperture of the size of four wavelengths.
Adapted from (Lyon, 2010).
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will allow us to approximate the diffraction effects using complex-valued linear
transformations (in the form of complex matrix multiplications) on the incom-
ing wave by specifying the wavelength, propagation distance and pixel sizes at
the planes before and after the propagation (see Figure 6.4).

Parameterization of diffraction matrices DM→S and DS→D

We will define the diffraction effects between the spatial light Modulator and the
Scene using a diffraction matrix DM→S ∈ Cn×n. This matrix is generated ac-
cording to the simplified construction method1 from Katkovnik et al. (Katkovnik
et al., 2009) by assuming a propagation distance of 1cm (according to the system
setup in Figure 6.2), and 28×28 quadratic pixels of edge size 0.5mm (both before
and after the propagation, see Figure 6.4) at a wavelength of 0.856 · 10−3m.

We will name the second diffraction matrix, modeling the effects between
the Scene and the Detector, DS→D ∈ Cn×n and will generate it analogously
assuming a propagation distance of 17.5cm.

Signal model

For our simulation, we will model the measurement at the detector as follows:
a uniform illumination [1, . . . , 1]> hits the spatial light modulator which ap-
plies the mask diag(ai). After that, the wave propagates from the spatial light
modulator to the scene while being subject to diffraction DM→S before it hits
the scene diag(x) and propagates further from the scene to the detector being
subject to diffraction DS→D. At the detector it is summed up (〈·, [1, . . . , 1]〉)
and its intensity | · |2 is measured.

This leads us to the following (noise-free) signal model:

yi =

∣∣∣∣∣∣
n∑
j=1

(
DS→Ddiag(x)DM→Sdiag(ai)[1, . . . , 1]>

)
j

∣∣∣∣∣∣
2

(6.1)

=

∣∣∣∣∣∣
n∑
j=1

(DS→Ddiag(x)DM→Sai)j

∣∣∣∣∣∣
2

(6.2)

=

∣∣∣∣∣∣
n∑
j=1

(
DS→D(diag(ai)D

H
M→Sx

)H
)j

∣∣∣∣∣∣
2

(6.3)

=
∣∣∣〈DS→D(diag(ai)DH

M→Sx)H, [1, . . . , 1]>〉
∣∣∣2 (6.4)

=
∣∣〈diag(ai)D

H
M→Sx, D>S→D[1, . . . , 1]>〉

∣∣2 (6.5)

=
∣∣〈x, (diag(ai)D

H
M→S)HD>S→D[1, . . . , 1]>〉

∣∣2 (6.6)

=
∣∣〈x, DM→Sdiag(ai)

HD>S→D[1, . . . , 1]>〉
∣∣2 (6.7)

=
∣∣〈x, DM→Sdiag(ai)D

>
S→D[1, . . . , 1]>〉

∣∣2 (6.8)

1The implementation is based on the code accompanying the (Katkovnik et al., 2009) paper
available at http://www.cs.tut.fi/~lasip/DDT/.
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Figure 6.4: Schematic view of the pixel sizes at the planes before and after
propagation. For the evaluation we simulate pixel sizes approximately the size
of the wavelength both before and after the propagation.

=
∣∣∣〈DM→Sdiag(ai)D>S→D[1, . . . , 1]>,x〉

∣∣∣2 (6.9)

=
∣∣〈DM→Sdiag(ai)D

H
S→D[1, . . . , 1]>,x〉

∣∣2 (6.10)

=: |〈ãi,x〉|2 (6.11)

and finally to the optimization problem

min
x∈Rn

m∑
i=1

L(yi, |〈ãi,x〉|2), (6.12)

which for a quadratic loss results in

min
x∈Rn

m∑
i=1

(yi − |〈ãi,x〉|2)2. (6.13)

This problem is especially sensitive to changes of the distance between the
spatial light modulator and the scene DM→S (also referred to as the stand-
off distance), because the masks commanded at the spatial light modulator
drastically degrade while propagating to the scene (see Figure 6.5). This is
caused by the diffraction matrix DM→S losing rank with increasing propagation
distance (an effect that is covered in more detail in (Katkovnik et al., 2009)).
This results in a blurring effect, which, depending on the distance, can be up to
a degree that the original signal can no longer be recovered. We will therefore
investigate the reconstruction quality of (6.13) with respect to sensitivity to
changes in the distance between the spatial light modulator and the scene for
simulated data, which will be the topic of the next section. A similar problem
has been investigated experimentally by Augustin et al (Augustin et al., 2019).

It is important to note that there are even more difficulties that affect the
reconstruction quality in this setup. As an example, the shape of the beam
might in fact be almost Gaussian due to the diagonal horn shape of the antenna
of the terahertz transmitter (Augustin et al., 2019). Furthermore, radiation
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0mm

abs

phase

Propagation distance

1mm 10mm 20mm

Figure 6.5: Commanded Bernoulli mask (0mm) and degraded masks after 1mm,
10mm and 20mm of simulated free-space propagation.

divergence takes place: the radiation is not completely parallel, which has an
influence on the effective masks at the scene. Investigating these effects is out of
scope for this thesis. In our simulations we are also not investigating the effect
of a change of pixel sizes or the number of pixels for our reconstruction.

