
Technische Universität Berlin
Faculty of Electrical Engineering and Computer Science

Dept. of Computer Engineering and Microelectronics
Remote Sensing Image Analysis Group

Graph Data Augmentation in Remote
Sensing Image Classification

Master of Science in Computer Science

July, 2023

Kim Alexa Schwarz

Matriculation Number: 381838

Supervisor: Prof. Dr. Begüm Demir
Advisor: Tom Burgert

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigen-
händig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwen-
dung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

UNTERSCHRIFT:

Kim Alexa Schwarz

DATUM: 04.07.2023

ORT: Berlin

i

Abstract

Graph Neural Networks (GNNs) are powerful machine learning tools that can model
the structural information of graph data. They enable state-of-the-art performance on
various graph-related tasks but greatly depend on the quality and quantity of training
data. Thus, graph data augmentation (GraphDA) techniques are proposed to tackle this
issue. However, the effects of GraphDAs vary based on the type of graphs and their
domain. While most research is conducted for classical graph data like molecules or
social networks, the field of GraphDAs for remote sensing (RS) image graphs remains
unexplored. Therefore, this thesis investigates the usage of GraphDAs for RS multi-
label classification (MLC) based on superpixel image graphs. In particular, three novel
GraphDAs are proposed and thoroughly evaluated together with existing GraphDAs on
two RS MLC datasets. The experimental results indicate that the effect of GraphDAs
greatly varies across the datasets, even though the image graphs are generated in the
same way. Only the random drop of graph edges consistently improves the performance
on all datasets. In detail, even for classes of the same dataset, the effects of GraphDA
vary significantly. While the newly proposed GraphDAs cannot improve the overall
performance, they positively affect some classes. These differences can be attributed to
the underlying characteristics of individual classes that are either texturised classes
with repetitive features or object-based classes with individual features.

iii

Zusammenfassung

Graph Neural Networks (GNNs) sind mächtige Werkzeuge des maschinellen Lernens,
die die strukturellen Informationen von Graphen erfassen können. Sie erzielen State-
of-the-Art Ergebnisse auf verschiedensten graphbezogenen Aufgabenbereichen. Aber
dennoch sind sie abhängig von der Qualität und Quantität der Trainingsdaten. Um
dem entgegenzuwirken, werden Graph Data Augmentation (GraphDA) Methoden en-
twickelt. Allerdings variieren deren Effekte stark in Abhängigkeit vom Aufbau und
dem Anwendungsgebiet, aus dem die Graphen stammen. Während ein Großteil der
Forschung sich auf Daten von klassischen Graphen bezieht, wie z.B. Moleküle oder
soziale Netzwerke, gibt es bisher noch keine Forschung bezüglich GraphDA im Kontext
von Remote Sensing (RS) Bild Graphen. Auf Grund dessen, untersucht diese Masterar-
beit die Anwendung von GraphDA in RS Multi Label Classification (MLC) basierend
auf Superpixel Bildgraphen. Drei neue GraphDA Techniken werden vorgestellt und
zusammen mit bereits existierenden GraphDA Techniken auf zwei verschiedenen RS
MLC Datensätzen evaluiert. Die Ergebnisse zeigen, dass die Effekte der Methoden stark
auf den Datensätzen variieren, auch wenn die Graphen alle auf dieselbe Art und Weise
erzeugt werden. Nur das zufällige Wegfallen von Kanten im Graph verbessert die Per-
formance konsistent. Variationen können sogar bei verschiedenen Klassen im gleichen
Datensatz beobachtet werden. Während die neuen Methoden kaum zur Verbesserung
der allgemeinen Performance beitragen, zeigen sie positive Effekte auf einzelne Klassen.
Diese Unterschiede werden durch die einzigartigen Charakteristiken der einzelnen
Klassen hervorgerufen, die entweder texturiert sind, und sich durch wiederholende
Muster auszeichnen, oder objektbasiert sind mit individuellen Merkmalen.

v

Table of Contents

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

2 Background 3
2.1 Graph Neural Networks . 3

2.2 Image Data Augmentation . 6

2.3 Graph Data Augmentation . 8

3 Dataset Description 9
3.1 DeepGlobe . 9

3.2 UCMerced Land Use Dataset . 10

4 Methodology 13
4.1 Pipeline . 13

4.2 Superpixel Sampling . 14

4.3 Graph Generation . 16

4.4 Graph Augmentations . 17

4.4.1 Graph Augmentations by You et al. 17

4.4.2 Graph Random Square . 17

4.4.3 Graph Vertical Concat . 19

4.4.4 ReOrga . 20

4.5 Comparison of Image and Graph Augmentations 21

5 Experimental Setup 23

vii

TABLE OF CONTENTS

6 Experimental Results 25
6.1 Superpixel Segmentation . 25

6.2 Baseline Results of GCN . 27

6.3 Graph Augmentations . 28

6.4 Overall GraphDA Performance . 31

7 Discussion 35
7.1 Texture and Object-based Classes . 35

7.2 Designing Graphs with Clean Object Nodes 41

8 Conclusion 43

Bibliography 45

A Appendix 51

viii

List of Figures

FIGURE Page

2.1 A GCN for graph classification. 4

2.2 Comparison between the convolutional operation in the image and the graph

domain. 5

2.3 Examples of non-linear blending methods for two samples xi and x j [21]. . . . 7

3.1 Example images and segmentation maps of DeepGlobe. 9

3.2 Example images from UCMerced that contain the denoted class. For visuali-

sation purposes, only one class per multi-label is given. 11

3.3 Number of images that contain a class label in the UCMerced dataset. 11

4.1 Complete Pipeline. 13

4.2 Graph RandSquare. 18

4.3 Superpixel ordering. 19

4.4 Graph VerticalConcat. 20

4.5 ReOrga GraphDA. 21

6.1 Different hyper-parameter configurations for the SLIC superpixel segmenta-

tion on an example from the DeepGlobe dataset. 26

6.2 Boundary recall and undersegmentation error of SLIC with different K and

C averaged across a subset of DeepGlobe training samples. 26

6.3 Macro average precision for ResNet18 and GCN. 27

6.4 APmac of EdgeDrop and EdgeAdd for different p. 28

6.5 APmac of RandNodeDrop and Subgraph for different p. 29

6.6 APmac of AttributeMasking and ReOrga for different p. 30

6.7 APmac of RandomSquare and VerticalConcat with α= 0.3 for different p. . . 31

6.8 APmac of VerticalConcat with α= 0.5 and α= 0.7 for different p. 31

7.1 Categorisation of classes into mixed, object-, or texture-based. 35

ix

LIST OF FIGURES

7.2 Mean AP Results for GCN and ResNet18 baseline on the three class categories,

texture, mixed and object. 36

7.3 Sample images for the tanks class of UCMerced. 37

7.4 AP scores on the object-based classes for baseline ResNet, GCN and the best

configuration for each augmentation. 38

7.5 AP scores on the mixed classes for baseline ResNet, GCN and the best config-

uration for each augmentation. 39

7.6 AP scores on the texture-based classes for baseline ResNet, GCN and the best

configuration for each augmentation. 40

7.7 Alterations in superpixel segmentation and graph generation for object graphs. 41

7.8 Test AP scores of GCN_noAug and baseline GCN on object graphs GCN_obj. . 42

x

List of Tables

TABLE Page

3.1 Total number of samples and samples per class for each dataset. 10

4.1 Graph augmentations and their respective image augmentation counterpart. 21

6.1 Best configurations found for different superpixel algorithms on DeepGlobe. . 25

6.2 The results for the best augmentations, ResNet18, and GCN baseline on

Globe15. 32

6.3 The results for the best augmentations, ResNet18, and GCN baseline on Globe2. 32

6.4 The results for the best augmentations, ResNet18, and GCN baseline on

Globe25. 33

6.5 The results for the best augmentations, ResNet18, and GCN baseline on

UCMerced. 33

A.1 Globe15 all results. 52

A.2 Globe2 all results. 53

A.3 Globe25 all results. 54

A.4 UCMerced all results. 55

xi

List of Abbreviations

APmac Macro Average Precision

APmic Micro Average Precision

BR Boundary Recall

CNN Convolutional Neural Network

CV Computer Vision

DA Data Augmentation

GCN Graph Convolutional Network

Gconv Graph Convolution

GNN Graph Neural Network

GraphDA Graph Data Augmentation

LSC Linear Spectral Clustering

MC Markov Clustering

ML Machine Learning

MLC Multi-Label Classification

MLP Multi-Layer Perceptron

RAG Region Adjacency Graph

RandNodeDropRandom Node Dropping

RandSquare . . Graph Random Square

ReLU Rectified Linear Unit

xiii

LIST OF ABBREVIATIONS

RS Remote Sensing

SEEDS Superpixels Extracted via Energy-Driven Sampling

SLIC Simple Linear Iterative Clustering

UE Undersegmentation Error

xiv

1 Introduction

Graph Neural Networks (GNNs) have gained increasing popularity due to their

ability to model the structural information of data. They can be applied to any

form of graph data and have shown state-of-the-art performance in various

graph-related tasks, such as node, edge, and graph classification [1], [2]. Due to their

flexibility, they have been used in various fields, including molecular biology, chemistry,

and social networks, as well as computer vision (CV) and remote sensing (RS), where

they can also be applied to image data [3].

Unlike images, which are only able to model the geometric information of data, graphs

are abstract representations that can model more complex non-euclidean structural

information. An image can be easily transformed into a graph structure by sampling

clusters of pixels as nodes and connecting them with edges based on their neighbourhood

relationship [3]–[5].

In recent years, different GNN architectures have been proposed in the deep learning

community. Yet, like other neural networks, their performance greatly depends on the

quality and quantity of training data. However, acquiring diverse labelled data is time-

consuming and expensive. Thus, data augmentation is generally used to generate slightly

modified or synthetically created data from already existing samples, and it has been

shown on numerous occasions that it can drastically increase the performance of neural

networks [6], [7].

When dealing with image data, data augmentation strategies include simple geo-

metric transformations, like cropping and shearing, as well as channel transformations

that slightly alternate brightness, contrast, or colour [8] and more complex methods that

morph two samples into a new one [9], [10].

Yet, these transformations cannot be directly applied to graph data due to their

complex and unique nature [1], [2]. Hence, an increasing amount of graph data aug-

mentation (GraphDA) techniques has been proposed in recent years. Although their

results have been promising, GraphDA remains under-explored and developing new

1

CHAPTER 1. INTRODUCTION

techniques is challenging. Graphs encode very different information depending on the

application domain. Hence, a data augmentation that works great in one domain may

negatively affect model performance in another. For example, dropping edges through

edge perturbation from a molecule graph can drastically alter structural information,

resulting in an entirely different molecule. As a consequence, the ground truth label

would be incorrect [2], [11]. You et al. [1] introduced a framework to pre-train GNNs in

a self-supervised manner by utilising graph augmentations, which boosted the perfor-

mance of their classification approach. Additionally, they proposed four different graph

augmentation techniques and justified them using human priors. Albeit they tested their

framework on different domains, their tests on image datasets are very limited.

To the best of our knowledge, little research has been done on GraphDA for image

graphs, and GraphDA has yet to be studied in the context of RS image analysis. Due

to the high semantic complexity of RS satellite images, i.e., the high number of classes

that can appear within an image and its larger channel size in comparison to other fields

[8], transforming image data into graphs can be particularly useful in the RS domain.

As not all pixels hold equally important information for the learning process, graphs

may potentially reduce the size and complexity of the data while preserving meaningful

information [4].

This thesis will focus on evaluating GraphDA’s influence on multi-label classification

(MLC) in RS. To this end, we transform multi-label RS images into graphs and predict

the graph labels with a Graph Convolutional Network (GCN). We then re-implement the

augmentations proposed by You et al. [1] and propose three new GraphDA techniques

motivated by image augmentations. Finally, GCN and GraphDAs are evaluated on

different MLC RS datasets.

Chapter 2 will introduce essential background knowledge on GNNs, data augmen-

tation (DA) in image processing and GraphDAs. Chapter 3 offers a summary of the

datasets used throughout this thesis. Next, our approach is outlined in Chapter 4. In

particular, it provides an overview of the MLC pipeline and then delves deeper into the

specific steps, including superpixel sampling, graph generation and graph augmentation.

In the following chapter, we describe our experimental setup and report our results for

superpixel segmentation and the proposed GraphDAs. Afterwards, Chapter 7 compares

the performance of our approach on texture and object-based classes. Finally, this thesis

concludes by summarising the key developments and offering a short outlook for future

research.

