
Technische Universität Berlin

Faculty of Electrical Engineering and Computer Science
Dept. of Computer Engineering and Microelectronics

Remote Sensing Image Analysis Group

Image Search and Retrieval from Remote Sensing
Archives based on Similarity Ranking Functions

Computer Science B.Sc.

October, 2020

Matthias Jost Wagner
Matriculation Number: 391932

Supervisor: Prof. Dr. Begüm Demir

Advisor: Tristan Kreuziger

Acknowledgements

First of all, I would like to thank Prof. Dr. Demir for the fact that I was able to write my
Bachelor’s thesis in your research group Remote Sensing Image Analysis Group of the TU
Berlin. Further thanks go to Tristan Kreuziger, who was always available for questions during
the time writing my thesis and supported me in implementing the application of this thesis.
Finally, I would like to thank my friends and family for their support during the time of my
Bachelor thesis.

ii

Abstract

The importance of Content Based Image Retrieval (CBIR) in Remote Sensing (RS) is steadily
increasing with the growth of satellite image archives. Most images in Remote Sensing are
labelled with several classes, in contrast to a large number of single-label images in the domain of
Computer Vision (CV). In order to train deep learning models for image retrieval, error functions
are used which influence the embedding function of the models during training. Error functions
can be used independently of the domain in CV and RS. However, not all methods presented
in publications are implemented for multi-label images. An absolute comparison of multi-label
images is not always desired, so there are methods to check multi-label images for similarity and
thus tolerate variations in class differences between images. Ranked List Loss (RLL) is an error
function that aims to improve Triplet Loss, but has been published for single-label images. The
topic of this thesis is to implement the RLL error function for multi-label images for CBIR in RS
and to investigate the influence of parameters of the trained models on results by a sensitivity
analysis. To distinguish multi-labels, the cosine similarity function is used, which represents
the similarity of labels in an interval from 0 to 1. Labels are considered similar if the function
value of the cosine similarity function exceeds a specified limit. The model trained on RLL for
multi-label achieves 73% precision in image retrieval. A method of using RLL for multi-label
images in RS Archives is thus introduced.

iii

Zusammenfassung

Die Bedeutung von Content Based Image Retrieval (CBIR) in Remote Sensing (RS) steigt
stetig mit der Zunahme von Satellitenbildern stetig an. Dabei sind die meisten Bilder in RS
mit mehreren Klassen markiert, im Gegensatz zu einer großen Menge Single-label Bildern in
der Domäne von Computer Vision (CV). Um Deep Learning Modelle auf Image Retrieval zu
trainieren werden Fehlerfunktionen eingesetzt, die die Einbettungs-Funktion der Modelle bee-
influssen. Fehlerfunktionen können unabhängig der Domäne in CV und RS eingesetzt werden.
Es werden jedoch nicht alle Methoden in Veröffentlichungen für Multi-Label-Bilder vorgestellt.
Ein absoluter Vergleich von Multi-Label-Bilder ist nicht immer gewollt, daher gibt es Metho-
den Multi-Label auf Ähnlichkeit zu überprüfen und so Abweichungen in Klassenunterschieden
zwischen Bildern zu tolerieren. Ranked List Loss (RLL) ist eine Fehlerfunktion, die den Triplet
Loss verbessern möchte, jedoch für Single-Label-Bilder veröffentlicht wurde. Thema dieser
Abschlussarbeit ist es die RLL Fehlerfunktion für Multi-Label Bilder für CBIR in RS zu im-
plementieren und den Einfluss von Parametern der trainierten Modelle auf Ergebnisse durch
eine Empfindlichkeitsanalyse zu untersuchen. Zur Unterscheidung von Multi-Labels wird die
Kosinus-Ähnlichkeitsfunktion eingesetzt, mit der die Ähnlichkeit von Labels in einem Intervall
von 0 bis 1 wiedergegeben wird. Labels werden als ähnlich betrachtet, wenn der Funktionswert
der Kosinus-Ähnlichkeitsfunktion einen festgelegten Grenzwert überschreitet. Das auf RLL für
Multi-Label trainierte Modell erreicht in der Bildabfrage eine Genauigkeit von 73%. Eine Meth-
ode RLL für Multi-Label Bilder für RS Archive einzusetzen ist somit eingeführt.

iv

Contents

List of Acronyms vii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Outline . 2

2 Related Work 3
2.1 Content Based Image Retrieval (CBIR) . 3

2.1.1 CBIR in Remote Sensing . 4
2.1.2 Similarity Ranking Functions . 6
2.1.3 Triplet Loss . 8
2.1.4 Ranking Motivated Loss . 10

3 Proposed Method 14
3.1 Introduction into Ranked List Loss . 14
3.2 Ranked List Loss . 15

3.2.1 Pairwise constraint . 15
3.2.2 The Positive and Negative Set . 16
3.2.3 Weighting Pairs . 16
3.2.4 Overall Optimization Objective . 17
3.2.5 Calculating RLL . 18
3.2.6 RLL Algorithm . 18

3.3 Differences in single label and multi label . 19
3.4 Changes in RLL for multi label adaption . 20

4 Data Set Description and Design of Experiments 21
4.1 Description of the Data Set . 21
4.2 Design of Experiments . 23

4.2.1 Design of Experiments . 27

5 Experimental Results 28
5.1 Sensitivity Analysis of Experiments . 28

v

6 Conclusion and Future Work 34

Bibliography 35

Appendix 38

vi

List of Acronyms

RS Remote Sensing
CBIR Content Based Image Retrival
RLL Ranked List Loss
LMNN Large Margin Nearest Neighbor
NCA Neighbourhood Components Analysis

vii

List of Figures

2.1 Image of a blue bike labelled by two different user [2]. 3
2.2 Framework for image retrieval systems [29]. 4
2.3 Framework for CBIR in RS [4]. 5
2.4 Large Margin Nearest Neighbor: Untrained feature vectors (left) and trained

feature vectors after training (right) [28]. 6
2.5 Structure for Triplet Loss training.[17] . 8
2.6 Triplet Loss: Image representation in embedding space before (left) and after

training (right).[17] . 8
2.7 Batch construction of N-pair-mc loss in comparison to Triplet Loss and (N+1)-

tuplet loss.[10] . 11
2.8 Relation of data points and training for Lifted Struct. [19] 12
2.9 Proxy NCA choose proxies for cluster in the data set and reduces the number of

triplets that can be created and therefore the number of comparisons that have to
be calculated [14]. 13

3.1 Shapes represent different classes, while purple represents the query, red data
points that are either in the positive dataset or the negative dataset. Yellow ob-
jects are data points that need to be pushed farther away or pulled closer [24]. . 14

3.2 Structure of the RLL algorithm [24]. 15
3.3 Hyperspheres in the embedding space. Different shapes represent different classes.