6.1 Sensitivity Analysis

We will now investigate the sensitivity of the reconstruction quality for different
stand-off distances and sampling rates m

n . Our evaluation will be done for
both traditional (Truncated Wirtinger Flow (TWF)) as well as deep generative
prior-supported reconstruction algorithms (Deep Regularized Gradient Descent
and Deep Regularized Gradient Descent-initialized Randomized Kaczmarz, both
using the variational autoencoders defined in Sections 5.3.1 and 5.3.2 as their
underlying generative models) and will be executed on both the MNIST dataset
as well as on the synthetic Shepp-Logan dataset. For the Truncated Wirtinger
Flow algorithm (defined in Section 4.4.2) we use parameters (albz = 0.001, aubz =
500) different to the usual defaults.

The following pages contain the results of these numerically simulated ex-
periments for stand-off distances between 0.00125m and 0.08m.

Figures 6.6 and 6.7 visually show the results of the reconstruction process
for selected MNIST and Shepp-Logan samples.

Figures 6.8 to 6.13 show the reconstruction quality of the different algorithms
for varying stand-off distances and sampling rates with respect to the structural
similarity index SSIM and the peak signal-to-noise ratio PSNR.

Main findings and observations

The most important result from this experiment is the observation that Deep
Regularized Gradient Descent-initialized Randomized Kaczmarz has a recon-
struction quality which is superior to Truncated Wirtinger Flow for virtually all
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Figure 6.6: Results of the reconstruction process for a selected MNIST test
image for selected sampling rates at 0.125cm, 0.5cm and 2cm stand-off distances.
Important results are highlighted with a dashed red box.
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Figure 6.7: Results of the reconstruction process for a sample from the Shepp-
Logan dataset for selected sampling rates at 0.125cm, 0.5cm and 2cm stand-off
distances. Important results are highlighted with a dashed red box.
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evaluated sampling rates and stand-off distances. This is especially visible in
the evaluation results with respect to the structural similarity index SSIM (see
Figures 6.8 and 6.12), while the peak signal-to-noise ratio PSNR (see Figures 6.9
and 6.13) shows less pronounced differences between the two methods. These
quantitative results are in line with the qualitative results provided by visual
comparison in Figures 6.6 and 6.7.

One can also see that the reconstruction quality decreases when increasing
the stand-off distance DM→S. This is an expected effect which is caused by the
diffraction matrix losing rank with increasing propagation distance (Katkovnik
et al., 2009).

Deep Regularized Gradient Descent is unable to perform meaningful recon-
structions for almost all sampling rates and stand-off distances. This is at-
tributable to the variational autoencoder being unable to model the signal dis-
tribution well enough.

One can also observe that Truncated Wirtinger Flow shows slightly declining
reconstruction quality with increased sampling rate. This is due to an effect
caused by the spectral initializer used in this method.

The evaluation results experimentally confirm that Deep Regularized Gradi-
ent Descent-initialized Randomized Kaczmarz is able to outperform Truncated
Wirtinger Flow for generalized phase retrieval in simulations of physical systems
where diffraction effects occur. This suggests that Deep Regularized Gradient
Descent-initialized Randomized Kaczmarz can prove valuable as a generalized
phase retrieval algorithm in real-world physical image reconstruction problems.
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Figure 6.8: Evaluation results of the practical experiment for the Deep Reg-
ularized Gradient Descent-initialized Randomized Kaczmarz method (using a
variational autoencoder as generator) on the MNIST and Shepp-Logan datasets
with respect to reconstruction quality measured using the structural similar-
ity index SSIM. All results are averaged over five different images. Stand-off
distance in meters.
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Figure 6.9: Evaluation results of the practical experiment for the Deep Reg-
ularized Gradient Descent-initialized Randomized Kaczmarz method (using a
variational autoencoder as generator) on the MNIST and Shepp-Logan datasets
with respect to reconstruction quality measured using the peak signal-to-noise
ratio PSNR. All results are averaged over five different images. Stand-off dis-
tance in meters.
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Figure 6.10: Evaluation results of the practical experiment for the Deep Regu-
larized Gradient Descent method (using a variational autoencoder as generator)
on the MNIST and Shepp-Logan datasets with respect to reconstruction quality
measured using the structural similarity index SSIM. All results are averaged
over five different images. Stand-off distance in meters.
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Figure 6.11: Evaluation results of the practical experiment for the Deep Regu-
larized Gradient Descent method (using a variational autoencoder as generator)
on the MNIST and Shepp-Logan datasets with respect to reconstruction quality
measured using the peak signal-to-noise ratio PSNR. All results are averaged
over five different images. Stand-off distance in meters.
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Figure 6.12: Evaluation results of the practical experiment for the Truncated
Wirtinger Flow method on the MNIST and Shepp-Logan datasets with respect
to reconstruction quality measured using the structural similarity index SSIM.
All results are averaged over five different images. Stand-off distance in meters.
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Figure 6.13: Evaluation results of the practical experiment for the Truncated
Wirtinger Flow method on the MNIST and Shepp-Logan datasets with respect
to reconstruction quality measured using the peak signal-to-noise ratio PSNR.
All results are averaged over five different images. Stand-off distance in meters.
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Chapter 7

Conclusion

This thesis explored the applicability of deep learning in the field of nonlinear
inverse problems. Special focus was given to the question how deep generative
models (such as the generator part of a variational autoencoder) can be lever-
aged to support the solution of the generalized phase retrieval problem, a very
prominent example of a nonlinear inverse problem, which has applications in a
lot of disciplines.