2

2 Background

This chapter introduces important concepts of GNNs, with a specific emphasis

on GCNs, a subclass of GNN utilised throughout this thesis. Subsequently, an

overview of image DA is provided, along with relevant related work on GraphDA.

2.1 Graph Neural Networks

While much work in Machine Learning (ML) focuses on Euclidean data, such as images,

there has been an increasing interest in graphs due to their ability to model the structural

information of data in a wide range of application fields, such as molecular biology,

chemistry and social networks as well as CV and RS [3].

Graphs, however, can be irregular. In a graph, entities, e.g. pixels or atoms in a

molecule, are represented by nodes connected by different types of links, also called

edges. A graph’s size can vary, and each node can have a different degree, which is defined

as the number of neighbours it is directly connected to. As a result, some important

operations, including convolutions, are difficult to apply to graph-structured data [12].

Various GNN architectures exist today, and many of them broadly follow a neighbour-

hood aggregation (or iterative message-passing scheme) to solve graph-related tasks [13],

[14]. That means each node repeatedly exchanges information with its neighbours along

its edges with an aggregation function that varies with the specific architecture [13].

Thus, the network can capture the structural information of the nodes’ neighbourhoods.

The graph-related tasks can be categorised into node-level, edge-level and graph-level.

Node-level tasks focus on predicting single nodes, e.g. some nodes are annotated with

labels, and the objective is to classify the unlabelled nodes based on the given information

[15]. Edge-level tasks aim to predict the connections between the nodes [16]. And finally,

graph-level tasks aim to classify the graph as a whole [17].

In this thesis, we perform graph-level MLC and use the commonly used GCN proposed

by Kipf and Welling [15], an example of which is illustrated in Fig. 2.1. The depicted

3

CHAPTER 2. BACKGROUND

Figure 2.1: A GCN for graph classification with two graph convolutional layers, a pooling layer, a
readout layer to summarise the graph information, and an MLP to make the final label prediction
[12].

GCN consists of 2 graph convolutional (Gconv) layers, a graph pooling layer, a readout

function and a Multi-Layer Perceptron (MLP). The individual components are described

in the following. GCN takes an undirected input graph G = {V ,E} with nodes V connected

by edges E and a feature matrix XG ∈ R|V |xF that assigns a node V a F-dimensional

feature vector as input and outputs a graph prediction y.

Each graph convolutional layer applies a form of graph convolution as the aggregation

method for message passing, which is inspired by the convolutional operation in the

image domain. However, since nodes are unordered and have varying node degrees,

convolutional kernels can not simply be defined on graphs. Graph convolutions aggregate

the neighbours of a node by combining and averaging across the current node’s features

and the features of the neighbours. This is illustrated in Fig. 2.2, which compares the 2D

convolutions in the image domain with the graph convolutions.

Let, H(ℓ) ∈ R|V |×D be the the activation matrix of the ℓ-th convolutional layer with

H(0) = XG . Ã is defined as the adjacency matrix A of G with added self-loops to ensure

that the node’s own features are included in the aggregation. Thus, Ã := A+I|V | where I|V |
is the identity matrix. Let D̃ be the degree matrix, with D̃ ii =∑

j Ã i j, and W (ℓ) ∈RFℓ−1×Fℓ

the weight matrix of the ℓ-th layer with Fℓ−1 input features and Fℓ output features.

Kipf and Welling [15] proposed the following layer-wise propagation rule for their graph

convolutions:

H(ℓ+1) =σ
(
D̃− 1

2 ÃD̃− 1
2 H(ℓ)W (ℓ)

)
, (2.1)

where σ is a non-linear activation function, such as Rectified Linear Unit (ReLU).

4

2.1. GRAPH NEURAL NETWORKS

Figure 2.2: Comparison between the convolutional operation in the image (left) and the graph
domain (right). Left: A kernel is centred at the red pixel. A 2D convolution then computes the
weighted average across all pixels within the kernel. The pixels are ordered, and each pixel’s
neighbourhood size is the same. Right: A graph convolution takes the average across the red
node and all its neighbours. The nodes are unordered and have a variable degree [12].

By multiplying D̃ with Ã and the hidden node feature representation of the pre-

vious layer H(ℓ), aggregation is performed for all nodes in V . Additionally, they apply

symmetric normalisation to Ã to ensure numeric stability and minimise the vanish-

ing/exploding gradient problem for a large variety in the node degrees, which leads to

the formulation D̃− 1
2 ÃD̃− 1

2 H(ℓ) in Eq. 2.1 [15]. After the first forward pass, the nodes

are then represented by a feature vector containing information aggregated across the

immediate neighbourhood.

If we apply another layer after the first, the same operation is performed, but on

the updated node representations. Therefore, in the second layer, a node does not only

receive information about their immediate but also about their neighbourhood 2-hops

away. In a nutshell, stacking more layers to the network does increase its’ local receptive

field and enables it to capture larger structures [12], [15].

In Fig. 2.1, a pooling layer is applied in between graph convolutional layers to

coarsen the graph structure. For instance, max-pooling reduces the graph by taking the

channel-wise maximum across the node dimensions in a cluster [18]. After the last graph

convolutional layer, a readout function is applied to the graph, flattening the graph into

a vector which can then be fed into a Multi-Layer Perceptron (MLP). Finally, we apply

softmax to the MLP output to receive the graph classification result.

Note that the steps we take after receiving the output from the graph convolutional

layers can significantly differ depending on the task at hand. Since our objective is to

make multi-label predictions for the entire graph, we want the model to output an MLC

vector classifying the entire graph, but the aim of a node-level task could be to output the

input graph with completely annotated nodes. The readout function, MLP, and softmax

would be omitted in that case [12].

5

CHAPTER 2. BACKGROUND

2.2 Image Data Augmentation

Before introducing GraphDA, we give a short overview of important concepts of image

data augmentation, as well as augmentation in RS, and present image DA techniques,

which inspired or correlate to GraphDA techniques proposed in Sec. 4.4.

A deep learning model’s performance greatly depends on the quality and quantity

of training data. One common challenge when designing new models is overfitting,

which happens when a model can not generalise well to new unseen data. Additionally,

real-world datasets are susceptible to large image variations such as differences in

illumination and deformation errors [19], further emphasising the importance of having

a diverse training dataset.

One approach to tackle these challenges is to augment the training data. DA can

artificially enlarge the training dataset and increase diversity, thus improving the

generalisation capabilities of the model [19]. Indeed, it has been shown numerous

times that DA can drastically increase the performance of neural networks [6], [7].

Many augmentation techniques have been proposed in the past, including simple image

transformations, such as geometric transformations like cropping and shearing, as well

as more sophisticated approaches, e.g. utilising Generative Adversarial Networks [8],

[19]. Most traditional augmentation strategies aim to create novel and realistic data

to preserve their labels, i.e. the semantic information is still recognisable to a human

observer [20]. These augmentations include geometric and colour transformations.

However, more recently, new augmentation techniques have been proposed that

artificially mix images such that the newly resulting samples do not appear useful to

a human observer. These multi-sample synthesis approaches, albeit very efficient, are

not intuitive, and the performance boost is difficult to interpret [19], [21]. Multi-sample

synthesis includes methods such as Mixup [9] and nonlinear blending methods [10].

Non-linear blending methods are a more general collection of multi-sample synthesis

augmentations. A new sample is created by combining two random images in different

ways. The labels are then merged with linear interpolation to create a new label. Fig.

2.3 illustrates multiple different strategies, namely Vertical Concat, Horizontal Concat,

Mixed Concat, Random 2x2, VH-Mixup/BC+, Random Square, Random Column Interval,

Random Row Interval, Random Rows, Random Columns, Random Pixels, Random Ele-

ments, Noisy Mixup, and Mixup. Almost all of these augmentations lead to a significant

performance improvement [21].

Let xi, x j be two random image samples. Vertical Concat, for instance, concatenates

6

2.2. IMAGE DATA AUGMENTATION

Figure 2.3: Examples of non-linear blending methods for two samples xi and x j [21].

the top λ fraction of xi with the bottom (1−λ) fraction of x j, whereas Random Square cuts

out a portion of xi and replaces it with the same portion of x j [10]. For more information

on the non-linear blending methods that have not been explained here, refer to [10].

Data augmentation has been applied across various domains, including RS. RS

images come with unique challenges for data augmentation. They are highly complex

and often large. Also, most augmentations are defined in the RGB colour space and

do not consider the specific RS imagery types [8]. Thus, the efficiency of specific data

augmentation techniques varies significantly. For example, colour transformation can

hinder the model performance on RS images since colour is essential in the RS domain.

Geometric transformations, on the other hand, are easy to apply but do not add additional

semantic information to the data. Hence, their performance improvement is limited [8],

[21], [22]. However, it has been shown that RS images (including hyperspectral images)

can profit from cropping and local erasure, which can make the model more robust

against occlusion, often caused by cloud cover [21], [23].

7

CHAPTER 2. BACKGROUND

2.3 Graph Data Augmentation

The augmentations presented in Sec. 2.2 can not simply be adapted for graph data

since graph data is non-euclidean. However, GNNs (including GCNs) share many of the

challenges affecting other ML models, such as the dependence on high-quality training

data and the high cost of annotation efforts, which are addressed by DA. When ground

truth labels are missing, GNNs can easily overfit, resulting in a low generalisation

capability. Additionally, real-world graphs are extracted from complex systems, which

can result in inconsistent and unclean graphs with redundant and missing features as

well as connections. Naturally, if the quality of input graphs is low, the performance of

the GNN is limited [2], [11], [24].

To tackle those issues, and inspired by the progress made in other ML domains,

researchers have become increasingly interested in developing GraphDA techniques.

Common techniques include structure-oriented augmentation, such as edge pertur-

bations [1], [25], node dropping, and subgraph sampling [1], [26], or feature-oriented

augmentations, such as feature masking [1], [27], where certain elements in the node

feature matrix XG are set to 0. Furthermore, label-oriented augmentations aim to en-

large the limited label space of the training data by, for example, interpolating between

existing labels to create new ones [28].

More and more methods are being proposed, and they have shown positive effects on

the generalisation capabilities of GNNs [11]. Yet, the unique nature of graphs hampers

the development of meaningful GraphDAs. Graphs can represent greatly dissimilar

information depending on the domain they originate from. A DA which positively affects

performance in one domain might hinder performance in another [2], [11].

To minimise the risk, GraphDA has to be carefully applied, and further research is

necessary to evaluate the influence of various GraphDA techniques on different domains,

such as RS, where no studies have been conducted so far.

8

3 Dataset Description

This chapter offers a short overview of the two satellite image datasets, DeepGlobe

and UCMerced Land Use Dataset, utilised during this thesis and the necessary

pre-processing steps. The first section introduces DeepGlobe, a land cover clas-

sification, and segmentation dataset, which we transform for MLC, while the second

presents the multi-label UCMerced Land Use Dataset.

3.1 DeepGlobe

DeepGlobe [29] is a land cover classification and RS dataset released in 2018, which

is commonly used for segmentation, object detection, and landcover classification. It

contains 1446 2488x2488 pixels high-resolution satellite images and ground truth seg-

mentation maps, a few examples of which can be seen in Figure 3.1.

The segmentation maps are annotated with seven landcover classes: Agriculture,

rangeland, barren, forest, water, urban and unknown. Before we transform the images

into superpixel segmentation maps, each patch is split into 112x112 pixels images and

Figure 3.1: Example images and segmentation maps of DeepGlobe.

9

CHAPTER 3. DATASET DESCRIPTION

annotated based on the class occurrences in the ground truth segmentation for the

corresponding image, resulting in approximately 223 000 multi-label images. The labels

are then transformed into one hot-encoded vectors.

We then generate three new datasets with different complexity to evaluate the label

complexity’s influence on our models’ performance. Label complexity is measured by the

number of different classes occurring in a single image. Each dataset contains around

28 000 images. The class distribution of the datasets can be seen in Table 3.1. Globe

1.5 has an average class count per sample of 1.5, Globe 2 of 2.13, and Globe 2.5 of 2.48.

Notably, all three datasets have a very similar class distribution, with agriculture being

the biggest class, followed by urban and rangeland.

Finally, each dataset is split into 80% training, 16% validation, and 4% test data. The

datasets will be referred to as Globe15, Globe2 and Globe25 from now on, while Globe is

the overarching term for the three pre-processed datasets.

Table 3.1: Total number of samples and samples per class for each dataset.