The distance between each is the margin m as a minimum. With hyperspheres
the intraclass distribution can be preserved. The diameter of each class hyper-
sphere is α−m [24]. 17

3.4 Similar images with different labels. [27] . 19

4.1 Updated labels for the BigEarthNet data set. 22
4.2 BigEarthNet images with cloud and snow coverage. 22
4.3 Networks with different layer sizes. 24
4.4 Networks with 20-layers and 56-layers, trained on CIFAR-10 dataset showing an

unexpected phenomena. In theory, the same error is expected for both networks
[9]. 24

4.5 A building block for residual learning [9]. 25

5.1 Training loss of model with learning rate=0.001 (orange) and lr=0.0001 (red) . 30
5.2 Loss for model trained with Adam and its adaptive learning rate on 50 epochs. . 32
5.3 Loss for model trained with Adam without pre-trained weights 32
5.4 Loss for model trained with Adam on 100 epochs 33

viii

List of Figures

5.5 Precision at k for model trained with Adam on 100 epochs 33

ix

List of Tables

5.1 Precision results for different margins and their respective α 28
5.2 Precision results for different margins and their respective α 29
5.3 Precision results for different weighting temperatures 29
5.4 Precision results for different similarity . 30
5.5 Precision results for different learning rates using SGD 31
5.6 Precision results for models trained with Optimizer Adam 31

x

1 Introduction

1.1 Motivation

Remote Sensing (RS) research is busy adapting state-of-the art methods to its own domain and
there is a lot of potential. Using different loss functions to improve results in the field of deep
metric learning gained traction over the last years. Especially image retrieval and classification
are always on the search for a loss function, that is able to create a mapping into feature space
with more accuracy and diversity regarding input data. With loss functions being an essential
part in deep metric learning, many different approaches have been proposed and implemented.
Many of the used functions are based on triplet loss [11][23]. On the topic of deep metric
learning Wang et al. proposed a loss function called ’Ranked List Loss’ which aims to overcome
two limitations of existing ranking-motivated structured losses citeWang.08.03.2019. Usually,
most data points are not used to build the similarity structure. Missing out on non-trivial data
points is making it therefore less informative. This is because the inclusion of all data points is
computationally expensive, which creates the goal of including as many non-trivial data points
as possible without slowing down the process too much. Another goal is, to try to minimize
the distance between positive pairs in the feature space as much as possible. As a result, the
distribution in individual classes is extremely close. To solve the first limitation, the ranking loss
uses all non-trivial data points for its structure in order to learn to differentiate more accurately.
On the second one, Wang et al. (2019) [24] proposes to learn a hypersphere for each class
respectively to widen the intra-class distribution. Their paper implemented the function in a
convolutional neural network designed for image retrieval in computer vision. Images of CV
and RS differ in various ways. Most of the CV datasets are single labelled in contrast to remote
sensing images which are often multi labelled. The images in RS include Lidar and multispectral
images, whereas CV works with RGB images most of the time. Furthermore, the composition
of the images differs greatly. CV images are often composed of foreground and background,
shifting the focus on the objective in the foreground. In RS that concept does not usually exist,
images are mostly from the bird’s eye view and all objects in an image are on the same plane.

1

1 Introduction

1.2 Objective

The goal of this thesis is to implement a ranked list loss function [24] on a Convolutional Neu-
ral Network (CNN) that utilizes Soft Pairwise Similarity [27] and adapts RLL for multi label
application in CBIR in RS. The trained model is then evaluated.

1.3 Outline

First, in Chapter 2, an overview of CBIR in RS is given. In Section 2.1.2 the Triplet Loss and
its origin are presented. Three different approaches that are based on Triplet Loss conclude the
related work. With Chapter 3 the Ranked List Loss [24] is introduced and explained. The differ-
ence between single label and multi label data is discussed and changes to the existing RLL for
multi label use are introduced. Chapter 4 introduces the BigEarthNet data set. Further informa-
tion about the ResNet model is provided and other aspects of the training setup are presented.
Additionally the design of experiments and parameters for the training are listed. The Sensitiv-
ity Analysis of Experiments, in Chapter 5, describes the results of the conducted experiments.
The different parameters and their impact on the training process and model performance are
examined. In the end, Chapter 6 provides a summary of the thesis and an outlook on future
work.

2

2 Related Work

2.1 Content Based Image Retrieval (CBIR)

The need to retrieve images from archives arose as soon as the first images were produced and
stored away. At first, simple index cards with a shelf and box number and their content written
out were enough to find images. But soon, index cards were digitized and with time images
too. These first CBIR systems functioned like text retrieval system. A given search query was
compared to all image labels. Images whose labels matched the search query were then retrieved.
This process in itself functions rather well but has its downsides. The first is, that every image
added to the archive has to be manually labelled with the content from the image, so that it can be
later found within the archive. Secondly, selecting effective labels, to cover as much information
from the images as possible, is difficult to achieve. There are many synonyms for tags in labels
and to decide what a particular part of image represents, is often subjective, as can be seen in
Figure 2.1. In addition, the person who labels the image has to decide which part of the image is
important enough to be included in the label. And last, the retrieval efficiency of such a system
is low [6]. Figure 2.1 shows the same image twice but with labels by different users. The lack
of overlapping and partly differing labels indicates a problem for future use in CBIR systems.

(a) mountainbike, bicycle, blue, blue
mountainbike, pasture, pastureland,
mountain, alp, forest, woods, tire, bi-
cycle seat, bicycle saddle, bike sad-
dle, dandelion

(b) mountainbike, blue, meadow, moun-
tain, forest, tire

Figure 2.1: Image of a blue bike labelled by two different user [2].

For a user who wants to search an image the keyword selection is just as difficult as choos-
ing the correct labels for image archiving [5]. Since semantic similarity is subjective, another
method to retrieve images had to be established. Automatic image retrieval analyses an image
for its most important features and maps the image vector into an embedding space. This part is

3

2 Related Work

called feature extraction. Images can then be compared by measuring the distance to each other
in the embedding space. Similar images have a short distance to each other, while dissimilar
images are farther apart [5]. For the user, the process to retrieve an image is simple. An image,
that has similiar content as what is searched, has to be provided to the system. The CBIR system
then extracts the features of this query image, compares it to the archive of images in the embed-
dings space and retrieves images that are most similar to the images content. A representation
of such a system is described in Figure 2.2.

Figure 2.2: Framework for image retrieval systems [29].

How the system maps the input images, directly influences the performance of image retrieval.
There are many different approaches that each try to optimize the image retrieval with different
embedding functions. Some of these approaches are discussed in the section ’Similarity Rank-
ing Functions’ 2.1.2.

2.1.1 CBIR in Remote Sensing

Over the last years, the number of high-resolution RS images steadily increased [13]. This is
caused by further development in Earth Observation Systems (EOS) and an increasing interest
in RS. The management of large high-resolution data produced by EOS is an objective of CBIR
for RS. CBIR in RS differs from other domains in that most images are not only RGB images
but taken with frequencies that are not on the visible spectrum. Image capturing ranges from
sonar systems on ships to Lidar on satellite and aircrafts. The objective of these images is not
only to capture the visible part of the earth, but also other physical characteristics, which would
otherwise not be captured. With more information, other data formats are needed to store the
images. For training of a retrieval system, more information is available, which can influence
the learning and retrieval itself. Examples of RS applications are among others the mapping of
large forest fires [22][3], monitoring of agriculture [15][18], urban development [16], weather
forecasting [20], and application in the military [7]. Cities are growing faster every year and
with nearly half of the global population living in cities using only 5% of terrestrial surface
[16] the importance of urban planning is undeniable. The demographic character of cities is
influenced by its urban development and can be formed, if additional data such as RS images are
at hand. CBIR in RS can help identifying growth areas that are in need of better infrastructure.