We introduced both traditional methods of solving the generalized phase
retrieval problem as well as already existing and new approaches to incorpo-
rate deep generative models into the reconstruction process. We evaluated the
reconstruction quality and runtime of these algorithms on the famous MNIST
dataset as well as on a more complex synthetic dataset based on the well-known
Shepp-Logan phantom and we were able to show that deep generative prior-
based reconstruction methods are often able to reconstruct images better than
traditional methods while requiring fewer measurements. We were also able to
show that generator model error plays a significant role in the reconstruction
quality of deep generative prior-based methods, resulting in poor reconstruction
quality if the deep model has not been trained well or is not expressive enough
to capture the full complexity of the signal domain.

The thesis introduced two new algorithms: Deep Regularized Gradient De-
scent is a total variation-regularized extension of the deep generative prior-based
gradient descent algorithm introduced by Shamshad and Ahmed (Shamshad and
Ahmed, 2018). This method allows to find a solution to the generalized phase
retrieval problem in the range of a differentiable generator network, but suffers
from poor reconstruction quality when the generator network is not properly
able to model the signal domain. Deep Regularized Gradient Descent-initialized
Randomized Kaczmarz also incorporates signal domain information using deep
generative priors but does not suffer from reconstruction quality degradation
caused by generator model error. This is because the data prior is used only
during the initialization (performed by executing the Deep Regularized Gradi-
ent Descent part of the method) while the actual reconstruction is performed
using Randomized Kaczmarz iterations. The thesis empirically showed that
Deep Regularized Gradient Descent-initialized Randomized Kaczmarz achieves
a reconstruction quality which is higher than the ones provided by traditional
methods at low sampling rates (which is a result of the generative prior-based
optimization used as the initializer). The method furthermore achieves a recon-
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struction quality comparable to traditional methods (Truncated Wirtinger Flow,
Wirtinger Flow and Randomized Kaczmarz ) at higher sampling rates (achieved
by the well-initialized Randomized Kaczmarz part), all while having superior
runtime performance.

For the practically motivated application of reconstructing an image from
measurements performed by a simulated terahertz single-pixel imaging device in
Chapter 6, the thesis experimentally showed that the Deep Regularized Gradient
Descent-initialized Randomized Kaczmarz method achieves reconstruction qual-
ity that is superior to Truncated Wirtinger Flow, which gives first experimental
evidence that the method is suited for real-world image reconstruction scenarios
in which degradation of the scene caused by diffraction plays an important role.
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Appendix A

Code Listings

A.1 Randomized Shepp-Logan-style phantoms
This is the Julia1 1.1 code for the generation of samples for the synthetic Shepp-
Logan dataset used in sections 5.3.2 and 5.6.

function shepp_logan(M,N)
# This code is based on https://raw.githubusercontent.com/JuliaImages/
# Images.jl/dd15028375f682affb61e64293a2b519f7225203/src/algorithms.jl

P = zeros(M,N)
x = range(-1, stop=1, length=M)'
y = range(1, stop=-1, length=N)

centerX = rand(10) .*2 .-1
centerY = rand(10) .*2 .-1
majorAxis = rand(10).*0.9
minorAxis = rand(10).*0.9
theta = rand(10)

grayLevel = [2, -0.98, -0.02, -0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

for l=1:length(theta)
P += grayLevel[l] * (

((cos(theta[l] / 360*2*π) * (x .- centerX[l]) .+
sin(theta[l] / 360*2*π) * (y .- centerY[l])) / majorAxis[l] ).ˆ2 .+

((sin(theta[l] / 360*2*π) * (x .- centerX[l]) .-
cos(theta[l] / 360*2*π) * (y .- centerY[l])) / minorAxis[l] ).ˆ2 .< 1)

end

return P
end

1https://julialang.org/downloads/
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A. Code Listings

A.2 Deep Regularized Gradient Descent
This is the Julia 1.1 code for the deep generative model-based gradient descent
algorithm with discrete anisotropic total variation norm regularization (Deep
Regularized Gradient Descent).

using Distributions
using Flux

# grad(f, z) is a function that takes the gradient of f at z
# using algorithmic differentiation, e.g. Tracker.gradient from the Flux library
grad(f, z) = Tracker.gradient(f, z)[1]

function drgd(generator,
generator_dimension,
forward_model,
y;
eta=0.1,
iters=50,
lambda=0.1,
image_shape=(28,28))

z = rand(Normal(0,1), generator_dimension)

objective_function = (x) -> (norm(y - forward_model(generator(x))) +
lambda*(sum(abs.(diff(reshape(generator(x), image_shape), dims=1))) +
sum(abs.(diff(reshape(generator(x), image_shape), dims=2)))))

for i in 1:iters
gradient = grad(objective_function, z)
z = z - gradient .* eta

end

return generator(z)
end
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A.3. Deep Regularized Gradient Descent-initialized Randomized Kaczmarz