Classes Globe 1.5 Globe 2 Globe 2.5
Urban 6671 11444 12555
Agriculture 18364 19004 20013
Rangeland 6962 13325 16332
Forest 3924 4623 4674
Water 2581 4573 7709
Barren 3904 5819 6887
Unknown 208 366 1102
Total 27929 27823 27865

3.2 UCMerced Land Use Dataset

UCMerced Land Use Dataset [30], denoted as UCMerced, is a high-resolution multi-

label RS dataset containing 2100 images. Each image measures 256x256 pixels and is

annotated with multi-labels. UCMerced includes 17 classes, namely: Bare-soil, buildings,

cars, chaparral, court, dock, field, grass, mobile-home, pavement, sand, sea, ship, tanks,

trees, and water. Furthermore, ground truth segmentation maps are available [31]. An

example image for each of these classes can be seen below (Figure 3.2).

As illustrated in Figure 3.3 the dataset mostly consists of buildings, pavement, grass
and trees, followed by water and sand and multiple smaller object and texture-based

classes. We split the dataset into 70% training, 15% validation and 15% test data.

10

Figure 3.2: Example images from UCMerced that contain the denoted class. For visualisation
purposes, only one class per multi-label is given.

Figure 3.3: Number of images that contain a class label in the UCMerced dataset.

4 Methodology

The objective of this thesis is to evaluate the influence of different graph data

augmentations on the performance of GCN in the RS domain for MLC. To this

end, we need to transform an image into a graph. In the following, we will

present the general pipeline of our approach, provide a more detailed description of our

graph generation method and describe already existing and newly proposed graph data

augmentations.

4.1 Pipeline

Figure 4.1 illustrates the complete technical pipeline and can be split into three parts. Let

xi be defined as a sample image and yi ∈ {0,1}L as its corresponding binary multi-label

vector, where an element yi,l equals 1 if a class l ∈ L is present in the image with L being

the set of classes in a given dataset. A superpixel algorithm SP A is applied to obtain a

Figure 4.1: Complete Pipeline: First, an RS image is sampled into superpixels, then the super-
pixels are transformed into a graph, and finally, a GCN is trained on the graphs and applied to
the data to make multi-label predictions on graphs.

13

CHAPTER 4. METHODOLOGY

superpixel segmentation map SSM i.

SSM i = SP A(xi). (4.1)

Then, an undirected graph Gi with multi-label vector yi is generated based on SSM i

with graph generation algorithm GGA (Section 4.3). Thus:

Gi =GGA(SP A(xi)). (4.2)

Finally, we train a GCN on sample pairs {Gi, yi} to make multi-label predictions. The

augmentations are applied during training (Section 4.4).

4.2 Superpixel Sampling

The first step of generating graphs from images is to segment the image into superpixels.

Multiple different algorithms have been proposed in the past [32]. To select the best

algorithm for the given dataset and gain a better understanding of the influence the

choice of segmentation algorithm can have on the GCN performance, we evaluate four

different superpixel algorithms, namely Simple Linear Iterative Clustering (SLIC) [33],

Superpixels Extracted via Energy-Driven Sampling (SEEDS) [34], Linear Spectral

Clustering (LSC) [35] and Quickshift [36].

SLIC is a superpixel algorithm based on K-means-clustering that segments an image

into K approximately equally sized superpixel, where K is pre-defined by the user. First,

SLIC translates an image into the CIELAB colour space. Then the clustering process

is initialised with K initial cluster centres Zi = (l i,ai,bi, xi, yi) sampled on a grid in the

image space
√

Q
K pixels apart, where Q the total number of pixels in the image. In every

iteration, each pixel is assigned to its nearest cluster centre, which is determined by a

distance function d and a new cluster centre is computed based on the mean (l,a,b, x, y)

vector of all pixels in the cluster. A residual error determines when to complete the

iterations with the L2 norm between the new and old cluster centre locations [33].

Examples for SLIC are visualised in Fig. 6.1.

SEEDS is an energy optimisation algorithm [32] that uses hill-climbing to iteratively

adjust the superpixel boundaries and maximise the energy. Similar to SLIC, SEEDS

initialises clusters on a regular grid. However, instead of computing distance measures

between pixels and clusters, it exchanges pixels between clusters by moving the bound-

aries. Each superpixel is described as a region with a colour distribution and a boundary

shape. A high-quality superpixel groups pixels with high similarity that belong to the

14

4.2. SUPERPIXEL SAMPLING

same object and adheres to object boundaries. Let SG be the set of all valid superpixel

partitioning. The aim is to find the partitioning s ∈ SG that maximises the energy func-

tion E(s)= T(s)+γB(s), where T(s) is the likelihood of the colour space that evaluates

the quality of colour density distribution and B(s) a prior of the superpixel boundaries

that penalises irregularities in the superpixel boundaries [34].

LSC is a cluster-based algorithm that uses weighted K-means clustering in a 10-

dimensional weighted feature space. After the pixels have been mapped into the feature

space with a kernel function, K seed pixels are uniformly sampled across the whole

image and used as search centres. Their feature vectors represent the initial weighted

means of their clusters. Each cluster has a search space rax× ray, where ax
ay

is defined as

the aspect ratio of the image, limited with parameter r ≥ 1. Until convergence, pixels are

iteratively added to the clusters their vectors are closest to in the feature space, and the

clusters are updated accordingly [35].

Quickshift, on the other hand, is a density-based algorithm that does not allow

the pre-definition of K . First, a density estimate is computed for the whole image. The

objective is to increase the estimate by moving each point to the nearest neighbour, which

increases the density. To this end, Quickshift connects all pixels into a tree, where the

parents represent the nearest neighbours. The tree is then split into a forest containing

smaller trees by breaking the branches that are longer than a given threshold τ. Finally,

each subtree in the forest forms a distinct cluster [36].

To evaluate the performance of the superpixel algorithms, we compute the boundary

recall (BR) (Eq. 4.3) and undersegmentation error (UE) (Eq. 4.4) with the ground truth

segmentation maps [37].

BR is the fraction of ground truth boundaries within a pre-defined distance d of

a superpixel boundary. Let TP be defined as the true positives, as in the number of

boundary pixels in the ground truth segmentation GT that also exist in the superpixel

segmentation, and FN, the false negatives, be the number of boundary pixels in GT that

do not exist in the segmentation, then:

BR = TP
TP +FN

. (4.3)

Additionally, UE measures how much superpixels spill across the ground-truth

segment boundaries. A ground truth segment GS splits a superpixel P into Pin and Pout

depending on which pixels of P lie within or out of GS. To not penalise large superpixels

with only a small boundary overflow, we either omit Pin or append Pout to the segment,

15

CHAPTER 4. METHODOLOGY

depending on which produces the smaller error. With Q ∈N defined as the total number

of pixels in the image, this yields the following equation [37]:

UE = 1
Q

[∑
GS∈GT

(∑
P:P∩GS ̸=∅

min(Pin ,Pout)

)]
. (4.4)

We test different hyperparameters for all four superpixel algorithms. The results are

presented in Sec. 6.1.

4.3 Graph Generation

After the image has been segmented into superpixels, it is transformed into an undirected

graph G = {V ,E} consisting of nodes V connected by edges E . In our superpixel graph, each

node represents a superpixel and contains the positional arguments of the superpixel

centroid as x- and y-coordinates, as well as the across the superpixel averaged image

channels (C) as node features. The corresponding node feature matrix XG ∈R|V |×C assigns

each node a C-dimensional feature vector.

Throughout this thesis, we use Region Adjacency Graphs (RAG) [17]. Nodes are

connected by an edge if the superpixels they represent are neighbours in the image, i.e.

if they share a mutual border. We define the edge weights as the cosine similarity sim
between the nodes’ features, as seen in Eq. 4.5.

sim = xG1 · xG2
max

(∥∥∥xG1
∥∥∥

2
·
∥∥∥xG2

∥∥∥
2

,ϵ
) , (4.5)

with xG1 and xG2 being the feature vectors of two nodes connected by an edge and ϵ a small

value to avoid division by 0.

Other popular algorithms for graph generations based on superpixels include Radius-

Graph and kNN-Graph [1], [38], [39]. However, both of them have their disadvantages.

Radius-Graph samples neighbours based on if they lie within a certain radius of the node

position. Since, however, some superpixels can be of irregular shape, depending on their

compactness, defining the position of the centroid can be challenging, which could result

in an inaccurate graph. kNN-Graph, on the other hand, samples neighbours not only

based on their node positions but also on the similarity of their features. Consequently,

not all kNNs superpixels are actual neighbours in the image but can be scattered far

away from each other if their values are similar. Additionally, the node degree is fixed,

16

4.4. GRAPH AUGMENTATIONS

which results in a less flexible graph structure. RAG, however, allows varying node

degrees and accurately represents the superpixel relations.

4.4 Graph Augmentations

In addition to the four graph augmentations proposed by You et al. [1], namely node

dropping, edge perturbation, subgraph, and attribute masking, we further propose

four new augmentations which have been inspired by similar augmentations in the

image domain: Graph Random Square, Graph Vertical Concat, Graph MixUp and Graph

ReOrga.

For all augmentations introduced in the following subsections, let GA = (VA,EA)

and GB = (VB,EB) be two distinct undirected superpixel graphs generated by RAG and

sampled from the same dataset with their respective ground truth label yA and yB as

defined in Sec. 4.1.

4.4.1 Graph Augmentations by You et al.

In addition to proposing our own graph augmentations, we also re-implement and

evaluate the four graph augmentations proposed by You et al. [1]:

1. Node dropping: Node dropping randomly discards nodes from a graph with a

probability p ∈ [0,1] along with all their connections.

2. Edge perturbation: Edge perturbation randomly removes or add edges with

a probability p ∈ [0,1]. When adding an edge, we assign the similarity of the

connected nodes as the edge weight.

3. Subgraph: Starting from a random node, sample a subgraph from G with a random

walk algorithm and discard all edges and nodes which are not part of the subgraph.

4. Attribute masking: Node attributes x are randomly masked with a probability

p ∈ [0,1].

4.4.2 Graph Random Square

Graph Random Square (RandSquare) is inspired by the non-linear blending method with

the same name, "Random Square" [10], which is further described in Sec. 2.2. However,

17

CHAPTER 4. METHODOLOGY

instead of merging the label of both graphs, the label of GA is preserved since we do not

know which classes are actually inherited from GB.

A square can be easily defined for an image since it is a structured data type, a graph,

on the other hand, is unstructured. However, since GA and GB are superpixel graphs,

every node is assigned a position based on the superpixel’s centroid in the image. Thus,

we can easily perform Random Square on this type of graph. First, we pick a random

node v0 ∈ VA from GA while ensuring that the node index exists in both graphs since

the graphs are most likely not the same size. Next, we sample all nodes of GA whose

positions lie within a 16x16 square centred at the positional arguments of v0. Let I be

defined as the set that contains the indices of the selected nodes. Each node with an

Figure 4.2: Graph RandSquare: Take two input graphs A and B. Sample indices of nodes lying
within a square centred around the position of the node A5 and remove them from the graph.
Sample nodes with the same indices from B and extract the induced subgraph. Finally, insert the
extracted subgraph into A. Adopt the subgraph’s edges, but maintain the links in A that connect
the subgraph to the rest of A.

18

4.4. GRAPH AUGMENTATIONS

index in I is then discarded from GA along with all edges between them. The edges

connecting a node in I with a node not in I are maintained. Next, nodes with indices in

I are sampled from VB. The induced subgraph is inserted into GA. GA inherits all edges

in EB within the induced subgraph but maintains the old connections in EA between the

inner subgraph and the outer graph. Fig. 4.2 illustrates the procedure. Note, that the

size of the example graphs in the Figure was reduced for visualisation purposes. The

superpixel graphs have a much higher quantity of nodes, thus the data augmentation

would be less severe.

4.4.3 Graph Vertical Concat

Graph VerticalConcat was inspired by the non-linear blending method with the same

name, "Vertical Concat" [10], which is further described in Sec. 2.2. However, the label of

GA is preserved and not merged with the label of GB.

Let |VA| be defined as the number of nodes in GA and |VB| of GB respectively. First, VA

and VB are ordered in ascending order based on their indices. Fig. 4.3 shows that nodes

with high indices correspond to superpixels that are positioned lower in the image. Thus,

we can easily define a vertical cut in the graph. With parameter α ∈ (0,1) we sample the

first α∗|VA| nodes of GA and the last α∗|VB| nodes of GB. Finally, we construct the two,

by the node sets, induced subgraphs and randomly add edges between both to build one

connected graph, as illustrated in Fig. 4.4.

S0 S1 S2

S3 S4

S5 S6

S0 S1 S2

S3

S4

S5

S6

Superpixel Segmentation
Map

Superpixel Graph

Figure 4.3: The superpixel labels are ordered based on their position in the image, which is
mirrored in the node indices in the superpixel graph.