4

2.1 Content Based Image Retrieval (CBIR)

City districts can be categorized by quality of their buildings and with this information the cities
budget can be adjusted. The military uses RS for area surveillance and detection of toxic gases in
the atmosphere [7]. CBIR can also be used in weather forecasting to identify weather formations
and predict possible future events. Future temperature, relative humidity, rainfall, wind speed
and atmospheric pressure can be predicted by utilizing CBIR on weather satellite images [20].

Figure 2.3: Framework for CBIR in RS [4].

A framework for CBIR in RS consists of multiple components. A user should be able to
submit a query and retrieve images deemed important by the system. The system analyses
the image and extracts its features. Query features are compared to a database of features and
similar features are retrieved. These similar features are linked to the original images and the
corresponding images are retrieved and presented to the user. A framework for CBIR in RS is
depicted in Figure 2.3.

5

2 Related Work

2.1.2 Similarity Ranking Functions

Deep learning models use loss functions to train neural networks. There are many different
loss functions that are of interest for image retrieval in RS. The following is an introduction
to the standard of such a loss and its variations. A model takes an image as input and outputs
vectors in the embedded space, also called feature space. Applying the embedding function
on all images of a dataset gives the correlating points to each image in the embedding space.
The similarity of two images or rather their points in the feature space is determined by the
Euclidean distance between them. For single labelled images one would try to cluster images
for each class in the feature space so that similar images are in the same proximity in the feature
space. The same applies to images with multiple labels, but balancing these clusters and finding
the optimal setting for overlapping classes and similarities is undoubtedly more difficult than
with labels for individual classes. Loss functions determine how the model learns and shape,
how the embedding function maps the input into the feature space. Therefore, it is in our interest
to model loss functions that optimize the mapping of the embedding function. The similarity of
images in image retrieval is mostly determined by their Euclidean distance in the feature space.
The objective of the loss function should be to maximize the distance of dissimilar images and
reduce the distance between similar images in the feature space. The idea to minimize the
distance between image pairs that are similar and widen the distance to dissimilar images using
triplets has been around for a while. Today the proposal of the large margin nearest neighbour
loss by Weinberger and Saul (2009) [25] is widely recognised as the prototype of the triplet loss
[28]. The following explanation of Large Margin Nearest Neighbour (LMNN) is based on the
proposal by Weinberger and Saul (2009) [25].

Figure 2.4: Large Margin Nearest Neighbor: Untrained feature vectors (left) and trained feature
vectors after training (right) [28].

6

2.1 Content Based Image Retrieval (CBIR)

The distance between input and the target neighbour farthest away, plus a margin m creates a
radius. Data points with different labels than the input are not allowed to breach this radius. If
data points with different labels than the input are in the perimeter, they are impostors. L is the
linear embedding function of the input into the feature space.

‖L(~xi−~xl)‖2 ≤
∥∥L(~xi−~x j)

∥∥2
+m (2.1)

The input data point is ~xi, while ~xl is the impostor data point and ~x j is a target neighbour of ~xi.
The margin m is established between the impostors and the target neighbours. The loss consists
out of two terms. One, to pull target neighbours in the feature space closer to the input, thus
penalizing large distances. The other term, εpush , pushes impostors farther away from the input
data point, penalizing small distances.

εpull (L) = ∑
j yi

∥∥L(~xi−~x j)
∥∥2 (2.2)

It is important to note that εpull does not penalize all data points with similar labels, only target
neighbors. For kNN classification to be accurate, data points in feature space do not have to be
closely clustered [25].

εpush (L) = ∑
i, j il

∑
T
(1− yil)

[
1+
∥∥L(~xi−~x j)

∥∥2−‖L(~xi−~xl)‖2
]
+

(2.3)

[z]+ = max(z,0) is the standard hinge function. The value of yil is 1 if yi = yl, otherwise 0. It
follows that only dissimilar data points are penalized by εpush. At last both terms are joined to
form the loss ε(L).

ε(L) = (1−µ)εpull(L)+µεpush(L) (2.4)

The weighting parameter µ ∈ [0,1] balances both terms. Depending on which value µ holds,
target neighbours are getting pulled closer to the input, or impostors are pushed farther away.
The same balancing is used in RLL 3.9. Many of Triplet Loss variations are based around
features, such as pulling similar data pairs closer together, pushing dissimilar data pairs farther
apart and establishing a margin between the input and dissimilar data points.

7

2 Related Work

2.1.3 Triplet Loss

Schroff et al. (2015)[17] published in ’A Unified Embedding for Face Recognition and Cluster-
ing’ a formally defined margin based triplet ranking loss. The following introduction into Triplet
Loss is based on their publication. Weinberger and Saul (2009) are referenced in the context of
nearest-neighbour classification as the motivation for the proposed triplet loss. The triplet loss
function uses three images as an input using, one as an anchor and the other two as a positive
and negative. Positive images have similar features as the anchor and negative images should be
dissimilar to the anchor. The goal is to minimize the distance between the anchor and positive
image and to maximize the distance between the anchor and negative image in the embedding
space. This approach allows to work with many classes and still obtain good performance. To
train the images on the triplet loss function, a CNN architecture with normalized output, that
feeds into the triplet loss function, was used [17].

Figure 2.5: Structure for Triplet Loss training.[17]

A similar structure as seen in Figure 2.5 is used in the experiments in ’Data Set Description
and Design of Experiments’ 4 to train on the RLL function.

L2 Norm

L2 normalization is used to keep the coefficients of the model low. The L2 norm calculates the
distance of the vector coordinate from the origin of the vector space, as shown below.

‖x‖2 :=
√

x2
1 + · · ·+ x2

n (2.5)

Triplet loss uses triplets of data points for its loss, the expected learning behaviour is shown in
Figure 2.6.

Figure 2.6: Triplet Loss: Image representation in embedding space before (left) and after train-
ing (right).[17]

8

2.1 Content Based Image Retrieval (CBIR)

To achieve the learning that is depicted in Figure 2.6, all data points have to fulfil the con-
straint 2.6 that the distance for each positive pair plus a margin α has to be smaller than their
respective negative pair. The anchor image xa

i , is closer to all positive images xp
i that contain the

same content as xa
i than to any negative image xn

i that does not resemble the anchor xa
i for all

images, while pushing negative images by a margin α away. T is the set of all possible triplets
with cardinality N. ∥∥ f (xa

i)− f
(
xp

i

)∥∥2
2 +α < ‖ f (xa

i)− f (xn
i)‖

2
2 (2.6)

∀
(

f (xa
i) , f

(
xp

i

)
, f (xn

i)
)
∈T (2.7)

From this condition follows the loss to be minimized.

N

∑
i

[∥∥ f (xa
i)− f

(
xp

i

)∥∥2
2−‖ f (xa

i)− f (xn
i)‖

2
2 +α

]
+

(2.8)

[x]+ = max(x,0) is the standard hinge function.
Considering each data point as input then the distance between input and positive data points is
minimized and distance between input and negative data points are be pushed away, so that it
satisfies the constraint 2.6.