A.3 Deep Regularized Gradient Descent-initialized
Randomized Kaczmarz

This is the Julia 1.1 code for the randomized Kaczmarz method using the deep
generative model-based gradient descent algorithm with discrete anisotropic to-
tal variation norm regularization as an initializer (Deep Regularized Gradient
Descent-initialized Randomized Kaczmarz ).

using Distributions
using Flux

# grad(f,z) is function that takes the gradient of f at z
# using algorithmic differentiation, e.g. Tracker.gradient from the Flux library
grad(f, z) = Tracker.gradient(f, z)[1]

function drgd_rk(generator,
generator_dimension,
forward_model,
A,
y;
eta_initializer = 0.1,
iters_initializer = 50,
lambda_initializer = 0.1,
iters_kaczmarz = 1000000,
image_shape = (28,28))

z = rand(Normal(0,1), generator_dimension)

objective_function = (x) -> (norm(y - forward_model(generator(x))) +
lambda_initializer * (sum(abs.(diff(reshape(generator(x), image_shape),
dims=1))) + sum(abs.(diff(reshape(generator(x), image_shape), dims=2)))))

for i in 1:iters_initializer
gradient = grad(objective_function, z)
z = z - gradient .* eta_initializer

end

x_approx = generator(z)

m,n = size(A)
x = x_approx * maximum([norm(A[i,:],2) for i in 1:size(A)[1]])
for i in 1:iters_kaczmarz

rk = rand(1:size(A)[1])
a = A[rk,:] / norm(A[rk,:],2)
η = sign(dot(a, x)) * y[rk] - dot(a, x)
x += η * a

end

return abs.(x / maximum([norm(A[i,:],2) for i in 1:size(A)[1]]))
end

77





Bibliography

M. Asim, A. Ahmed, and P. Hand. Invertible generative models for inverse prob-
lems: mitigating representation error and dataset bias. arXiv:1905.11672 [cs],
May 2019. URL http://arxiv.org/abs/1905.11672. arXiv: 1905.11672.

S. Augustin, S. Frohmann, P. Jung, and H.-W. Hubers. An optically con-
trollable 0.35 THz single-pixel camera for millimeter resolution imaging.
In 2017 42nd International Conference on Infrared, Millimeter, and Tera-
hertz Waves (IRMMW-THz), pages 1–2, Cancun, Mexico, Aug. 2017. IEEE.
ISBN 978-1-5090-6050-4. doi: 10.1109/IRMMW-THz.2017.8066996. URL
http://ieeexplore.ieee.org/document/8066996/.

S. Augustin, P. Jung, S. Frohmann, and H.-W. Huebers. Terahertz dynamic
aperture imaging at stand-off distances using a Compressed Sensing protocol.
arXiv:1902.07935 [physics], Feb. 2019. URL http://arxiv.org/abs/1902.
07935. arXiv: 1902.07935.

A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson. Saving phase: In-
jectivity and stability for phase retrieval. Applied and Computational Har-
monic Analysis, 37(1):106–125, July 2014. ISSN 10635203. doi: 10.1016/
j.acha.2013.10.002. URL https://linkinghub.elsevier.com/retrieve/
pii/S1063520313000936.

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A Simple Proof of
the Restricted Isometry Property for Random Matrices. Constructive Ap-
proximation, 28(3):253–263, Dec. 2008. ISSN 0176-4276, 1432-0940. doi:
10.1007/s00365-007-9003-x. URL http://link.springer.com/10.1007/
s00365-007-9003-x.

R. G. Baraniuk. Compressive sensing. IEEE signal processing magazine, 24(4),
2007. doi: 10.1109/MSP.2007.4286571. URL https://ieeexplore.ieee.
org/document/4286571.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: a survey. arXiv:1502.05767 [cs, stat], Feb.
2015. URL http://arxiv.org/abs/1502.05767. arXiv: 1502.05767.

D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, Mas-
sachusetts, third edition, 2016. ISBN 978-1-886529-05-2. OCLC: 988741359.

A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed Sensing using
Generative Models. arXiv:1703.03208 [cs, math, stat], Mar. 2017. URL http:
//arxiv.org/abs/1703.03208. arXiv: 1703.03208.

79

http://arxiv.org/abs/1905.11672
http://ieeexplore.ieee.org/document/8066996/
http://arxiv.org/abs/1902.07935
http://arxiv.org/abs/1902.07935
https://linkinghub.elsevier.com/retrieve/pii/S1063520313000936
https://linkinghub.elsevier.com/retrieve/pii/S1063520313000936
http://link.springer.com/10.1007/s00365-007-9003-x
http://link.springer.com/10.1007/s00365-007-9003-x
https://ieeexplore.ieee.org/document/4286571
https://ieeexplore.ieee.org/document/4286571
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1703.03208
http://arxiv.org/abs/1703.03208


Bibliography

P. Bouboulis. Wirtinger’s Calculus in general Hilbert Spaces. arXiv:1005.5170
[cs, math], May 2010. URL http://arxiv.org/abs/1005.5170. arXiv:
1005.5170.

S. Boyd. Subgradient Methods. Notes for EE364b, Stanford University,
Spring 2013–14, May 2014. URL http://web.mit.edu/6.976/www/notes/
subgrad_method.pdf.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, Cambridge, UK; New York, 2004. ISBN 978-0-521-83378-3.