19

CHAPTER 4. METHODOLOGY

Figure 4.4: Graph VerticalConcat: Let α= 0.5. Graph A contains |VA| = 4 nodes. Thus, we
sample a subgraph with 0.5∗4= 2 nodes (A0 and A1). Graph B contains |VB| = 5 nodes. Vertical
Concat extracts a subgraph induced by the last 5−2 = 3 nodes. Finally, both subgraphs are
concatenated by randomly adding new edges A0↔ B3 and A1↔ B4.

4.4.4 ReOrga

The graph GA is segmented into clusters with the Markov Clustering (MC) algorithm. MC

makes the assumption that natural clusters contain many edges between the members,

and the edges within the clusters generally have higher weights. In GA, the edge weights

represent the similarity of the superpixel nodes. Based on this assumption, it samples

clusters by simulating flow in the graph [40].

The resulting clusters are then transformed into disjoint subgraphs and re-organised

by reconnecting them with random edges. For each new edge, we compute the edge

weight with the cosine similarity (Eq. 4.5).

Fig. 4.5 shows how a sample graph is split into three subgraphs, which are then

re-connected by random edges between all clusters. Consequently, the graph is reordered.

20

4.5. COMPARISON OF IMAGE AND GRAPH AUGMENTATIONS

Figure 4.5: ReOrga Graph DA: A graph is divided into three disjoint subgraphs. New edges
are randomly inserted between the subgraphs to re-organise the graph in a new way.

4.5 Comparison of Image and Graph Augmentations

With the exception of EdgeDrop, EdgeAdd, and ReOrga, all of the GraphDAs presented in

4.4 have an image augmentation counterpart as depicted in Tab. 4.1. AttributeMasking
and Random Node Dropping (RandNodeDrop) correspond to local erasure and pixel

discarding, respectively, while subgraph is correlated to cropping. Furthermore, Graph

RandSquare and VerticalConcat have been inspired by the non-linear blending methods

with the same names.

For better readability, we refer to the respective graph augmentations with Rand-
Square and VerticalConcat in further sections unless stated otherwise.

Table 4.1: Graph augmentations and their respective image augmentation counterpart.

Image DA Graph DA
Local Erasure/ Cut Out AttributeMasking
Random Crop Subgraph
Pixel Discarding RandNodeDrop
Random Square Graph RandSquare
Vertical Concat Graph VerticalConcat
- ReOrga
- EdgeDrop
- EdgeAdd

21

5 Experimental Setup

The models and augmentations are implemented with PyTorch Lightning and

PyTorch Geometric. A ResNet18 [41] and 6-layer GCN with a max pooling layer

between the convolutional layers and the readout function represent the baselines.

All models, with and without augmentations, are trained for 100 epochs and then tested

on an unseen test set. The input images for ResNet18 are normalised and scaled to the

same size. The input graphs are generated from normalised images using RAG and SLIC

superpixel algorithm with K = 2000 and C = 10 (based on the experimental results in

Sec. 6.1). All models use stochastic gradient descent optimiser [42] with a learning rate

of 0.1, a momentum of 0.9, a weight decay of 0.00005 and the Multi-Step learning rate

scheduler. No dropout is applied. The batch size is 128, regardless of the model and

dataset. We use binary cross entropy loss with logits for MLC.

23

6 Experimental Results

In this chapter we present and evaluate the results of our experiments on RS MLC

datasets. First, the superpixel algorithms are compared and analysed to fix the

hyper-parameters for our graph generation pipeline. We then continue with a short

initial comparison of the two baseline models. Afterwards, the results of the GraphDA

techniques are presented in detail and finally evaluated across all four datasets.

6.1 Superpixel Segmentation

We tested different hyperparameter configurations for all four algorithms by randomly

sampling images from the DeepGlobe training split and computing BR (Eq. 4.3) and UE
(Eq. 4.4) according to their corresponding ground truth segmentation map.

The results for the best configuration are shown in Table 6.1. Hereby, K is defined as

the number of superpixels and I tr as the number of iterations. For LSC and Quickshift

the number of superpixels greatly varies across the samples, so no K is provided. While

all algorithms achieve a relatively good UE, SLIC outperforms the others by a wide

margin with a configuration of C = 10 and K = 3000, with C being the compactness. Thus,

we chose SLIC for our approach.

For further illustration Fig. 6.1 shows some hyperparameter configurations for SLIC

on an example from DeepGlobe. A higher number of superpixels K results in a finer

segmentation, while the compactness parameter C defines how irregular or compact the

Table 6.1: Best configurations found for different superpixel algorithms on DeepGlobe.

Algorithm UE K Parameters
SLIC 0.000026 3000 C=10
SEEDS 0.023061 2500 Itr=250
LSC 0.043466 - r = 5, Itr=250
Quickshift 0.064637 - τ= 5

25

CHAPTER 6. EXPERIMENTAL RESULTS

K=500, C=1 K=1000, C=1 K=2500, C=1

K=500, C=10 K=1000, C=10 K=2500, C=10

Figure 6.1: Different hyper-parameter configurations for the SLIC superpixel segmentation on
an example from the DeepGlobe dataset.

resulting superpixels are. But, more superpixels also result in a bigger graph and higher

computational complexity. Hence we need to find an adequate trade-off.

Fig. 6.2 shows the boundary recall and UE for increasing K with different compact-

ness C. Both, boundary recall and UE rapidly improve while K is still relatively small,

but after at around K = 2000, we stop observing a noticeable improvement. Thus, we

define K = 2000 and C = 10.

1000 2000 3000 4000
K

0.90

0.92

0.94

0.96

0.98

1.00

Bo
un

da
ry

 R
ec

al
l

1000 2000 3000 4000
K

0.01

0.02

0.03

0.04

0.05

0.06

Un
de

rs
eg

m
en

ta
tio

n
Er

ro
r

C=1
C=10
C=20

Figure 6.2: Boundary recall and undersegmentation error of SLIC with different K and C
averaged across a subset of DeepGlobe training samples.

26

6.2. BASELINE RESULTS OF GCN

6.2 Baseline Results of GCN

Fig. 6.3 shows the test sets’ average macro precision (APmac) for the ResNet18 and GCN

baselines without augmentations. ResNet18 outperforms GCN for all datasets with the

most significant margin for UCMerced.

Notably, GCN shows a significant performance improvement based on the dataset’s

complexity. Whereas ResNet18 shows a slight improvement from Globe15 to Globe2, the

test APmac of GCN increases by 0.1507, minimising the performance divergence between

the two baselines. Increasing the mean class occurrence per sample further leads to

an APmac drop for both models. However, while ResNet18 shows a reduction of 0.072,

GCN’s APmac only decreases by 0.0041, drawing both scores closer together. ResNet18

performs more poorly on Globe25 than Globe15, albeit slightly better than GCN. This

indicates that GCN benefits from datasets with a more complex label space and samples

showing higher class interaction for MLC. Yet, it performs very poorly on UCMerced

compared to the ResNet18 baseline, which has even more detailed multi-labels with an

average class occurrence of 3.3 but is also highly imbalanced. A possible explanation for

this behaviour is that UCMerced is a very high-resolution dataset and contains many

structural objects, which ResNet18 can significantly benefit from. At the same time, GCN

suffers a more severe information loss due to the superpixel segmentation [17].

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
P

0.
77

55

0.
80

8

0.
73

6

0.
71

45

0.
61

21

0.
76

28

0.
73

19

0.
28

84

ResNet18
GCN_noAug

Figure 6.3: Macro average precision for ResNet18 and GCN on Globe15, Globe2, Globe25 and
UCMerced test sets.

27

CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Graph Augmentations

In this section, we will separately present and analyse the results of the different

GraphDAs for different p. The following charts show the APmac scores for the GraphDAs,

proposed in Sec. 4.4) on the test sets.

EdgeDrop

EdgeDrop randomly discards edges from a graph. A slight augmentation with a proba-

bility p = 0.3 shows a significant performance increase for Globe15, as depicted in Fig.

6.4 (a). However, further increasing p leads to a sudden AP drop and greatly hurts the

model’s performance. Globe2 also profits from a slight EdgeDrop augmentation, but the

performance suffers for higher p.

EdgeDrop on UCMerced shows the opposite behaviour. All three configurations

improve the results, but the strongest augmentation with p = 0.7 leads to the most

significant improvement.

EdgeAdd

EdgeAdd alters a graph’s structure by randomly adding edges between nodes. Fig. 6.4 (b)

shows the test APmac for all datasets. Noticeably, EdgeAdd decreases GCN performance

on all datasets and drastically decreases the AP scores for higher p.

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
72

36 0.
77

01

0.
72

74

0.
30

13

0.
58

18

0.
75

5

0.
70

11

0.
30

69

0.
55

35

0.
69

88

0.
66

85

0.
31

8

noAug
p=0.3
p=0.5
p=0.7

(a) EdgeDrop
Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
54

51

0.
72

98

0.
65

64

0.
24

67

0.
49

3

0.
66

05

0.
57

77

0.
24

93

0.
46

36

0.
50

48 0.
56

09

0.
25

08

noAug
p=0.3
p=0.5
p=0.7

(b) EdgeAdd

Figure 6.4: APmac on the test sets for Globe15, Globe2, Globe25, and UCMerced for the GCN
baseline (noAug) and GCN with EdgeDrop (a) and EdgeAdd (b) for different p.

28

6.3. GRAPH AUGMENTATIONS

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
60

37

0.
75

61

0.
72

07

0.
30

48

0.
56

46

0.
71

58

0.
68

89

0.
28

35

0.
54

82

0.
70

3

0.
66

73

0.
29

91

noAug
p=0.3
p=0.5
p=0.7

(a) RandNodeDrop
Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
58

74

0.
75

46

0.
70

92

0.
28

27

0.
57

81

0.
74

2

0.
70

32

0.
30

33

0.
57

63

0.
73

2

0.
69

15

0.
27

82

noAug
p=0.3
p=0.5
p=0.7

(b) Subgraph

Figure 6.5: APmac on the test sets for Globe15, Globe2, Globe25, and UCMerced for the GCN
baseline (noAug) and GCN with RandNodeDrop (a) and Subgraph (b) for different p.

RandNodeDrop

Similar to EdgeAdd, RandNodeDrop leads to performance degradation for all p on all

datasets except UCMerced as depicted in Fig. 6.5 (a), albeit not as drastic as EdgeAdd.

While it also decreases the APmac score for p = 0.5 on UCMerced, RandNodeDrop
slightly increases APmac for p = 0.3 and p = 0.7.

Subgraph

Subgraph is equivalent to random cropping in the image domain. But, while RS images

profit from random cropping, Subgraph tends to decrease the performance on GCN,

except for UCMerced and p = 0.5 as depicted in Fig. 6.5 (b). However, all deviations from

the GCN baseline are minor.

AttributeMasking

Fig. 6.6 (a) shows the results on all four datasets for AttributeMasking. Interestingly,

Globe15 drastically benefits from AttributeMasking with a low p = 0.3, while all other

configurations significantly hurt performance on all datasets, which is in line with the

results of You et al. [1] on superpixel graphs. AttributeMasking randomly drops a column

from the node feature matrix X . For the superpixel graphs, this is equivalent to masking

an entire RGB channel.

29

CHAPTER 6. EXPERIMENTAL RESULTS

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
68

25 0.
72

92

0.
66

01

0.
27

07

0.
48

25

0.
67

83

0.
59

78

0.
27

16

0.
41

81

0.
64

91

0.
54

28

0.
25

25

noAug
p=0.3
p=0.5
p=0.7

(a) AttributeMasking
Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
61

37

0.
77

1

0.
73

09

0.
28

94

0.
61

32 0.
69

18

0.
73

35

0.
28

97

0.
61

21 0.
68

99

0.
72

42

0.
29

04

noAug
p=0.3
p=0.5
p=0.7

(b) ReOrga

Figure 6.6: APmac on the test sets for Globe15, Globe2, Globe25, and UCMerced for the GCN
baseline (noAug) and GCN with AttributeMasking (a) and ReOrga (b) for different p.

ReOrga

ReOrga splits a graph into clusters and randomly reconnects them. Fig. 6.6 (b) shows the

results. ReOrga slightly improved the APmac for all datasets and all p. The improvement,

however, is barely significant. Despite rearranging the entire graph, the model was not

negatively affected, which strongly suggests that the local information is more important

than the global graph structure.

Graph RandSquare

RandSquare slightly improves Globe2’s APmac for p = 0.3 while it hurts the performance

for all other Globe datasets and p configurations, as illustrated in Fig. 6.7 (a). Interest-

ingly, however, it leads to a slight performance improvement for p = 0.3 and p = 0.7 on

UCMerced.

Graph VerticalConcat

VerticalConcat concatenates two graphs inspired by the vertical concatenation of images.