Triplet Selection

Using Triplet Loss with every triplet from T would result in slow convergence. Some triplets
easily satisfy the restraint 2.6. Therefore, the network would not have to make much of a change
and training is wasted. That is why it is important to choose hard triplets, that violate constraint
2.6, so that the network can be efficiently improved. Given xa

i , a hard positive data point xp
i from

the training batch should be chosen, such that the distance in feature space to xa
i is maximized.

To maximize the learning effect we want to find the pair, that violates the constraints as much
as possible [17]. The hard positive data point xp

i is chosen, that its distance to the anchor xa
i is

maximized.

argmaxxp
i

∥∥ f (xa
i)− f

(
xp

i

)∥∥2
2 (2.9)

A hard negative xn
i should be chosen, so that the distance in feature space to xa

i is minimized.

argminxn
i
‖ f (xa

i)− f (xn
i)‖

2
2 (2.10)

It is an expensive task to calculate a triplet, that satisfies both conditions for every image
of the dataset. Two options are presented with the last one utilized. The first, using the latest
checkpoint of the model, every n steps argminxn

i
and argmaxxp

i
are calculated for a subset of

the dataset. The other option calculates triplets online while training. Using the size of smaller
batches when training the model, argminxn

i
and argmaxxp

i
are recalculated for each training batch

[17]. With smaller batches one has to ensure that enough positive pairs of each class are in
the batch included. If there are too few or even no positive pairs the triplet loss would be

9

2 Related Work

imbalanced. Schroff et al. (2015) [17] found that using all anchor positives resulted in better
results than using hard anchor-positives. With all anchor positives the model was more stable
and converged slightly faster in the beginning of training. Since selecting hard negative pairs can
result in local minima during training, the worst case scenario is a collapsed model, Schroff et
al. (2015) [17] used semi-hard negative pairs. Semi-hard negative pairs xn

i are farther away from
xa

i than xp
i , but their squared distance is still close to the anchor-positive distance. Even though

they are semi-hard pairs, xn
i lie inside the margin α . Equation 2.11 describes this constraint for

semi-hard pairs. ∥∥ f (xa
i)− f

(
xp

i

)∥∥2
2 < ‖ f (xa

i)− f (xn
i)‖

2
2 (2.11)

As described in the section above, the triplet selection is an important part for model training to
achieve a fast convergence rate. Regarding performance triplet loss set a new standard for loss
functions and feature mapping. But there are still some aspects that are to improve. Since triplet
loss pulls similar data points as close as possible the intra-class variance is not assured. Further
the selection of hard-negative pairs can lead to local minima in training. The following section
lists three alternatives that are derived from triplet loss.

2.1.4 Ranking Motivated Loss

N-Pair-MC

This overview of N-Pair-MC is based on the publication ”Improved Deep Metric Learning with
Multi-class N-pair Loss Objective” by Sohn (2016)[10]. Given a query N-pair-mc aims to learn
by identifying one positive example from N-1 negative examples, where every class is repre-
sented. The loss takes inspiration from the (N+1)-tuplet loss[10]. The (N+1)-tuplet loss is build
as shown in Equation 2.12.

L
({

x,x+,{xi}N−1
i=1

}
; f
)
= log

(
1+

N−1

∑
i=1

exp
(

f> fi− f> f+
))

(2.12)

(N+1) tuplet loss maximizes the distance between query and negative examples and minimizes
it between query and a positive, which is identified from the negative examples. It is beneficial
for the loss if the negative examples contain all classes. But with a larger number of classes, the
difficulty of standard optimization increases [10]. If N=2 the (N+1) tuplet loss is similar to the
standard triplet loss:

L(2+1) -tuplet
({

x,x+,xi
}

; f
)
= log

(
1+ exp

(
f> fi− f> f+

))
(2.13)

Ltriplet
({

x,x+,xi
}

; f
)
= max

(
0, f> fi− f> f+

)
(2.14)

The advantage of N-pair-mc over (N+1) tuplet loss or triplet loss is that N-pair-mc requires only
2N, triplet loss 3N and (N+1)-tuplet loss (N+1)N passes to evaluate embedding vector [10], see
Figure 2.7. N-pair-mc improves the triplet-loss by pushing multiple negative examples from
different classes away [10].

10

2.1 Content Based Image Retrieval (CBIR)

Figure 2.7: Batch construction of N-pair-mc loss in comparison to Triplet Loss and (N+1)-tuplet
loss.[10]

The N-pair-mc loss takes clear inspiration by (N+1) tuplet loss log
(
1+∑

N−1
i=1 exp

(
f> fi− f> f+

))
.

LN -pair-me

({(
xi,x+i

)}N
i=1 ; f

)
=

1
N

N

∑
i=1

log

(
1+∑

j 6=i
exp
(

f>i f+j − f>i f+i
))

(2.15)

N-Pair-MC utilizes negative examples from multiple classes but does not take advantage of a
margin like triplet loss does.

Lifted Struct

This introduction into Lifted Struct is based on the publication by Song et al. 2016[19]. Similar
to Triplet loss Lifted Struct tries to pull one positive pair as close as possible, but utilizes all
negative data points comparing them to the positive pair and pushes them as far as a margin α

away.

J̃i, j = log

(
∑

(i,k)∈N
exp{α−Di,k}+ ∑

(j,l)∈N
exp
{

α−D j,t
})

+Di, j (2.16)

J̃ =
1

2|P| ∑
(i, j)∈P

max
(
0, J̃i, j

)2 (2.17)

D is a dense pairwise squared distance matrix that is computed over all batch elements in train-
ing.

11

2 Related Work

(a) Construction for pair wise edges with
training training batch. Red edge
represent a similar relation between
the data points and blue edge repre-
sent a dissimilar relation.

(b) Training of Lifted Struct.
The gray dashed border rep-
resents the margin. The ar-
row indicates the direction of
the negative gradient for pos-
itive training data points. A
red edge represents similar-
ity and a blue edge dissimi-
larity.

Figure 2.8: Relation of data points and training for Lifted Struct. [19]

Instead of forming triplets for each datapoint and utilizing only two data points, Lifted Struct
considers every data point. The difference is shown in Figure 2.8.

12

2.1 Content Based Image Retrieval (CBIR)

Proxy NCA

The following explanation of Proxy NCA is based on the publication ”No Fuss Distance Metric
Learning using Proxies” by Movshovitz-Attias et al. (2017) [14]. Proxy-NCA loss uses NCA
loss with proxies of the data set. That way the real data points are each represented by a proxy.
Advantages over triplet loss are that less triplets have to be generated and fewer resources are
used. With that, larger datasets can be utilized and more information be processed. NCA max-
imizes the number of correct expected classified data points [8]. Since the Proxy NCA does
not calculate the loss based on the real dataset, but proxies, over fitting of the model should not
be expected. During training Goldberger et al. (2005) did not experience any over fitting, and
specify that the larger the expected number of points correctly classified, the better their model
performs during testing [8].

Figure 2.9: Proxy NCA choose proxies for cluster in the data set and reduces the number of
triplets that can be created and therefore the number of comparisons that have to be
calculated [14].