E. Candes and T. Tao. Decoding by linear programming. arXiv preprint
math/0502327, 2005.

E. J. Candes and T. Tao. Near-Optimal Signal Recovery From Random Pro-
jections: Universal Encoding Strategies? IEEE Transactions on Information
Theory, 52(12):5406–5425, Dec. 2006. ISSN 0018-9448. doi: 10.1109/TIT.
2006.885507. URL http://ieeexplore.ieee.org/document/4016283/.

E. J. Candes, T. Strohmer, and V. Voroninski. PhaseLift: Exact and Stable
Signal Recovery from Magnitude Measurements via Convex Programming.
arXiv:1109.4499 [cs, math], Sept. 2011. URL http://arxiv.org/abs/1109.
4499. arXiv: 1109.4499.

E. J. Candes, X. Li, and M. Soltanolkotabi. Phase Retrieval via Wirtinger
Flow: Theory and Algorithms. IEEE Transactions on Information Theory,
61(4):1985–2007, Apr. 2015. ISSN 0018-9448, 1557-9654. doi: 10.1109/
TIT.2015.2399924. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7029630.

A. Chambolle, V. Caselles, M. Novaga, D. Cremers, and T. Pock. An introduc-
tion to Total Variation for Image Analysis. working paper, Nov. 2009. URL
https://hal.archives-ouvertes.fr/hal-00437581.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic Decomposition by
Basis Pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, Jan.
1998. ISSN 1064-8275, 1095-7197. doi: 10.1137/S1064827596304010. URL
http://epubs.siam.org/doi/10.1137/S1064827596304010.

Y. Chen and E. J. Candes. Solving Random Quadratic Systems of Equations Is
Nearly as Easy as Solving Linear Systems. arXiv:1505.05114 [cs, math, stat],
May 2015. URL http://arxiv.org/abs/1505.05114. arXiv: 1505.05114.

Y. Chen, Y. Chi, J. Fan, and C. Ma. Gradient Descent with Random Initializa-
tion: Fast Global Convergence for Nonconvex Phase Retrieval. Mathematical
Programming, 176(1-2):5–37, July 2019. ISSN 0025-5610, 1436-4646. doi: 10.
1007/s10107-019-01363-6. URL http://arxiv.org/abs/1803.07726. arXiv:
1803.07726.

L. Condat. Discrete Total Variation: New Definition and Minimization. SIAM
Journal on Imaging Sciences, 10(3):1258–1290, Jan. 2017. ISSN 1936-4954.
doi: 10.1137/16M1075247. URL https://epubs.siam.org/doi/10.1137/
16M1075247.

80

http://arxiv.org/abs/1005.5170
http://web.mit.edu/6.976/www/notes/subgrad_method.pdf
http://web.mit.edu/6.976/www/notes/subgrad_method.pdf
http://ieeexplore.ieee.org/document/4016283/
http://arxiv.org/abs/1109.4499
http://arxiv.org/abs/1109.4499
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7029630
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7029630
https://hal.archives-ouvertes.fr/hal-00437581
http://epubs.siam.org/doi/10.1137/S1064827596304010
http://arxiv.org/abs/1505.05114
http://arxiv.org/abs/1803.07726
https://epubs.siam.org/doi/10.1137/16M1075247
https://epubs.siam.org/doi/10.1137/16M1075247


Bibliography

D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, Apr. 2006. ISSN 0018-9448. doi: 10.1109/TIT.2006.871582.
URL http://ieeexplore.ieee.org/document/1614066/.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE
Signal Processing Magazine, 25(2):83–91, Mar. 2008. ISSN 1053-5888. doi:
10.1109/MSP.2007.914730. URL http://ieeexplore.ieee.org/document/
4472247/.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley, New
York, 2nd ed edition, 2001. ISBN 978-0-471-05669-0.

M. L. Eaton. A Note on Symmetric Bernoulli Random Variables. The An-
nals of Mathematical Statistics, 41(4):1223–1226, Aug. 1970. ISSN 0003-4851.
doi: 10.1214/aoms/1177696897. URL http://projecteuclid.org/euclid.
aoms/1177696897.

Y. C. Eldar and G. Kutyniok, editors. Compressed sensing: theory and ap-
plications. Cambridge University Press, Cambridge; New York, 2012. ISBN
978-1-107-00558-7.

Y. C. Eldar and S. Mendelson. Phase retrieval: Stability and recovery guaran-
tees. Applied and Computational Harmonic Analysis, 36(3):473–494, May
2014. ISSN 10635203. doi: 10.1016/j.acha.2013.08.003. URL https:
//linkinghub.elsevier.com/retrieve/pii/S1063520313000717.

H. W. Engl and P. Kügler. Nonlinear inverse problems: theoretical aspects and
some industrial applications. In Multidisciplinary methods for analysis opti-
mization and control of complex systems, pages 3–47. Springer, 2005. ISBN
978-3-540-27167-3.

C. Fienup and J. Dainty. Phase retrieval and image reconstruction for astron-
omy. In Image Recovery: Theory and Application, pages 231–275. Academic
Press, 1987. ISBN 0-12-663940-X.

J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics,
21(15):2758, Aug. 1982. ISSN 0003-6935, 1539-4522. doi: 10.1364/AO.
21.002758. URL https://www.osapublishing.org/abstract.cfm?URI=
ao-21-15-2758.