The parameter α defines which portion of nodes from the original sample graph is kept.

Fig. 6.7 (b) shows the results for different p and α = 0.3, wheras Fig. 6.8 shows the

results for α= 0.5 (a) and α= 0.7 (b). Overall, any value for α with a small p = 0.3 seems

to slightly increase the AP scores across all datasets (except for α= 0.7 on UCMerced) or

at least do not lead to a considerable drop. The changes, however, are so small that they

are barely significant. On the other hand, increasing p can drastically decrease APmac.

30

6.4. OVERALL GRAPHDA PERFORMANCE

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
28

84

0.
61

22

0.
77

28

0.
73

03

0.
30

21

0.
52

12

0.
70

05

0.
68

3

0.
28

46

0.
52

23

0.
70

09

0.
68

19

0.
30

12

noAug
p=0.3
p=0.5
p=0.7

(a) RandSquare
Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
31

08

0.
61

37

0.
77

19

0.
73

19

0.
31

08

0.
55

01

0.
70

69

0.
69

29

0.
26

35

0.
53

7

0.
62

34 0.
67

88

0.
27

83

noAug
p=0.3
p=0.5
p=0.7

(b) VerticalConcat (α= 0.3)

Figure 6.7: APmac on the test sets for Globe15, Globe2, Globe25, and UCMerced for the GCN
baseline (noAug) and GCN with RandSquare and VerticalConcat with α= 0.3 for different p.

Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
31

08

0.
61

27

0.
76

02

0.
73

24

0.
31

08

0.
54

74

0.
69

81

0.
69

76

0.
24

3

0.
54

41

0.
67

93

0.
69

97

0.
24

47

noAug
p=0.3
p=0.5
p=0.7

(a) VerticalConcat (α= 0.5)
Globe15 Globe2 Globe25 UCMerced0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
Pm

ac 0.
61

22

0.
76

28

0.
73

19

0.
31

08

0.
61

11

0.
75

92

0.
73

26

0.
28

61

0.
54

56

0.
72

25

0.
70

75

0.
25

36

0.
55

49

0.
71

83

0.
70

17

0.
24

1

noAug
p=0.3
p=0.5
p=0.7

(b) VerticalConcat (α= 0.7)

Figure 6.8: APmac on the test sets for Globe15, Globe2, Globe25, and UCMerced for the GCN
baseline (noAug) and GCN with VerticalConcat with α= 0.5 and α= 0.7 for different p.

A smaller α means less of the original graph is used in the concatenation. Additionally,

the label remains unchanged; thus, discarding a large portion of the original graph and

replacing it can potentially cause the label to be less accurate, which means that label

noise is introduced to the dataset. However, Tab. 4.4 results indicate that the model can

benefit from slight label noise (p = 0.3).

6.4 Overall GraphDA Performance

The tables in this section show the GCN and ResNet18 baseline results on the datasets

and the results of all augmentations that improved GCN performance for MLC. The

complete results are found in Appendix A (Tab. A.1, A.2, A.3, A.4).

31

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Test results for baseline ResNet18, baseline GCN (GCN_noAug), and every augmen-
tation that improved GCN’s performance on Globe15. The method identifiers result from the
augmentation name and the configuration of p, as well as α if given.

Method α p APmac APmic f1mac f1mic
ResNet18 - 0.3 0.7755 0.8622 0.4013 0.754
EdgeDrop0.3 - 0.3 0.7236 0.8031 0.309 0.676
AttributeMasking0.3 - 0.3 0.6825 0.771 0.2747 0.6529
VerticalConcat0.3(α=0.3) 0.3 0.3 0.6137 0.7817 0.4709 0.6804
ReOrga0.3 - 0.3 0.6137 0.7801 0.4707 0.6751
ReOrga0.5 - 0.5 0.6132 0.782 0.4723 0.6788
VerticalConcat0.3(α=0.5) 0.5 0.3 0.6127 0.7814 0.4691 0.6802
RandSquare0.3 - 0.3 0.6122 0.7806 0.4709 0.6806
GCN_noAug - - 0.6122 0.7814 0.4699 0.6802

The best augmentations on Globe15 are shown in Table 6.2. As noted previously,

ResNet18 outperforms the GCN baseline by a large margin—however, GCN profits from

light data augmentation with p = 0.3. While most augmentations in the table do not

have much effect, AttributeMasking and EdgeDrop with p = 0.3 significantly improve

APmac by 0.07 and 0.11, reducing the gap to the ResNet18 baseline. But, increasing p
can considerably hurt model performance (Tab. A.2). For example, AttributeMasking and

EdgeAdd with p = 0.7 can drop the APmac to 0.4181 and 0.4636, respectively.

Similar to Globe15, Globe2 also profits from less severe data augmentation with

p = 0.3, as depicted in Tab. 6.3. The difference between the APmac scores between both

baselines is reduced, and fewer augmentations lead to a performance boost. Furthermore,

the influence of even the best augmentations is less significant. For example, the top

augmentation RandSquare with p = 0.3 only results in an APmac increase of 0.0461.

Strong augmentations also show to be harmful in Tab. A.2 with EdgeAdd and p = 0.7

Table 6.3: Test results for baseline ResNet18, baseline GCN (GCN_noAug), and every augmen-
tation that improved GCN’s performance on Globe2. The method identifiers result from the
augmentation name and the configuration of p, as well as α if given.

Method α p APmac APmic f1mac f1mic
ResNet18 - - 0.8089 0.8671 0.4675 0.7794
RandSquare0.3 - 0.3 0.7728 0.8473 0.451 0.7685
VerticalConcat0.3(α=0.3) 0.3 0.3 0.7719 0.8461 0.4445 0.7612
ReOrga0.3 - 0.3 0.771 0.8436 0.4423 0.7621
EdgeDrop0.3 - 0.3 0.7701 0.838 0.4388 0.7547
GCN_noAug - - 0.7628 0.8443 0.447 0.7636

32

6.4. OVERALL GRAPHDA PERFORMANCE

Table 6.4: Test results for baseline ResNet18, baseline GCN (GCN_noAug), and every augmen-
tation that improved GCN’s performance on Globe25. The method identifiers result from the
augmentation name and the configuration of p, as well as α if given.

Name α p APmac APmic f1mac f1mic
ResNet18 - 0.3 0.736 0.848 0.5138 0.7557
ReOrga0.5 - 0.5 0.7335 0.8538 0.6231 0.7646
VerticalConcat0.3(α=0.7) 0.7 0.3 0.7326 0.8554 0.6286 0.7643
VerticalConcat0.3(α=0.5) 0.5 0.3 0.7324 0.8529 0.6179 0.7569
VerticalConcat0.3(α=0.3) 0.3 0.3 0.7319 0.8555 0.6259 0.7638
GCN_noAug - - 0.7319 0.8551 0.6314 0.7659

dropping the APmac to 0.5048.

In contrast to Globe15 and Globe2, the two baselines perform very similarly for

Globe25; ResNet’s APmac is only better by 0.0041, which is barely noticeable, as shown

in Tab. 6.4. However, augmentation only leads to some improvement. ReOrga and

VerticalConcat for all αwith p = 0.3 cause a slight increase of APmac and bring the GCN’s

performance up to the ResNet18 baseline. Again, strong EdgeAdd and AttributeMasking
hurt the model the most (Tab. 6.4).

Table 6.5: Test results for baseline ResNet18, baseline GCN (GCN_noAug), and every augmenta-
tion that improved GCN’s performance on UCMerced. The method identifiers result from the
augmentation name and the configuration of p, as well as α if given.

Name α p APmac APmic f1mac f1mic
ResNet18 - - 0.7145 0.7639 0.5456 0.6923
EdgeDrop0.7 - 0.7 0.3285 0.5308 0.0728 0.224
EdgeDrop0.7_2layer - 0.7 0.318 0.5581 0.0715 0.2931
EdgeDrop0.5 - 0.5 0.3069 0.553 0.0813 0.3101
RandNodeDrop0.3 - 0.3 0.3048 0.5472 0.0839 0.3549
Subgraph0.5 - 0.5 0.3033 0.5397 0.1119 0.3917
RandSquare0.3 - 0.3 0.3021 0.5475 0.1015 0.3936
VerticalConcat0.3(α=0.7) 0.7 0.3 0.3021 0.5475 0.1015 0.3936
EdgeDrop0.3 - 0.3 0.3013 0.5498 0.0839 0.3479
RandSquare0.7 - 0.7 0.3012 0.5467 0.0986 0.3843
RandNodeDrop0.7 - 0.7 0.2991 0.5328 0.0838 0.2895
ReOrga0.7 - 0.7 0.2904 0.5475 0.093 0.3761
ReOrga0.5 - 0.5 0.2897 0.5472 0.0923 0.3752
ReOrga0.3 - 0.3 0.2894 0.5468 0.0923 0.3748
VerticalConcat0.3(α=0.3) 0.3 0.3 0.2884 0.5463 0.0926 0.3759
GCN_noAug - - 0.2884 0.5463 0.0926 0.3759

33

CHAPTER 6. EXPERIMENTAL RESULTS

Various augmentations positively affect UCMerced, such as EdgeDrop, ReOrga,

RandNodeDrop, Subgraph, and VerticalConcat, illustrated in Tab. 6.5. Mainly EdgeDrop
works well for all p. Interestingly, unlike the Globe datasets UCMerced also profits

from stronger augmentations. On the other hand, strong VerticalConcat, EdgeAdd, and

AttributeMasking severely hurt GCN performance.

In conclusion, all Globe datasets generally profit from light augmentations. Since

VerticalConcat and RandSquare do not alter the labels, there is a risk of introducing

label noise to the sample. Interestingly, Globe profits from a bit of label noise. UCMerced,

on the other hand, prefers strong augmentations. On all datasets, EdgeDrop, ReOrga,

and VerticalConcat perform well depending on the hyperparameter configuration, while

EdgeAdd and AttributeMasking can severely impair GCN performance. Nevertheless,

further analysis is needed to fully understand the different effects of GraphDA across

the datasets.

34

7 Discussion

The previously presented results have revealed that the performance of GCN

and GraphDA varies significantly between the Globe datasets and UCMerced.

Therefore, this chapter will delve deeper into the disparities between them.

7.1 Texture and Object-based Classes

To begin with, the Globe datasets are bigger, have fewer classes, and are more balanced

than UCMerced. But, the types of classes greatly differ as well. While DeepGlobe’s classes

are primarily based on texture, UCMerced includes mixed and object-based classes. The

texture-based classes consist of field, pavement, bare soil, airplanes, water, trees, sand,

sea, and chaparral. Docks and buildings are mixed classes as they can either appear as

single objects or with a pattern. Cars, mobile-home, airplane, tank, court, and ship are

categorised as object-based.

Figure 7.1: Categorisation of classes into mixed, object-, or texture-based.

35

CHAPTER 7. DISCUSSION

The categories and the number of samples per class are illustrated in Fig. 7.1. Fur-

thermore, Fig. 7.1 visualises how all object classes, except for cars, are minority classes

and that the dataset is heavily imbalanced favouring texture-based classes. Additionally,

since objects tend to be small on satellite images, only a few pixels can be assigned to

them. Those few pixels are then further condensed to superpixels. Unfortunately, this

can lead to a loss of information [17], particularly for object-based classes.

Figure 7.2 shows the mean test APs for both baselines averaged across all classes for

all three categories. ResNet18 outperforms GCN in all. Most notably, while ResNet18

has a lower AP for object classes as well, the AP of GCN drops as low as 0.1326. However,

strong variations within the categories still exist, so we need to examine the various

classes closely.

The AP test scores for every object class for all augmentations and baselines are

visualised in Fig. 7.4. For comparison reasons, we picked the best augmentation configu-

ration for each class. The GCN baseline performs poorly on all object classes except for

cars. Yet, the AP is much lower than ResNet18’s. As stated, cars is the only majority class

in the object category, which most likely plays a big part in the rather good performance.

Additionally, cars greatly profits from GraphDA, especially EdgeDrop with a high

probability p = 0.7 and using only a 2-layer GCN instead of a 6-layer GCN. The most

likely explanation for this is that our network is over-smoothing, a phenomenon that

appears when repeated graph convolution during layer propagation leads to a point

where all nodes’ features converge to the same representation. Consequently, the learned

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Test AP

Mixed

Texture

Object

0.8182

0.7586

0.6182

0.2754

0.3879

0.1326
ResNet18
GCN_noAug

Figure 7.2: Mean AP Results for GCN and ResNet18 baseline on the three class categories,
texture, mixed and object.