A proxy p(u) for a data point u is chosen such that for every data point u there is a proxy with
minimal distance to u in the positive set P of pairs.

p(x) = argmin
p∈P

d(x, p) (2.18)

The proxy approximation error is the worst approximation with the largest distance d, over all
data points [14].

ε = max
x

d(x, p(x)) (2.19)

With the proxies representing the training data set, the number of triplets generated and used for
the loss is greatly reduced [14], as can be seen in Figure 2.9. Z is the negative set with p(z) as
the proxy of negative points.

L(a,u,Z) =− log
(

exp(−d(a, p(u))))
∑z∈Z exp(−d(a, p(z)))

)
(2.20)

13

3 Proposed Method

3.1 Introduction into Ranked List Loss

The following introduction into RLL and explanation of RLL are based on the publication by
Wang et al. (2019) [24]. The introduction of the RLL function seeks to solve problems of Triplet
Loss. RLL wants to distance dissimilar images (negative) in the feature space from the anchor
and bring similar images (positive) and the anchor closer together. The positive and negative set
should have at least one image to take advantage of the weighting. A trained model should be
able to rank images based on a query image from most similar to most dissimilar. To achieve
a margin between these sets, RLL uses several parameters. The boundary α is the distance
to divide the query and the negative set. The margin m is the distance between the positive
boundary and the negative boundary, therefore is α−m the boundary for the positive set. RLL
sorts all data points between the positive and negative boundary into either set to establish a
result for the question whether they are similar to the query or not. The RLL sorts all images in
the batch into two sets of positive and negative images based on the similarity to the anchor. The
algorithm lists the positive data points first and then the negative ones, forcing a margin between
the data points in the feature space. An advantage over triplet loss is, that all non-trivial data
points are utilized. Additionally, Triplet Loss compromises the intra class variance by pulling
positive data points very close to each other. RLL pulls positive data into a hypersphere with
diameter α −m to tackle that issue. Wang et al. compare the proposed function with state-of-
the-art approaches and conclude that the proposed approach with RLL achieves state-of-the-art
performance [24].

Figure 3.1: Shapes represent different classes, while purple represents the query, red data points
that are either in the positive dataset or the negative dataset. Yellow objects are data
points that need to be pushed farther away or pulled closer [24].

14

3.2 Ranked List Loss

The structure of the RLL algorithm is depicted in Figure 3.2:
For each data point from the batch, a positive and negative set is created (Example Mining).
Then the weights for the positive and negative set are calculated. After the ’Example Weighting’
is finished the loss for each data point is calculated and in the end, all losses accumulated return
the final loss [24].

Figure 3.2: Structure of the RLL algorithm [24].

3.2 Ranked List Loss

3.2.1 Pairwise constraint

Wang et al. (2019) [24] chose pairwise margin loss by Wu et al. (2017) [26] as the basic pairwise
constraint.

Lm (xi,x j; f) = (1− yi j) [α−di j]++ yi j [di j− (α−m)]+ (3.1)

The query image is represented as xi and images from either the positive set or the negative set
as x j. Labels for xi and x j are yi and y j. If the labels are equal Lm for positive pairs is calculated.
On the other hand, if the labels are not equal yi j is set to 0 and Lm for negative pairs is calculated.

yi j = 1, if yi = y j

yi j = 0, if yi 6= y j
(3.2)

di j =
∥∥ f (xi)− f (x j)

∥∥
2 is the Euclidean distance between two points in feature space with f

being the embedding function.

The positive images are pulled closer to the anchor by a defined threshold α−m, while simul-
taneously establishing a margin m between the positive and negative set. Therefore Lm computes
[di j− (α−m)]+ for positive images and [α−di j]+ for negative images.

15

3 Proposed Method

3.2.2 The Positive and Negative Set

The positive image set contains all images from the image subset that have the same label as the
anchor. The negative image set contains images from the image subset that have not the same
label as the anchor. To avoid trivial data points, which would not challenge the model to classify
the trivial data point easily into one of the sets only images for the positive set that satisfy the
condition di j > (α−m) are included. Likewise for the negative set only images that satisfy the
condition di j < α will be included. For the query xc

i follows:

P∗c,i =
{

x j
c | i 6= j,di j > (α−m)

}
(3.3)

N∗c,i =
{

xk
j | k 6= c,di j < α

}
(3.4)

Wang et al. (2019) [24] call this step ’Mining informative pairs’. Mining informative pairs can
help to speed convergence and improve generalization performance if properly designed [24].

3.2.3 Weighting Pairs

With a large number of non-trivial images in each set with a different impact on the overall
loss, each pair is weighted based on their loss value. For the positive and negative set the loss
value will be multiplied by a factor T which stands for temperature and then the exponential
function is applied. The value correlates with how much each pair violates its constraint. Both
sets have different temperatures Tp and Tn. Through the temperatures, the degree of the slope
of the function can be regulated. For Tn = 0 every data point from the negative set is treated
equally. With Tn =+∞ the example mining becomes extremely difficult.

wi j = exp(Tn× (α−di j)) ,xk
j ∈ N∗c,i (3.5)

The weighting of positive image pairs is controlled through the parameter Tp. For Tp > 0 positive
pairs with a large distance are heavier weighted. If Tp < 0, positive pairs that are closer to each
other are assigned more weight. That is often applied, if there are many positive pairs to sustain
local similarity manifold structure.

wi j = exp(Tp× (di j− (α−m))) ,xc
j ∈ P∗c,i (3.6)

16

3.2 Ranked List Loss

3.2.4 Overall Optimization Objective

To learn a class hypersphere for positive data pairs, the loss for positive pairs is minimized.

LP (xc
i ; f) = ∑

xc
j∈|P∗c,i|

wi j

∑xc
j∈|P∗c,i|wi j

Lm
(
xc

i ,x
c
j; f
)

(3.7)

To push negative datapoints further away beyond the boundary α , the loss for negative pairs is
minimized.

LN (xc
i ; f) = ∑

xk
j∈|N∗c,i|

wi j

∑xk
j∈|N∗c,i|wi j

Lm

(
xc

i ,x
k
j; f
)

(3.8)

Both minimization tasks are joined in the overall RLL LRLL.

LRLL (xc
i ; f) = (1−λ)LP (xc

i ; f)+λLN (xc
i ; f) (3.9)

With λ giving the opportunity to control the balance between the impact of the loss of positive
and negative images. By default λ is set to 0.5 so that both sets contribute equally towards the
loss. According to a study conducted by Wang et al. (2019) [24] it is an improper practice to
pull positive pairs as close as possible. Therefore RLL pulls pairs into a hypersphere with a di-
ameter of α−m. This solves one of the problems from Triplet loss and preserves the intra-class
variance.

Figure 3.3: Hyperspheres in the embedding space. Different shapes represent different classes.
The distance between each is the margin m as a minimum. With hyperspheres the
intraclass distribution can be preserved. The diameter of each class hypersphere is
α−m [24].

.

17

3 Proposed Method

3.2.5 Calculating RLL

For each image in the batch the RLL 3.9 is computed and their average results in the final loss.

LRLL(X ; f) =
1
N ∑
∀c,∀i

LRLL (xc
i ; f) (3.10)

With N = ∑c Nc being the batch size.