T. Goldstein, C. Studer, and R. Baraniuk. A Field Guide to Forward-Backward
Splitting with a FASTA Implementation. arXiv:1411.3406 [cs], Nov. 2014.
URL http://arxiv.org/abs/1411.3406. arXiv: 1411.3406.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Adaptive computa-
tion and machine learning. The MIT Press, Cambridge, Massachusetts, 2016.
ISBN 978-0-262-03561-3.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, Second Edition. Society for Indus-
trial and Applied Mathematics, second edition, Jan. 2008. ISBN 978-0-
89871-659-7 978-0-89871-776-1. doi: 10.1137/1.9780898717761. URL http:
//epubs.siam.org/doi/book/10.1137/1.9780898717761.

81

http://ieeexplore.ieee.org/document/1614066/
http://ieeexplore.ieee.org/document/4472247/
http://ieeexplore.ieee.org/document/4472247/
http://projecteuclid.org/euclid.aoms/1177696897
http://projecteuclid.org/euclid.aoms/1177696897
https://linkinghub.elsevier.com/retrieve/pii/S1063520313000717
https://linkinghub.elsevier.com/retrieve/pii/S1063520313000717
https://www.osapublishing.org/abstract.cfm?URI=ao-21-15-2758
https://www.osapublishing.org/abstract.cfm?URI=ao-21-15-2758
http://arxiv.org/abs/1411.3406
http://epubs.siam.org/doi/book/10.1137/1.9780898717761
http://epubs.siam.org/doi/book/10.1137/1.9780898717761


Bibliography

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez,
and A. Courville. PixelVAE: A Latent Variable Model for Natural Im-
ages. arXiv:1611.05013 [cs], Nov. 2016. URL http://arxiv.org/abs/1611.
05013. arXiv: 1611.05013.

P. Hand and V. Voroninski. Global Guarantees for Enforcing Deep Generative
Priors by Empirical Risk. arXiv:1705.07576 [cs, math], May 2017. URL
http://arxiv.org/abs/1705.07576. arXiv: 1705.07576.

P. Hand, O. Leong, and V. Voroninski. Phase Retrieval Under
a Generative Prior. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages 9136–9146. Cur-
ran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8127-phase-retrieval-under-a-generative-prior.pdf.

R. W. Harrison. Phase problem in crystallography. Journal of the Optical
Society of America A, 10(5):1046, May 1993. ISSN 1084-7529, 1520-8532.
doi: 10.1364/JOSAA.10.001046. URL https://www.osapublishing.org/
abstract.cfm?URI=josaa-10-5-1046.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer New York, New York, NY,
2009. ISBN 978-0-387-84857-0. doi: 10.1007/978-0-387-84858-7. URL
http://link.springer.com/10.1007/978-0-387-84858-7.

A. Hore and D. Ziou. Image quality metrics: PSNR vs. SSIM. In 2010 20th
International Conference on Pattern Recognition, pages 2366–2369. IEEE,
2010. doi: 10.1109/ICPR.2010.579.

T. Jebara. Machine Learning: Discriminative and Generative. Springer US,
Boston, MA, 2004. ISBN 978-1-4419-9011-2. URL http://dx.doi.org/10.
1007/978-1-4419-9011-2. OCLC: 853259270.

M. E. Jerrell. Automatic Differentiation and Interval Arithmetic for Estimation
of Disequilibrium Models. Computational Economics, 10(3):295–316, Aug.
1997. ISSN 1572-9974. doi: 10.1023/A:1008633613243. URL https://doi.
org/10.1023/A:1008633613243.

T. Karras, S. Laine, and T. Aila. A Style-Based Generator Architecture for
Generative Adversarial Networks. arXiv:1812.04948 [cs, stat], Dec. 2018.
URL http://arxiv.org/abs/1812.04948. arXiv: 1812.04948.

V. Katkovnik, J. Astola, and K. Egiazarian. Discrete diffraction transform
for propagation, reconstruction, and design of wavefield distributions. Ap-
plied Optics, 47(19):3481, July 2008. ISSN 0003-6935, 1539-4522. doi:
10.1364/AO.47.003481. URL https://www.osapublishing.org/abstract.
cfm?URI=ao-47-19-3481.

V. Katkovnik, A. Migukin, and J. Astola. Backward discrete wave field prop-
agation modeling as an inverse problem: toward perfect reconstruction of
wave field distributions. Applied optics, 48(18):3407–3423, 2009. URL
http://www.cs.tut.fi/~lasip/DDT/MATRIX_DDT.pdf.

82

http://arxiv.org/abs/1611.05013
http://arxiv.org/abs/1611.05013
http://arxiv.org/abs/1705.07576
http://papers.nips.cc/paper/8127-phase-retrieval-under-a-generative-prior.pdf
http://papers.nips.cc/paper/8127-phase-retrieval-under-a-generative-prior.pdf
https://www.osapublishing.org/abstract.cfm?URI=josaa-10-5-1046
https://www.osapublishing.org/abstract.cfm?URI=josaa-10-5-1046
http://link.springer.com/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-1-4419-9011-2
http://dx.doi.org/10.1007/978-1-4419-9011-2
https://doi.org/10.1023/A:1008633613243
https://doi.org/10.1023/A:1008633613243
http://arxiv.org/abs/1812.04948
https://www.osapublishing.org/abstract.cfm?URI=ao-47-19-3481
https://www.osapublishing.org/abstract.cfm?URI=ao-47-19-3481
http://www.cs.tut.fi/~lasip/DDT/MATRIX_DDT.pdf


Bibliography

F. Krahmer and Y.-K. Liu. Phase Retrieval Without Small-Ball Probability
Assumptions. IEEE Transactions on Information Theory, 64(1):485–500, Jan.
2018. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.2017.2757520. URL
http://arxiv.org/abs/1604.07281. arXiv: 1604.07281.