36

7.1. TEXTURE AND OBJECT-BASED CLASSES

representations are unrelated to the input features, and gradients are vanishing. This is

more likely to happen in deeper GCN architectures [12], [43]–[45]. Both heavy EdgeDrop,

which reduces the graph’s connectivity, and fewer layers reduce the size of the GCN’s

receptive field and thus alleviate the risk of over-smoothing [44]. Thus, the object’s

information, represented only by a few nodes, is not as easily lost during aggregation.

In general, EdgeDrop has a positive effect on all object classes. Strong EdgeDrop shows

the biggest improvement for four of six classes, showing that randomly reducing graph

connectivity can benefit object classification.

GCN achieves its second-best AP for tanks out of the object-based classes. Interest-

ingly, ResNet18 also has a comparably low score for this class, and GCN with GraphDA

approaches ResNet18’s AP. Tanks is with 1.4% (Fig. 3.3) a minority class. But, a closer

look at the samples in Fig. 7.3 reveals that tanks often either cover a larger portion of the

image or appear along with others. Thus, even though tanks is a minority class, many

nodes can represent a single tank in a graph, i.e. more information is preserved, and a

GCN can learn their relationship. All GraphDAs positively impact tanks, except ReOrga,

which barely altered the AP. Interestingly, EdgeAdd performs better than EdgeDrop,

and the model profits from strong VerticalConcat, i.e. a lot of label noise.

The results for the classes mobile-home, ship, airplanes, and court show that GCN

completely fails to understand and distinguish them. All of them are minority classes.

Aeroplanes do not appear in distinct patterns; mobile homes and ships can be easily

confused with cars, which are a majority class, and hence can cause a bias in favour of

car predictions; Finally, courts are characterised by distinct lines, which may disappear

during superpixel sampling.

In a nutshell, many distinct characteristics and much information can get lost during

graph generation, hindering GCN performance, especially if the dataset is imbalanced,

which is in line with previous findings [46]–[48].

Figure 7.3: Sample images for the tanks class of UCMerced.

37

CHAPTER 7. DISCUSSION

Figure 7.4: AP scores on the object-based classes, cars, mobile-home, airplanes, tanks, court, and
ship, for baseline ResNet, GCN and the best configuration for each augmentation.

Mixed classes can either appear as objects or in patterns, such as buildings and

docks. Fig. 7.5 shows the test AP for all augmentations with their best configurations

and the baselines for both classes. Notably, GCN performs well for buildings but fails for

dock. Buildings is with 9.9% a majority whereas dock is a minority class with just 1.4%

representation (Fig. 3.3). RandNodeDrop, Subgraph, VerticalConcat, and RandSquare

greatly boost performance but are outperformed by 2-layer EdgeDrop with p = 0.7. Again,

indicating that the predictive capabilities of GCN for fine-grained classes can benefit

from a smaller receptive field. Additionally, buildings profits from the strong relationship

between the nodes caused by the patterns, which GCN can recognise.

But, GCNs are difficult to interpret due to the complex underlying information and

38

7.1. TEXTURE AND OBJECT-BASED CLASSES

Figure 7.5: AP scores on the mixed classes, buildings, and tanks, for baseline ResNet, GCN and
the best configuration for each augmentation.

their transformations [49], [50]. So, while the small size of the dock class can partly

explain the poor performance of GCN, it remains unclear why it failed to learn the very

distinct patterns of docks, which ResNet18 easily distinguishes with an AP of 0.9896. A

possible explanation is that dock has such a strong correlation with other classes, such

as ship and water, that GCN guesses dock every time it recognises one of the correlated

classes, resulting in a meagre precision score.

The results for texture-based classes are presented in Fig. 7.6, which shows that GCN

performs better on them than on object classes. It is worth noting that pavement, bare-soil,
trees, and grass are majority classes, which is also reflected in the good performance of the

models. Most classes greatly benefit from DA. Again, EdgeDrop, as well as VerticalConcat,
show favourable results. Additionally, randomly removing information from the graph

through AttributeMasking and RandNodeDrop can significantly improve results, e.g.

for classes sand and bare-soil, which suggests that GCN can reconstruct missing pieces

from the remaining information encoded in neighbouring nodes and the graph structure

for texture-based classes. As textures often cover large portions of the image, DAs such

as Subgraph and RandSquare can be applied without risking the loss of important

information.

Surprisingly, EdgeAdd, shown to reduce GCN performance multiple times, can greatly

benefit texture-based classes such as grass and sand by increasing the receptive field to

distinguish larger structures and smooth out noise within them.

However, it negatively impacts the pavement class, which conversely profits from

strong EdgeDrop with p = 0.7 along with a 2-layer GCN, similar to cars. GCN excels at

identifying the relationships between instances. Cars and pavement strongly correlate

with each other and often appear together. Thus, both classes might benefit from the

same augmentation since detecting one class depends on the other.

39

CHAPTER 7. DISCUSSION

Lastly, ReOrga has not shown a significant difference from the baseline for all three

categories, proving that local structure in a graph is more important than global structure.

In other words, a GCN is indifferent to changes in the graph as long as the local structure

is preserved.

Figure 7.6: AP scores on the texture-based classes, field, pavement, bare-soil, grass, water,
trees, sand, sea, and chaparral, for baseline ResNet, GCN and the best configuration for each
augmentation.

40

7.2. DESIGNING GRAPHS WITH CLEAN OBJECT NODES

Figure 7.7: Left: Example ground truth segmenation map with classes pavement, cars, airplane,
grass. Middle: Objects are extracted from the segmentation map and assigned a unique label.
Finally, SLIC is applied to the rest of the image (right). Every superpixel and object cluster is
converted into a distinct node.

7.2 Designing Graphs with Clean Object Nodes

The results discussed in Sec. 7.1 show that GCN struggles with identifying objects.

The main reason for this is the construction of the graph itself. Small-grained objects,

represented by only a few pixels in the image, are represented by even fewer nodes in

the graph due to superpixel segmentation. Additionally, object pixels can get clustered

into a superpixel with other background pixels, resulting in severe information loss. The

performance of GCN, however, greatly hinges on the quality of input graphs, i.e. if the

graph is noisy, the GCN’s predictive power is hindered.

To tackle this issue and test if a different graph generation method can influence

performance, we re-designed our graphs for UCMerced. We follow the same procedure as

described in Cha. 4, but with a slight alteration to the superpixel sampling (Sec. 4.2).

First, we extract the object pixels based on the ground truth segmentation maps [31].

After that, the rest of the image is segmented into superpixels, and we proceed with the

graph generation.

However, every distinct object is transformed into a single node. An object node

contains the averaged object RGB values as features and the coordinates of the object’s

centre as the node position, like the superpixel nodes. Thus, all objects in an image

are clearly separated from their surroundings in the generated graph. An example

segmentation is visualised in Fig. 7.7. Since only object pixels need to be labelled, the

annotation effort remains relatively low.

41

CHAPTER 7. DISCUSSION

Fig.7.8 compares the AP scores of the GCN baseline with the GCN results on the object

graphs (denoted by GCN_noAug_obj). Overall, the cleaner object graphs improve GCN

performance, as reflected by the increased APmac score of 0.3251. It shows improvements

for all classes except for airplane, tanks, pavement, sea, trees. With the exception of

airplane and tanks, all these classes are texture-based. court, ship, dock, field, sand, and

water profited the most from the object graphs.

One drawback of this method is that objects which are generally larger or have a

very distinct shape are summarised into a single node, which leads to a significant

information loss when compared to the superpixels as reflected in the performance on

airplane and tanks. However, small objects without very distinct shapes greatly profit

from this type of segmentation, such as ships. As a result, the performance on classes

that are strongly correlated with ship, e.g. water or docks also increases.

Finally, a small alteration to the superpixel sampling and graph generation method

achieved almost the same APmac as the best augmentation on standard superpixel

UCMerced graphs, which shows that generating clean and meaningful graphs can have

a greater influence on the performance of GCN than GraphDA.

Figure 7.8: Test AP scores of GCN_noAug and baseline GCN on object graphs GCN_obj.

42

8 Conclusion

This thesis investigated how MLC on RS satellite images can profit from GCNs

and GraphDA. We thoroughly tested and evaluated the four already existing

GraphDA techniques, EdgeDrop, EdgeAdd, AttributeMasking, and Subgraph, as

well as the newly proposed GraphDAs, ReOrga, VerticalConcat, and RandSquare, on

multiple MLC satellite datasets. The analysis leads to the following conclusions.

Similar to other ML methods, the performance of GCN greatly depends on the dataset

but even more on the quality of the input graphs. Converting an image into a graph

can severely compress the image data and lead to information loss. Small object classes

only represented by a few pixels in a multi-label image are represented by even fewer

nodes in a superpixel graph. Furthermore, the objects’ information can get blurred if the

superpixels have an imprecise boundary adherence. This disadvantages GCN against

architectures specifically designed for images, such as ResNet18, that can directly be

applied to high-resolution image data.

But, GCN is indifferent to varying sizes of input images and very lightweight. Ad-

ditionally, it excels at understanding the relationship between classes and has shown

promising results on texture-based datasets. It achieved good average precision despite

the compressed information, especially for MLC datasets with a higher average class

occurrence per sample. Thus, GCN could be well applied to complex texture-based MLC

datasets whose samples contain strong relationships between the classes., e.g. crop maps.

Our results further emphasise how important graph generation and the choice of

GCN architecture are. Too many layers can increase the risk of over-smoothing, which

can cause even more severe information loss for object classes, while coarse texture

classes seem to profit from a larger receptive field. These sensitivities can limit the initial

flexibility of GCN. However, GraphDA can alleviate some of these drawbacks.

Our analysis has shown that different types of classes can profit from different

GraphDAs. For example, object-based classes profit from augmentations that reduce

the receptive field of GCN, such as EdgeDrop. Thus, by randomly changing the graph

43

CHAPTER 8. CONCLUSION

structure and connectivity, GraphDAs can help the network to dynamically adjust to

new datasets making the design choices more flexible and increasing the network’s

generalisation capabilities.

It is, however, important to consider the domain the graphs originate from since

augmentations can drastically change a graph’s semantic and structural information.

The already existing GraphDAs, we examined have been shown to improve model

performance in previous works focused on graph domains other than RS. Yet, only

EdgeDrop yielded consistently favourable results on the RS datasets, while Subgraph
could only improve APmac on UCMerced, and EdgeAdd and Attribute Masking generally

hindered the model. On the other hand, Our newly proposed GraphDAs developed based

on superpixel graphs have all shown positive effects on average precision. Although

their improvement on the overall performance is marginal, they positively affect some

classes. These differences can be attributed to the unique characteristics of texturised

classes with repetitive patterns and object classes with fine-grained individual features.

In short, GraphDAs specifically developed for superpixel graphs have a much lower risk

of harming model performance and, consequently, are more stable.

Graph generation and domain knowledge are essential not only for the network

design itself but also for developing new GraphDAs. However, GNNs lack interpretability,

making it difficult to understand which information is important and benefits the model

and which does not. Hence, the design of graph generation pipelines and universal

GraphDAs is challenging and a limiting factor in this thesis. Many image DAs that

benefit RS images can not simply be translated into GraphDAs.

Taken together, this work has given insight into how challenges in RS MLC, such

as imbalanced data and a large variety of classes and their complex relationships, can

affect GCNs, or GNNs in general, and influence the effectiveness of GraphDA techniques.

Additionally, we analysed how existing GraphDAs can be applied to RS data and proposed

new augmentations specifically for RS superpixel graphs.

Future research should conduct additional tests to determine if the proposed aug-

mentations also work on other graph types. Moreover, this thesis focused on RGB images,

but hyper-spectral data is essential to RS image analysis. Thus, investigating how GCN

and GraphDAs perform on hyper-spectral multi-label RS images should be of great

importance for future work, especially since GCN could potentially profit from the addi-

tional information in the nodes. Lastly, a key component will be discovering new ways

of generating meaningful image graphs since they built the foundation for good graph

classification and the effectiveness of GraphDA.

44

Bibliography

[1] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive learning

with augmentations”, in Advances in Neural Information Processing Systems, H.

Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran

Associates, Inc., 2020, pp. 5812–5823.

[2] M. Marrium and A. Mahmood, “Data augmentation for graph data: Recent ad-

vancements”, 2022. DOI: 10.48550/ARXIV.2208.11973.

[3] Q. Diao, Y. Dai, C. Zhang, Y. Wu, X. Feng, and F. Pan, “Superpixel-based atten-

tion graph neural network for semantic segmentation in aerial images”, Remote
Sensing, vol. 14, no. 2, 2022, ISSN: 2072-4292. DOI: 10.3390/rs14020305.