3.2.6 RLL Algorithm

The algorithm of RLL on one mini-batch is as follows defined:

Algorithm 1 Ranked List Loss on one mini-batch
1: Mini-Batch Settings: The batch size N, the number of classes C, the number of images per

class Nc.
2: Parameters: The distance constraint α on negative points, the margin between positive

and negative examples m, the weighting temperature Tn,Tp.

3: Input: X = {(xi,yi)}N
i=1 =

{
{xc

i }
Nc
i=1

}C

c=1
, the embedding function f , the learning rate β .

4: Output: Updated f .
5: Step 1: Feedforward all images {xi}N

i=1 into f to obtain the images’ embeddings
{ f (xi)}N

i=1.
6: Step 2: Iterative retrieval and loss computation.

7: foreach f (xc
i) ∈

{
{ f (xc

i)}
Nc
i=1

}C

c=1
do

8: Mine non-trivial positive set P∗c,i 3.3.
9: Mine non-trivial negative set N∗c,i 3.4.

10: Weight negative examples using Eq. 3.5.
11: Weight positive examples using Eq. 3.6.
12: Compute LP (xc

i ; f) using Eq. 3.7.
13: Compute LN (xc

i ; f) using Eq. 3.8.
14: Compute LRLL (xc

i ; f) using Eq. 3.9.

15: end for
16: Compute LRLL (X; f) using Eq. 3.10.
17: Step 3: Gradient computation and back-propagation to update the parameters of f :
18: ∇ f = ∂LRLL(X; f)/∂ f
19: f = f −β ·∇ f

The Algorithm is taken from Wang et al. (2019) [24].

18

3.3 Differences in single label and multi label

3.3 Differences in single label and multi label

Single label data usually defines a number for each class of its data set. Each data point of the
data set is then assigned a number as a label. Multi label data with n classes uses n-dimensional
vectors. Each class corresponds to a dimension of the label vector. The classes an image is
assigned to, are characterised as a 1, classes where the data point does not belong to, are charac-
terised as a 0 in the label vector. Accuracy in classification is determined by the similarity of the
generated label by the embedding function and the real label. A similar approach is taken in the
domain of image retrieval. Images are mapped by the embedding function into the feature space
The cluster and embedded images that are closest to the input image are similar images that are
retrieved. To determine the similarity of multi labels, an element wise comparison of the labels
with each other works. But with increasing classes the comparison of labels and their subclasses
becomes increasingly difficult. That is why it is necessary to determine the overall similarity of
the label vectors. Figure 4.3 shows multi label images that are similar to each other. The labels
overlap but are too different, that a simple comparison may not suffice.

Figure 3.4: Similar images with different labels. [27]

To achieve an estimation of similarity the cosine similarity function produces good results.
The cosine similarity calculates the similarity between two vectors and equals the cosine of the
angle between the vectors. The calculated result is a value between zero and one. Whether or
not two vectors are similar is then defined by a threshold. The first to introduce this function
into comparison for labels were Zhang et al. (2020), calling it Soft Pairwise Similarity [27].

softSimilarity (x,y) =
x · y
‖x‖‖y‖

(3.11)

Most loss functions do not discriminate between single label and multi label inputs. If they do
labels are often compared, to sort inputs into different sets to work with, as in the RLL approach
for multi label. To utilize the function effectively the calculated similarity has to cross a certain
threshold to be considered similar. This threshold can be chosen arbitrarily, e.g. to 70%, but a
selection process may prove better results.

19

3 Proposed Method

3.4 Changes in RLL for multi label adaption

The proposed method of RLL for multi label adaption is heavily motivated by Wang et al. (2019)
[24]. The main objective of change concerns the distinction of labels. A simple comparison,
whether or not two labels of multi labelled RS images are equal, is not enough. Through the
use of Soft Pairwise Similarity the similarity of two labels is determined. A threshold tsim deter-
mines if two images are equal or not. The following details the changes for multi label adaption
in RLL. For the pairwise constraint, the conditions for yi j have to be adjusted, because a simple
comparison between labels is not sufficient. yi j takes the value 1 if the Soft Pairwise Similarity
exceeds the threshold tsim, the image pair is deemed similar. If the Soft Pairwise Similarity does
not meet the threshold criteria yi j is assigned the value 0.

Lm (xi,x j; f) = (1− yi j) [α−di j]++ yi j [di j− (α−m)]+ (3.12)

yi j = 1, if softSimilarity(yi,y j)≥ tsim (3.13)

yi j = 0, if soft Similarity(yi,y j)< tsim (3.14)

Since images are no longer separated by their class, cosine similarity is used to determine the
set an image is assigned to. For images, that violate the positive constraint, to be added to the
positive set softSimilarity (yi,y j) must exceed the threshold tsim. Images that violate the nega-
tive constraint are only added to the negative set if the similarity with the input falls below tsim.

P∗i =
{

x j | i 6= j,di j > (α−m), softSimilarity (yi,y j)≥ tsim
}

(3.15)

N∗i =
{

x j | i 6= j,di j < α, softSimilarity (yi,y j)< tsim
}

(3.16)

The remaining part of the algorithm remains unchanged in the sense, that all connections to
classes are removed and the equations rely on the images from the positive and negative set.

20

4 Data Set Description and Design of
Experiments

4.1 Description of the Data Set

The BigEarthNet was created in the need of a more convenient training source in the context
of image retrieval and scene classification. Out of this necessity the dataset is larger than most
other existing archives in RS. The image patches are multi labelled and are provided by the
CORINE Land Cover database of the year 2018 (CLC 2018) [21]. The Corine Land Cover
(CLC) exists since the 1980s to provide consistent land cover land use (LCLU) maps of Europe.
Today images of 39 European countries are in the database. The dataset consists out of 590.326
Sentinel-2 image patches with three different bands: 10m, 20m and 60m. The 10m bands are
120 x 120 pixel-, 20m for 60 x 60 pixel- and 60m for 20 x 20 pixel-images. All images in
the BigEarthNet data set are from ten European countries (Austria, Belgium, Finland, Ireland,
Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzerland) [21]. Images were taken in all
seasons, with fewer than the average of images in winter. Hereby images are excluded that show
cloud coverage as seen in Figure 4.2. The image count of the BigEarthNet data set is as follows:
spring - 175937, and summer - 126913, autumn - 143557, winter - 72877.

BigEarthNet-19 Labels

New labels for BigEarthNet were introduce to support better training of deep learning models,
examples can be seen in Figure 4.1. From the original label set 11 classes were removed and
22 classes were merged into 9 new classes. Ten classes of the original label set remain the same
for the new label set [21].

21

4 Data Set Description and Design of Experiments

Figure 4.1: Updated labels for the BigEarthNet data set.

Figure 4.2: BigEarthNet images with cloud and snow coverage.

22

4.2 Design of Experiments

4.2 Design of Experiments

Ireland dataset

With BigEarthNet being a large dataset, the time to train a model increases. Consequently, the
training of the model was undertaken with a smaller subset of images from Ireland. The training
set consists out of 8197 images, the validation set out of 3839 and the test set consists out of
3858 images. A smaller subset allows for shorter training, while still capturing information of
similar data form the whole dataset.