F. Krahmer and D. Stöger. Complex phase retrieval from subgaussian mea-
surements. arXiv:1906.08385 [cs, math, stat], June 2019. URL http:
//arxiv.org/abs/1906.08385. arXiv: 1906.08385.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012. doi: 10.1145/3065386.

Y. LeCun. The MNIST database of handwritten digits, 1998. URL http:
//yann.lecun.com/exdb/mnist/.

J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient Descent Con-
verges to Minimizers. arXiv:1602.04915 [cs, math, stat], Feb. 2016. URL
http://arxiv.org/abs/1602.04915. arXiv: 1602.04915.

D. Lyon. Wave diffracton 4lambda Slit, 2010. URL https://commons.
wikimedia.org/wiki/File:Wave_Diffraction_4Lambda_Slit.png.

V. Madisetti. The digital signal processing handbook. CRC press, 1997. ISBN
978-0-8493-8572-8.

C. A. Metzler, P. Schniter, A. Veeraraghavan, and R. G. Baraniuk. prDeep:
Robust Phase Retrieval with a Flexible Deep Network. arXiv:1803.00212
[cs, stat], Feb. 2018. URL http://arxiv.org/abs/1803.00212. arXiv:
1803.00212.

R. P. Millane. Phase retrieval in crystallography and optics. JOSA A, 7(3):
394–411, 1990. URL http://xrm.phys.northwestern.edu/research/pdf_
papers/1990/millane_josaa_1990.pdf.

J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with
Practical Applications. Society for Industrial and Applied Mathematics,
Philadelphia, PA, Oct. 2012. ISBN 978-1-61197-233-7 978-1-61197-234-4.
doi: 10.1137/1.9781611972344. URL http://epubs.siam.org/doi/book/
10.1137/1.9781611972344.

L. Nickel. Phase Retrieval in Single Detector Cameras. Master’s thesis, West-
faelische Wilhelmsuniversitaet Muenster, Muenster, Oct. 2018.

M. O’Neill. Neural Network for Recognition of Handwritten Dig-
its, 2006. URL https://www.codeproject.com/Articles/16650/
Neural-Network-for-Recognition-of-Handwritten-Digi.

E. Osherovich. Numerical methods for phase retrieval. arXiv:1203.4756 [astro-
ph, physics:physics], Mar. 2012. URL http://arxiv.org/abs/1203.4756.
arXiv: 1203.4756.

N. Parikh, S. Boyd, and others. Proximal algorithms. Foundations and Trends®
in Optimization, 1(3):127–239, 2014. doi: 10.1561/2400000003.

83

http://arxiv.org/abs/1604.07281
http://arxiv.org/abs/1906.08385
http://arxiv.org/abs/1906.08385
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1602.04915
https://commons.wikimedia.org/wiki/File:Wave_Diffraction_4Lambda_Slit.png
https://commons.wikimedia.org/wiki/File:Wave_Diffraction_4Lambda_Slit.png
http://arxiv.org/abs/1803.00212
http://xrm.phys.northwestern.edu/research/pdf_papers/1990/millane_josaa_1990.pdf
http://xrm.phys.northwestern.edu/research/pdf_papers/1990/millane_josaa_1990.pdf
http://epubs.siam.org/doi/book/10.1137/1.9781611972344
http://epubs.siam.org/doi/book/10.1137/1.9781611972344
https://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
https://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
http://arxiv.org/abs/1203.4756


Bibliography

G. Pisier. Subgaussian sequences in probability and Fourier analysis.
arXiv:1607.01053 [math], July 2016. URL http://arxiv.org/abs/1607.
01053. arXiv: 1607.01053.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the
Expressive Power of Deep Neural Networks. arXiv:1606.05336 [cs, stat], June
2016. URL http://arxiv.org/abs/1606.05336. arXiv: 1606.05336.

Y. Romano, M. Elad, and P. Milanfar. The Little Engine That Could: Regu-
larization by Denoising (RED). SIAM Journal on Imaging Sciences, 10(4):
1804–1844, Jan. 2017. ISSN 1936-4954. doi: 10.1137/16M1102884. URL
https://epubs.siam.org/doi/10.1137/16M1102884.

F. Shamshad and A. Ahmed. Robust Compressive Phase Retrieval via Deep
Generative Priors. arXiv:1808.05854 [cs, stat], Aug. 2018. URL http://
arxiv.org/abs/1808.05854. arXiv: 1808.05854.

Y. Shechtman, A. Beck, and Y. C. Eldar. GESPAR: Efficient Phase Retrieval of
Sparse Signals. arXiv:1301.1018 [cs, math], Jan. 2013. URL http://arxiv.
org/abs/1301.1018. arXiv: 1301.1018.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev.
Phase Retrieval with Application to Optical Imaging. arXiv:1402.7350
[cs, math], Feb. 2014. URL http://arxiv.org/abs/1402.7350. arXiv:
1402.7350.