[4] V. Vasudevan, M. Bassenne, M. T. Islam, and L. Xing, “Image classification using

graph neural network and multiscale wavelet superpixels”, Pattern Recogn. Lett.,
vol. 166, no. C, pp. 89–96, Feb. 2023, ISSN: 0167-8655. DOI: 10.1016/j.patrec.

2023.01.003.

[5] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson,

“Benchmarking graph neural networks”, Journal of Machine Learning Research,

vol. 24, May 11, 2022.

[6] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated

data augmentation with a reduced search space”, in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 3008–

3017. DOI: 10.1109/CVPRW50498.2020.00359.

[7] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “AutoAugment:

Learning augmentation strategies from data”, in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE,

Jun. 2019, pp. 113–123, ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.2019.

00020.

45

https://doi.org/10.48550/ARXIV.2208.11973
https://doi.org/10.3390/rs14020305
https://doi.org/10.1016/j.patrec.2023.01.003
https://doi.org/10.1016/j.patrec.2023.01.003
https://doi.org/10.1109/CVPRW50498.2020.00359
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/CVPR.2019.00020

BIBLIOGRAPHY

[8] A. Oubara, F. Wu, A. Amamra, and G. Yang, “Survey on remote sensing data

augmentation: Advances, challenges, and future perspectives”, in Advances in
Computing Systems and Applications, M. R. Senouci, S. Y. Boulahia, and M. A.

Benatia, Eds., Cham: Springer International Publishing, 2022, pp. 95–104, ISBN:

978-3-031-12097-8.

[9] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical

risk minimization”, International Conference on Learning Representations, 2018.

[10] C. Summers and M. J. Dinneen, “Improved mixed-example data augmentation”, in

2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019,

pp. 1262–1270. DOI: 10.1109/WACV.2019.00139.

[11] K. Ding, Z. Xu, H. Tong, and H. Liu, “Data augmentation for deep graph learning:

A survey”, SIGKDD Explor. Newsl., vol. 24, no. 2, pp. 61–77, Dec. 2022, ISSN:

1931-0145. DOI: 10.1145/3575637.3575646.

[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey

on graph neural networks”, IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 1, pp. 4–24, Jan. 2021, ISSN: 2162-237X, 2162-2388. DOI:

10.1109/TNNLS.2020.2978386.

[13] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural

networks?”, 2019. DOI: 10.48550/arXiv.1810.00826.

[14] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Repre-

sentation learning on graphs with jumping knowledge networks”, in Proceedings
of the 35th International Conference on Machine Learning, J. Dy and A. Krause,

Eds., ser. Proceedings of Machine Learning Research, vol. 80, PMLR, Oct. 2018,

pp. 5453–5462.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks”, in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenRe-

view.net, 2017.

[16] M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Networks”, in

Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H.

Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31, Curran

Associates, Inc., 2018.

46

https://doi.org/10.1109/WACV.2019.00139
https://doi.org/10.1145/3575637.3575646
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.48550/arXiv.1810.00826

BIBLIOGRAPHY

[17] P. C. Avelar, A. R. Tavares, T. T. da Silveira, C. R. Jung, and L. C. Lamb, “Superpixel

image classification with graph attention networks”, in 2020 33rd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), Los Alamitos, CA, USA:

IEEE Computer Society, Nov. 2020, pp. 203–209. DOI: 10.1109/SIBGRAPI51738.

2020.00035.

[18] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural net-

works”, in Advances in Neural Information Processing Systems, vol. 33, Curran

Associates, Inc., 2020, pp. 2220–2231.

[19] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning”, Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[20] Q. Xie, Z. Dai, E. Hovy, T. Luong, and Q. Le, “Unsupervised Data Augmentation

for Consistency Training”, in Advances in Neural Information Processing Systems,

vol. 33, Curran Associates, Inc., 2020, pp. 6256–6268.

[21] X. Hao, L. Liu, R. Yang, L. Yin, L. Zhang, and X. Li, “A Review of Data Augmenta-

tion Methods of Remote Sensing Image Target Recognition”, en, Remote Sensing,

vol. 15, no. 3, p. 827, Jan. 2023, Number: 3 Publisher: Multidisciplinary Digital

Publishing Institute, ISSN: 2072-4292. DOI: 10.3390/rs15030827.

[22] X. Yu, X. Wu, C. Luo, and P. Ren, “Deep learning in remote sensing scene classifi-

cation: A data augmentation enhanced convolutional neural network framework”,

GIScience & Remote Sensing, vol. 54, no. 5, pp. 741–758, 2017. DOI: 10.1080/

15481603.2017.1323377.

[23] J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and J. Li, “Hyperspectral Image

Classification Using Random Occlusion Data Augmentation”, IEEE Geoscience
and Remote Sensing Letters, vol. 16, no. 11, pp. 1751–1755, Nov. 2019, Conference

Name: IEEE Geoscience and Remote Sensing Letters, ISSN: 1558-0571. DOI: 10.

1109/LGRS.2019.2909495.

[24] E. Dai, C. Aggarwal, and S. Wang, “Nrgnn: Learning a label noise resistant graph

neural network on sparsely and noisily labeled graphs”, in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, ser. KDD ’21,

Virtual Event, Singapore: Association for Computing Machinery, 2021, pp. 227–

236, ISBN: 9781450383325. DOI: 10.1145/3447548.3467364.

47

https://doi.org/10.1109/SIBGRAPI51738.2020.00035
https://doi.org/10.1109/SIBGRAPI51738.2020.00035
https://doi.org/10.3390/rs15030827
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.1109/LGRS.2019.2909495
https://doi.org/10.1109/LGRS.2019.2909495
https://doi.org/10.1145/3447548.3467364

BIBLIOGRAPHY

[25] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the

over-smoothing problem for graph neural networks from the topological view”, Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 4, pp. 3438–

3445, Apr. 2020. DOI: 10.1609/aaai.v34i04.5747.

[26] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Graphcrop: Subgraph cropping

for graph classification”, CoRR, vol. abs/2009.10564, 2020. arXiv: 2009.10564.

[Online]. Available: https://arxiv.org/abs/2009.10564.

[27] P. Mishra, A. Piktus, G. Goossen, and F. Silvestri, “Node masking: Making graph

neural networks generalize and scale better”, no. arXiv:2001.07524, May 16, 2021.

arXiv: 2001.07524[cs,stat].

[28] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node and graph

classification”, in Proceedings of the Web Conference 2021, Ljubljana Slovenia:

ACM, Apr. 19, 2021, pp. 3663–3674, ISBN: 978-1-4503-8312-7. DOI: 10.1145/

3442381.3449796.

[29] I. Demir, K. Koperski, D. Lindenbaum, et al., “DeepGlobe 2018: A challenge to

parse the earth through satellite images”, in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City,

UT, USA: IEEE, Jun. 2018, pp. 172–17 209, ISBN: 978-1-5386-6100-0. DOI: 10.

1109/CVPRW.2018.00031.

[30] B. Chaudhuri, B. Demir, S. Chaudhuri, and L. Bruzzone, “Multilabel remote

sensing image retrieval using a semisupervised graph-theoretic method”, IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 1144–1158,

2018. DOI: 10.1109/TGRS.2017.2760909.

[31] Z. Shao, K. Yang, and W. Zhou, “Performance evaluation of single-label and multi-

label remote sensing image retrieval using a dense labeling dataset”, Remote
Sensing, vol. 10, no. 6, 2018, ISSN: 2072-4292. DOI: 10.3390/rs10060964.

[32] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An evaluation of the state-of-the-

art”, Computer Vision and Image Understanding, vol. 166, pp. 1–27, 2018, ISSN:

1077-3142. DOI: https://doi.org/10.1016/j.cviu.2017.03.007.

[33] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic super-

pixels compared to state-of-the-art superpixel methods”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

DOI: 10.1109/TPAMI.2012.120.

48

https://doi.org/10.1609/aaai.v34i04.5747
https://arxiv.org/abs/2009.10564
https://arxiv.org/abs/2009.10564
https://arxiv.org/abs/2001.07524 [cs, stat]
https://doi.org/10.1145/3442381.3449796
https://doi.org/10.1145/3442381.3449796
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1109/TGRS.2017.2760909
https://doi.org/10.3390/rs10060964
https://doi.org/https://doi.org/10.1016/j.cviu.2017.03.007
https://doi.org/10.1109/TPAMI.2012.120

BIBLIOGRAPHY

[34] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “SEEDS: Superpixels

Extracted Via Energy-Driven Sampling”, International Journal of Computer Vision,

vol. 111, no. 3, pp. 298–314, Feb. 2015, ISSN: 1573-1405. DOI: 10.1007/s11263-

014-0744-2.

[35] Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering”, in

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,

pp. 1356–1363. DOI: 10.1109/CVPR.2015.7298741.

[36] A. Vedaldi and S. Soatto, “Quick Shift and Kernel Methods for Mode Seeking”,

in Computer Vision – ECCV 2008, D. Forsyth, P. Torr, and A. Zisserman, Eds.,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 705–718, ISBN: 978-3-

540-88693-8.

[37] P. Neubert and P. Protzel, “Superpixel Benchmark and Comparison”, 2012.

[38] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering”, in Advances in Neural Information
Processing Systems, vol. 29, Curran Associates, Inc., 2016.

[39] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,

“Geometric deep learning on graphs and manifolds using mixture model CNNs”,

in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI: IEEE, Jul. 2017, pp. 5425–5434, ISBN: 978-1-5386-0457-1. DOI:

10.1109/CVPR.2017.576.

[40] S. Van Dongen, “Graph clustering via a discrete uncoupling process”, SIAM Journal
on Matrix Analysis and Applications, vol. 30, no. 1, pp. 121–141, 2008. DOI: 10.

1137/040608635.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-

tion”, en, in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–778, ISBN: 978-1-4673-

8851-1. DOI: 10.1109/CVPR.2016.90.

[42] S. Ruder, “An overview of gradient descent optimization algorithms”, Jun. 2017,

arXiv:1609.04747 [cs]. DOI: 10.48550/arXiv.1609.04747.

[43] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks for

semi-supervised learning”, in Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial

49

https://doi.org/10.1007/s11263-014-0744-2
https://doi.org/10.1007/s11263-014-0744-2
https://doi.org/10.1109/CVPR.2015.7298741
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1137/040608635
https://doi.org/10.1137/040608635
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1609.04747

BIBLIOGRAPHY

Intelligence, ser. AAAI’18/IAAI’18/EAAI’18, New Orleans, Louisiana, USA: AAAI

Press, 2018, ISBN: 978-1-57735-800-8.

[44] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph con-

volutional networks on node classification”, in 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,

OpenReview.net, 2020.

[45] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph

neural networks meet personalized pagerank”, in International Conference on
Learning Representations, 2018.

[46] S. Shi, K. Qiao, J. Yang, B. Song, J. Chen, and B. Yan, “Over-sampling strategy

in feature space for graphs based class-imbalanced bot detection”, 2023. arXiv:

2302.06900 [cs.CV].

[47] F. Hu, L. Wang, Q. Liu, S. Wu, L. Wang, and T. Tan, “GraphDIVE: Graph classifica-

tion by mixture of diverse experts”, in Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, Vienna, Austria: International Joint

Conferences on Artificial Intelligence Organization, Jul. 2022, pp. 2080–2086,

ISBN: 978-1-956792-00-3. DOI: 10.24963/ijcai.2022/289.

[48] S. Pan and X. Zhu, “Graph classification with imbalanced class distributions and

noise”, in International Joint Conference on Artificial Intelligence, vol. 23, 2013.

[49] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Gener-

ating explanations for graph neural networks”, in Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[50] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “Graphlime: Local in-

terpretable model explanations for graph neural networks”, IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 7, pp. 6968–6972, 2023. DOI:

10.1109/TKDE.2022.3187455.

50

https://arxiv.org/abs/2302.06900
https://doi.org/10.24963/ijcai.2022/289
https://doi.org/10.1109/TKDE.2022.3187455

A Appendix

51

Table A.1: Globe15 all results.