PyTorch

The implementation of RLL by Wang et al. (2019) [24] described RLL and the deviation de-
scribed in the previous chapter is done in PyTorch. PyTorch is an open source learning library
developed by Facebook’s AI Research lab. The library finds application in computer vision and
natural language processing [1]. On top of PyTorch, PyTorch Lightning is used. PyTorch Light-
ning abstracts code and creates a uniform framework for researchers to work with. So that the
code becomes more accessible to other researchers, through clearly dividing research code and
training code.

PyTorch Custom Loss Function

To backpropagate and calculate the gradients, PyTorch stores every operation a tensor is part of
in the tensor and creates a traversable tree. To calculate how the parameters of a model have
to change, the tree is traversed and gradients are calculated. A custom loss function in PyTorch
can be created, by only using PyTorch functions for operations. The gradient is then calculated
automatically by PyTorch.

High Performance Computing Cluster TU Berlin

The HPC cluster is used for academic research by members of the TU Berlin. The cluster
provides, among other computational nodes, 20 GPU nodes and 132 MPP nodes, with Linux as
the operating system. Each GPU node consists out of 2x NVIDIA Tesla P100 16GB HBM2,
2x CPU INTEL Xeon E5-2630v4 and 16 x DDR4-2400 32GB RAM. The MPP nodes are built
from 2x CPU INTEL Xeon E5-2630v4 and 8 x DDR4-2400 32GB ECC RAM.

23

4 Data Set Description and Design of Experiments

ResNet

A pretrained model ResNet50 was provided by Sumbul et al. (2019) [21], 50 referring to the
number of layers of the model. The model is trained on BigEarthNet with the new class nomen-
clature with 19 classes. To be able to use the model for image retrieval the last layer has to be
removed and a new fully connected layer is inserted with an output of the size 2048.
The following is based on the publication by He et al. (2015) [9]. Convolutional Neural Net-
works in image recognition have gained immense progress in recent years. With increasing
computational power the depth of neural networks increased as well. But increasing depth of
networks does not equal an improvement of the embedding function of the network itself as
the findings from He et al. (2015) [9] shows. ResNet was created to overcome the degradation
problem and vanishing gradient problem. ResNet achieves training a multitude of layers, while
still maintaining performance.

Degradation Problem

Let m and n be numbers of layers for neural networks where m > n. Network A contains n
layers and network B contains m layers. Both networks are trained equally 4.3. The network B
should perform as well as network A since the first n layers of network B could be replaced by
the layers of network A and the rest of the layers are the identity mapping. Therefore, network
A and network B should generate the same representation, which is not the case as presented in
Figure 4.4. With more layers in a deep neural network, the effect of a higher training and testing
error is observed.

(a) Network A with n layers (b) Network B with m layers.

Figure 4.3: Networks with different layer sizes.

Figure 4.4: Networks with 20-layers and 56-layers, trained on CIFAR-10 dataset showing an
unexpected phenomena. In theory, the same error is expected for both networks [9].

24

4.2 Design of Experiments

Vanishing gradient problem

The vanishing gradient problem applies to neural networks, that are based on gradient learn-
ing and back propagation. Weights of the neural network are updated through back propagation.
The vanishing gradient problem describes the case, that the gradient holds such a small value
that the updated weights value effectively does not change, leading in the worst case to a stop of
the training process.

The curse of dimensionality

The curse of dimensionality describes the problem that with increasing dimensions the Euclidean
distance between vectors in these dimensions decreases. Regarding image retrieval, it means that
images get more similar to each other, which is the opposite of what is wanted.

Residual blocks

Usually in a neural network, each layer sends its input to the next layer and so on. In resid-
ual blocks each layer sends its input to the next layer, additionally skips the next two layers and
inserts the input again, as can be seen in Figure 4.5.

Figure 4.5: A building block for residual learning [9].

Using this technique the described problems can be prevented and detailed features of images
can be learned with a multitude of layers.

25

4 Data Set Description and Design of Experiments

Parameters

Parameters that influence the loss function are α,m,Tp,Tn, similarity, batch size and embedding
size of the model.

Batch size

The larger the batch size, the more non-trivial data points can be utilized to calculate the loss.
Thus, it results in a more stable and accurate loss value regarding the parameters of the function.
The GPUs have a memory capacity of 16GB, which puts a restraint on the batch size, the models
can train on.

Embedding size

The last layer defines the granularity with which the model is able to map images in the fea-
ture space. It also defines the computing power it takes to calculate the loss. A larger vector
results in more calculations and comparisons, therefore an ideal output size is to be determined
that does not contain unnecessary information, while also not disregarding information.

Alpha and margin m

Due to the L2 normalization the Euclidean distance between any two point in the embedding
space ranges from 0 to 2. Therefore α is not allowed to be greater than two. The distance be-
tween any two hypersphere boundaries is no less than m [24]. The boundary α influences how
far negative examples should be pushed away and the margin m how close positive examples
should be pulled. Furthermore these parameters have an impact on which data points violate
constraints 3.3, 3.4 and are then added to the positive or negative set.

Weighting temperatures

The weighting temperature Tp and Tn influence the differentiation between data points. Data
points that already violate the constraints of RLL are weighted exponentially heavier with ad-
justed temperature. Larger weights have a greater impact on the loss, and lighter weights a
smaller impact.

Similarity

The parameter similarity decides which images are considered non-trivial regarding the query
image. A low value indicates that many images are deemed similar and learning of the model
should be slower because dissimilar images are easy categorized into the negative set. A high
value for similarity equals only non-trivial images are chosen for the positive set. Preliminary
the value 0.7 is chosen.

26

4.2 Design of Experiments

4.2.1 Design of Experiments

The training of the ResNet model was conducted under changes of the listed Parameters. All
tests are run on a NVIDIA Tesla P100 16GB from the HPC cluster of the TU Berlin. The
optimizers that are used are the Stochastic Gradient Descent (SGD) and Adam [12]. Pre-trained
ResNet weights are provided by Sumbul et al. and are used to train the models. The weights
were trained for classification, so it will be interesting, how the results differ to a trained model
without pre-trained weights.
The precision of a model is calculated by retrieving similar images by distance for an input from
a batch sample X . The retrieved images are sorted ascending by their distance and the top k
images Xk are chosen into a list, with k ∈ N. The number of images Xp from

Xk

that are deemed similar (Soft Pairwise Similarity), by crossing the similarity threshold, are di-
vided by k. The mean over all lists results in the precision.

Precision =
|Xk∩Xp|
|Xk|

(4.1)

27

5 Experimental Results

This chapter describes the results of the conducted experiments. Different parameters and their
impact on the training process are examined.

5.1 Sensitivity Analysis of Experiments

Boundary α

Wang et al. (2019) [24] choose α depending on m as α = 1+ m
2 . That way, a margin m can

be selected and the boundary α is automatically decided. Therefore, the first trained models
used this formula for the value of α by selecting and changing m, as can be seen in table 5.1.