L. A. Shepp and B. F. Logan. The Fourier reconstruction of a head section. IEEE
Transactions on Nuclear Science, 21(3):21–43, June 1974. ISSN 0018-9499,
1558-1578. doi: 10.1109/TNS.1974.6499235. URL http://ieeexplore.
ieee.org/document/6499235/.

N. Z. Shor. Minimization methods for non-differentiable functions. Number 3 in
Springer series in computational mathematics. Springer-Verlag, Berlin ; New
York, 1985. ISBN 978-0-387-12763-7.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, and others. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017. doi: 10.1038/
nature24270.

T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with expo-
nential convergence. arXiv:math/0702226, Feb. 2007. URL http://arxiv.
org/abs/math/0702226. arXiv: math/0702226.

Y. S. Tan and R. Vershynin. Phase Retrieval via Randomized Kaczmarz: The-
oretical Guarantees. arXiv:1706.09993 [cs, math, stat], June 2017. URL
http://arxiv.org/abs/1706.09993. arXiv: 1706.09993.

V. Vapnik. Principles of risk minimization for learning the-
ory. In Advances in neural information processing systems,
pages 831–838, 1992. URL http://papers.nips.cc/paper/
506-principles-of-risk-minimization-for-learning-theory.pdf.

84

http://arxiv.org/abs/1607.01053
http://arxiv.org/abs/1607.01053
http://arxiv.org/abs/1606.05336
https://epubs.siam.org/doi/10.1137/16M1102884
http://arxiv.org/abs/1808.05854
http://arxiv.org/abs/1808.05854
http://arxiv.org/abs/1301.1018
http://arxiv.org/abs/1301.1018
http://arxiv.org/abs/1402.7350
http://ieeexplore.ieee.org/document/6499235/
http://ieeexplore.ieee.org/document/6499235/
http://arxiv.org/abs/math/0702226
http://arxiv.org/abs/math/0702226
http://arxiv.org/abs/1706.09993
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory.pdf
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory.pdf


Bibliography

G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving Systems of Random
Quadratic Equations via Truncated Amplitude Flow. arXiv:1605.08285 [cs,
math, stat], May 2016. URL http://arxiv.org/abs/1605.08285. arXiv:
1605.08285.

Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simoncelli, and S. Mem-
ber. Image Quality Assessment: From Error Visibility to Structural Sim-
ilarity. IEEE Transactions on Image Processing, 13:600–612, 2004. URL
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf.

K. Wei. Solving systems of phaseless equations via Kaczmarz methods: A
proof of concept study. arXiv:1502.01822 [math], Feb. 2015. URL http:
//arxiv.org/abs/1502.01822. arXiv: 1502.01822.

W. Wirtinger. Zur formalen Theorie der Funktionen von mehr kom-
plexen Veränderlichen. Mathematische Annalen, 97(1):357–375, 1927.
URL http://www.digizeitschriften.de/download/PPN235181684_0097/
PPN235181684_0097___log19.pdf.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian De-
noiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans-
actions on Image Processing, 26(7):3142–3155, July 2017. ISSN 1057-7149,
1941-0042. doi: 10.1109/TIP.2017.2662206. URL http://arxiv.org/abs/
1608.03981. arXiv: 1608.03981.

85

http://arxiv.org/abs/1605.08285
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf
http://arxiv.org/abs/1502.01822
http://arxiv.org/abs/1502.01822
http://www.digizeitschriften.de/download/PPN235181684_0097/PPN235181684_0097___log19.pdf
http://www.digizeitschriften.de/download/PPN235181684_0097/PPN235181684_0097___log19.pdf
http://arxiv.org/abs/1608.03981
http://arxiv.org/abs/1608.03981

	Introduction and Overview
	Nonlinear Inverse Problems in Real-World Applications
	Deep Generative Models
	Solving Nonlinear Inverse Problems with Deep Learning

	Numerical Optimization
	Gradient Descent

	Deep Learning
	Machine Learning Essentials
	Feedforward Neural Networks
	Algorithmic Differentiation
	Convolutional Neural Networks
	Generative Machine Learning
	Variational Autoencoders

	Inverse Problems
	Linear Inverse Problems
	Compressed Sensing

	Nonlinear Inverse Problems
	Phase Retrieval from General Measurements
	Numerical Reconstruction Methods for Generalized Phase Retrieval
	Semidefinite Relaxation Methods
	Gradient-type Methods
	Randomized Kaczmarz Method


	Solving Nonlinear Inverse Problems with Deep Generative Models
	Deep Generative Models as Priors
	Deep Regularized Gradient Descent

	Deep Generative Initialization
	Numerical Experiments
	MNIST dataset
	Shepp-Logan dataset
	Noise-free Measurements


	Deep Generative Models for Terahertz Single-Pixel Phase Retrieval
	Sensitivity Analysis

	Conclusion
	Code Listings
	Randomized Shepp-Logan-style phantoms
	Deep Regularized Gradient Descent
	Deep Regularized Gradient Descent-initialized Randomized Kaczmarz