Name α p APmac APmic f1mac f1mic
ResNet18 - - 0.7755 0.8622 0.4013 0.754
EdgeDrop0.3 - 0.3 0.7236 0.8031 0.309 0.676
AttributeMasking0.3 - 0.3 0.6825 0.771 0.2747 0.6529
VerticalConcat0.3(α=0.3) 0.3 0.3 0.6137 0.7817 0.4709 0.6804
ReOrga0.3 - 0.3 0.6137 0.7801 0.4707 0.6751
ReOrga0.5 - 0.5 0.6132 0.782 0.4723 0.6788
VerticalConcat0.3(α=0.5) 0.5 0.3 0.6127 0.7814 0.4691 0.6802
RandSquare0.3 - 0.3 0.6122 0.7806 0.4709 0.6806
GCN_noAug - - 0.6122 0.7814 0.4699 0.6802
ReOrga0.7 - 0.7 0.6121 0.781 0.4646 0.6746
VerticalConcat0.3(α=0.7) 0.7 0.3 0.6111 0.7806 0.4725 0.6811
RandNodeDrop0.3 - 0.3 0.6037 0.7672 0.4337 0.6545
Subgraph0.3 - 0.3 0.5874 0.7534 0.4384 0.6586
EdgeDrop0.5 - 0.5 0.5818 0.7474 0.3522 0.6096
Subgraph0.5 - 0.5 0.5781 0.7395 0.4317 0.6521
Subgraph0.7 - 0.7 0.5763 0.7203 0.4256 0.6406
RandNodeDrop0.5 - 0.5 0.5646 0.7279 0.3732 0.6224
VerticalConcat0.7(α=0.7) 0.7 0.7 0.5549 0.745 0.4376 0.6523
EdgeDrop0.7 - 0.7 0.5535 0.716 0.3128 0.5847
VerticalConcat0.5(α=0.3) 0.3 0.5 0.5501 0.7381 0.4571 0.661
RandNodeDrop0.7 - 0.7 0.5482 0.7081 0.3725 0.6181
VerticalConcat0.5(α=0.5) 0.5 0.5 0.5474 0.7323 0.4437 0.6484
VerticalConcat0.5(α=0.7) 0.7 0.5 0.5456 0.7394 0.4434 0.6534
EdgeAdd0.3 - 0.3 0.5451 0.728 0.4491 0.6562
VerticalConcat0.7(α=0.5) 0.5 0.7 0.5441 0.7363 0.4455 0.657
VerticalConcat0.7(α=0.3) 0.3 0.7 0.537 0.7282 0.436 0.652
RandSquare0.7 - 0.7 0.5223 0.7162 0.4007 0.6183
RandSquare0.5 - 0.5 0.5212 0.7149 0.3927 0.614
EdgeAdd0.5 - 0.5 0.493 0.6702 0.4011 0.6174
AttributeMasking0.5 - 0.5 0.4825 0.6917 0.2802 0.5846
EdgeAdd0.7 - 0.7 0.4636 0.6582 0.3176 0.6026
AttributeMasking0.7 - 0.7 0.4181 0.6446 0.2432 0.5626

Table A.2: Globe2 all results.

Name α p APmac APmic f1mac f1mic
ResNet18 - - 0.8089 0.8671 0.4675 0.7794
RandSquare0.3 - 0.3 0.7728 0.8473 0.451 0.7685
VerticalConcat0.3(α=0.3) 0.3 0.3 0.7719 0.8461 0.4445 0.7612
ReOrga0.3 - 0.3 0.771 0.8436 0.4423 0.7621
EdgeDrop0.3 - 0.3 0.7701 0.838 0.4388 0.7547
GCN_noAug - - 0.7628 0.8443 0.447 0.7636
VerticalConcat0.3(α=0.5) 0.5 0.3 0.7602 0.8433 0.4418 0.7614
VerticalConcat0.3(α=0.7) 0.7 0.3 0.7592 0.844 0.4391 0.7614
RandNodeDrop0.3 - 0.3 0.7561 0.8298 0.4289 0.7518
EdgeDrop0.5 - 0.5 0.755 0.816 0.4115 0.7251
Subgraph0.3 - 0.3 0.7546 0.8126 0.3908 0.7297
Subgraph0.5 - 0.5 0.742 0.8024 0.3826 0.7229
Subgraph0.7 - 0.7 0.732 0.7905 0.3755 0.7141
EdgeAdd0.3 - 0.3 0.7298 0.787 0.3885 0.7191
AttributeMasking0.3 - 0.3 0.7292 0.8009 0.3838 0.7152
VerticalConcat0.5(α=0.7) 0.7 0.5 0.7225 0.7934 0.4022 0.7047
VerticalConcat0.7(α=0.7) 0.7 0.7 0.7183 0.7876 0.4085 0.7051
RandNodeDrop0.5 - 0.5 0.7158 0.8051 0.3923 0.7188
VerticalConcat0.5(α=0.3) 0.3 0.5 0.7069 0.7679 0.3903 0.6898
VerticalConcat0.7(α=0.5) 0.5 0.7 0.7068 0.7812 0.3868 0.6891
RandNodeDrop0.7 - 0.7 0.703 0.7823 0.3659 0.7032
RandSquare0.7 - 0.7 0.7009 0.793 0.4061 0.7135
RandSquare0.5 - 0.5 0.7005 0.7926 0.3994 0.7081
EdgeDrop0.7 - 0.7 0.6988 0.7854 0.3658 0.6903
VerticalConcat0.5(α=0.5) 0.5 0.5 0.6981 0.7826 0.3953 0.694
ReOrga0.5 - 0.5 0.6918 0.8452 0.5877 0.7557
ReOrga0.7 - 0.7 0.6899 0.8446 0.5915 0.7574
AttributeMasking0.5 - 0.5 0.6783 0.7619 0.3481 0.6789
EdgeAdd0.5 - 0.5 0.6605 0.7268 0.3328 0.6626
AttributeMasking0.7 - 0.7 0.6491 0.7284 0.2869 0.6322
VerticalConcat0.7(α=0.3) 0.3 0.7 0.6234 0.7698 0.541 0.6915
EdgeAdd0.7 - 0.7 0.5048 0.6979 0.3578 0.6487

53

APPENDIX A. APPENDIX

Table A.3: Globe25 all results.

Name α p APmac APmic f1mac f1mic
ResNet18 - - 0.736 0.848 0.5138 0.7557
ReOrga0.5 - 0.5 0.7335 0.8538 0.6231 0.7646
VerticalConcat0.3(α=0.7) 0.7 0.3 0.7326 0.8554 0.6286 0.7643
VerticalConcat0.3(α=0.5) 0.5 0.3 0.7324 0.8529 0.6179 0.7569
VerticalConcat0.3(α=0.3) 0.3 0.3 0.7319 0.8555 0.6259 0.7638
GCN_noAug - - 0.7319 0.8551 0.6314 0.7659
ReOrga0.3 - 0.3 0.7309 0.8527 0.6177 0.7622
RandSquare0.3 - 0.3 0.7303 0.8548 0.627 0.7655
EdgeDrop0.3 - 0.3 0.7274 0.8498 0.599 0.7506
ReOrga0.7 - 0.7 0.7242 0.8489 0.6214 0.7623
RandNodeDrop0.3 - 0.3 0.7207 0.8433 0.6091 0.7558
Subgraph0.3 - 0.3 0.7092 0.8224 0.5509 0.7335
VerticalConcat0.5(α=0.7) 0.7 0.5 0.7075 0.8344 0.5766 0.7365
Subgraph0.5 - 0.5 0.7032 0.8138 0.537 0.7262
VerticalConcat0.7(α=0.7) 0.7 0.7 0.7017 0.8323 0.5828 0.7382
EdgeDrop0.5 - 0.5 0.7011 0.8297 0.5675 0.7266
VerticalConcat0.7(α=0.5) 0.5 0.7 0.6997 0.831 0.5676 0.7401
VerticalConcat0.5(α=0.5) 0.5 0.5 0.6976 0.8285 0.5676 0.737
VerticalConcat0.5(α=0.3) 0.3 0.5 0.6929 0.8239 0.5622 0.7328
Subgraph0.7 - 0.7 0.6915 0.7994 0.5188 0.7128
RandNodeDrop0.5 - 0.5 0.6889 0.8191 0.5653 0.735
RandSquare0.5 - 0.5 0.683 0.8148 0.5794 0.7349
RandSquare0.7 - 0.7 0.6819 0.8087 0.5624 0.7208
VerticalConcat0.7(α=0.3) 0.3 0.7 0.6788 0.8136 0.5471 0.7242
EdgeDrop0.7 - 0.7 0.6685 0.7887 0.5062 0.6884
RandNodeDrop0.7 - 0.7 0.6673 0.7955 0.5544 0.7146
AttributeMasking0.3 - 0.3 0.6601 0.8046 0.5412 0.717
EdgeAdd0.3 - 0.3 0.6564 0.7997 0.5506 0.7257
AttributeMasking0.5 - 0.5 0.5978 0.7599 0.4714 0.6896
EdgeAdd0.5 - 0.5 0.5777 0.7169 0.4587 0.6733
EdgeAdd0.7 - 0.7 0.5609 0.6882 0.3919 0.6659
AttributeMasking0.7 - 0.7 0.5428 0.7275 0.4079 0.6657

54

Table A.4: UCMerced all results.

Name α p APmac APmic f1mac f1mic
ResNet18 - - 0.7145 0.7639 0.5456 0.6923
EdgeDrop0.7 - 0.7 0.3285 0.5308 0.0728 0.224
EdgeDrop0.7_2layer - 0.7 0.318 0.5581 0.0715 0.2931
EdgeDrop0.5 - 0.5 0.3069 0.553 0.0813 0.3101
RandNodeDrop0.3 - 0.3 0.3048 0.5472 0.0839 0.3549
Subgraph0.5 - 0.5 0.3033 0.5397 0.1119 0.3917
RandSquare0.3 - 0.3 0.3021 0.5475 0.1015 0.3936
VerticalConcat0.3(α=0.7) 0.7 0.3 0.3021 0.5475 0.1015 0.3936
EdgeDrop0.3 - 0.3 0.3013 0.5498 0.0839 0.3479
RandSquare0.7 - 0.7 0.3012 0.5467 0.0986 0.3843
RandNodeDrop0.7 - 0.7 0.2991 0.5328 0.0838 0.2895
ReOrga0.7 - 0.7 0.2904 0.5475 0.093 0.3761
ReOrga0.5 - 0.5 0.2897 0.5472 0.0923 0.3752
ReOrga0.3 - 0.3 0.2894 0.5468 0.0923 0.3748
VerticalConcat0.3(α=0.3) 0.3 0.3 0.2884 0.5463 0.0926 0.3759
GCN_noAug - - 0.2884 0.5463 0.0926 0.3759
VerticalConcat0.3(α=0.3) 0.3 0.3 0.2883 0.5462 0.0926 0.3759
VerticalConcat0.3(α=0.5) 0.5 0.3 0.2882 0.5494 0.1054 0.4034
RandSquare0.5 - 0.5 0.2846 0.5445 0.0915 0.3743
RandNodeDrop0.5 - 0.5 0.2835 0.5449 0.0812 0.3276
Subgraph0.3 - 0.3 0.2827 0.5434 0.0834 0.3676
Subgraph0.7 - 0.7 0.2782 0.5415 0.0835 0.3763
VerticalConcat0.5(α=0.3) 0.3 0.5 0.2749 0.515 0.0681 0.3065
AttributeMasking0.5 - 0.5 0.2716 0.524 0.0741 0.3392
AttributeMasking0.3 - 0.3 0.2707 0.529 0.081 0.3684
AttributeMasking0.7 - 0.7 0.2525 0.5149 0.0449 0.2726
VerticalConcat0.7(α=0.3) 0.3 0.7 0.252 0.5177 0.0449 0.2726
EdgeAdd0.7 - 0.7 0.2508 0.4975 0.077 0.3506
EdgeAdd0.5 - 0.5 0.2493 0.5019 0.0788 0.359
EdgeAdd0.3 - 0.3 0.2467 0.5062 0.0783 0.3563
VerticalConcat0.7(α=0.7) 0.7 0.7 0.2433 0.5145 0.0449 0.2726
VerticalConcat0.5(α=0.5) 0.5 0.5 0.2337 0.5094 0.0727 0.3344
VerticalConcat0.7(α=0.5) 0.5 0.7 0.2211 0.5111 0.0627 0.3064
VerticalConcat0.5(α=0.7) 0.7 0.5 0.2186 0.5126 0.0499 0.2809

55

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Graph Neural Networks
	Image Data Augmentation
	Graph Data Augmentation

	Dataset Description
	DeepGlobe
	UCMerced Land Use Dataset

	Methodology
	Pipeline
	Superpixel Sampling
	Graph Generation
	Graph Augmentations
	Graph Augmentations by You et al.
	Graph Random Square
	Graph Vertical Concat
	ReOrga

	Comparison of Image and Graph Augmentations

	Experimental Setup
	Experimental Results
	Superpixel Segmentation
	Baseline Results of GCN
	Graph Augmentations
	Overall GraphDA Performance

	Discussion
	Texture and Object-based Classes
	Designing Graphs with Clean Object Nodes

	Conclusion
	Bibliography
	Appendix