Margin m

The margin m is the first parameter that was changed for training because it is one of the most
important ones regarding the loss function. Positive data points are pulled into a hypersphere of
diameter α−m. For the first model iterations, m influences the value of α , which is the distance
data pairs from the negative set were to be pushed away. Considering the normalization layer
of the model a distance between two data points lies within the interval [0,2]. The parameters
to train the model further are m = 1.0 and α = 1.5. These values scored the highest precision
and are expected to not over fit the model as a large margin of 1.5 and the related α value 1.75
would possibly do. The lower precision scores of 52.05% is attributed to a small margin that
does not divide embedded images far enough. Wang et al. (2019) [24] emphasize the distancing
of negative pairs and choose to not weight the positive pairs, Tp = 0. The negative temperature
for weighting negative pairs is chosen as Tn = 10. All models are trained with an embedding size
of 2048. The selection of data points for positive and negative data set were calculated with a
similarity threshold of 0.7. The model was trained on a batch size of 265 for 100 epochs with
weights from the pre-trained model provided by Sumbul et al. (2019) [21].

m α Precision for Top 10 images
0.5 1.25 52.05%
0.75 1.35 60.11%
1.0 1.5 65.26%
1.25 1.625 61.31%
1.5 1.75 65.2%

Table 5.1: Precision results for different margins and their respective α

28

5.1 Sensitivity Analysis of Experiments

With α = 1.5 as the chosen boundary changes of the margin m could be of interest. As seen
in table 5.2 the precision does not change considerably compared to the achieved precision of
65.26%. The values of 0.25 and 0.5 for margin m are disregarded, considering that the diam-
eter of a class hypersphere is calculated as α −m. With a smaller margin m the diameter of a
classes hypersphere increases. Choosing a large diameter for a class hypersphere could create a
disadvantage that embedded images are not pulled close enough.

m α Precision for Top 10 images
0.25 1.5 65.03%
0.5 1.5 65.27%

Table 5.2: Precision results for different margins and their respective α

Weighting Temperature

From the start, the negative temperature was set to 10, in order to weight the negative pairs
and emphasize the distancing of negative data pairs. Since the first model iterations were not
trained with the weighting of positive data pairs, the next step was to look at changes created by
the positive Temperature. Other parameters are chosen as in section ’Margin m’ 5.1 described.
An increase of Tp gives more importance to data pairs that violate constraints and the model is
able to learn more effectively. Therefore an increase in precision is expected. Since Tp=15 does
not improve the models precision, Tp = 10 is chosen for further training. The last row of table
5.3 shows the result for Tp = 15 and Tn = 15. The lower precision of 61% indicates that chosen
data pairs who are heavier weighted, are not all selected properly for the negative and positive
set. If that was the case and only data pairs that improve the model are heavier weighted, the
precision should not decrease.

Tn Tp Precision for Top 10 images
10 5 66.84%
10 10 68.78%
10 15 68.08%
15 15 61%

Table 5.3: Precision results for different weighting temperatures

29

5 Experimental Results

Similarity

The similarity parameter is essential for the selection of data points for the positive and neg-
ative set (Eq. 3.15 and Eq. 3.16). Choosing a lower threshold like 0.5 would lead to data points
in the positive set that are only distantly similar to the input data. With ’wrong’ positive pairs
in the positive set, the objective of pulling real positive data pairs closer would fail. Images that
should not be pulled closer are pulled closer. The results from table 5.4 may be due to too few
data points that are considered for the positive and negative set. If there are not enough data
points the model can learn from the embedding function does not improve.

similarity m α Tp Tn Precision for Top 10 images
0.7 1.0 1.5 10 10 68.78%
0.8 1.0 1.5 10 10 66.06%
0.9 1.0 1.5 10 10 57.68%

Table 5.4: Precision results for different similarity

Learning Rate

After training a model on batch size=512 and epochs=50 an increase of the training loss can
be observed in Figure 5.1 (orange graph). Such an increase of training loss indicates a learning
rate that is not small enough, leading away from an optimized minimum.

Figure 5.1: Training loss of model with learning rate=0.001 (orange) and lr=0.0001 (red)

30

5.1 Sensitivity Analysis of Experiments

This insight leads to a decreased learning rate of 0.0001 with immediately better results, as
seen in table 5.5. Judging from the training loss, the loss is still converging and the mapping
of the model in the embedding space can still be improved. Since the optimizer Adam handles
learning rate better than SGD the following models are trained with Adam.

learning rate Precision for Top 10 images
0.001 66.19%
0.0001 72.12%

Table 5.5: Precision results for different learning rates using SGD

Optimizer Adam

The optimizer Adam utilizes an adaptive learning rate. Considering the issue of the learning
rate, Adam should be able to converge with a starting leaning rate of 0.001 and lower the learn-
ing rate as the training progresses. With Adam delivering promising results, an insight in how
the model performs without pre-trained weights is shown in table 5.6. The model is trained
for 50 epochs on a batch size of 512. That the precision at k=1 for the pre-trained model is
lower than precision at k=5 is unexpected. Four out of the eight calculated precisions for each
test batch at k=1 scored slightly below the results of precision at k=5. The other four results
were higher at k=1 than k=5. This anomaly can be explained by considering that the best result
is sometimes wrong and the second and its following results correct. If 0 is a wrong retrieved
image and 1 stands for a correct retrieval, then the precision at k=1 for (0,1,1,1,1) is 0%, but a
precision at k=5 is 80%. This would explain the lower precision of the pre-trained model for
precision at k=1.

Optimizer pretrained α m Tp Tn Precision Top 1 Precision Top 5 Precision Top 10
Adam yes 1.5 1.0 10 10 73.27% 73.40% 73.11%
Adam no 1.5 1.0 10 10 59,80% 58.99% 58.56%

Table 5.6: Precision results for models trained with Optimizer Adam

31

5 Experimental Results

Figure 5.2: Loss for model trained with Adam and its adaptive learning rate on 50 epochs.

Figure 5.2 shows the training loss of the Adam model with pre-trained weights. It can be
seen that the loss is still converging, which leads to the conclusion that this model has still room
for improvement.

Figure 5.3: Loss for model trained with Adam without pre-trained weights

The lower percentage of the model without pre-trained weight can be investigated by consid-
ering the selection of data pairs for the positive and negative set. Since the model has no trained
weights the constraints of Eq. 3.15 and Eq. 3.16 may not be violated by the data points leading
to sparse or empty sets. Which could result in difficult learning for the model. Similar results to
the ones of the pre-trained model might be achieved with a longer training period.

32

5.1 Sensitivity Analysis of Experiments

Final model

The final model trained using Adam with a starting learning rate of 0.001. The usual embedding
size of 2048 and a batch size of 512 were used. The model is trained for 100 epochs with α = 1.5
and m = 1.0. The temperatures Tp and Tp are each initialized with the value 10.
The model achieves a precision of 73.16% for k=10.

Figure 5.4: Loss for model trained with Adam on 100 epochs

Figure 5.5: Precision at k for model trained with Adam on 100 epochs

Figure 5.5 shows the precision over k until 100, showing a linear descend starting with
73.87% and ending ate k=100 with 68.31% in precision.
Considering the previews trained models a precision of 73% seems to be the upper boundary for
these parameters.

33

6 Conclusion and Future Work

Utilizing the Soft Pairwise Similarity function by Zhang et al. (2020) [27], a multi label imple-
mentation of RLL [24] for CBIR in RS was realised. The RLL for multi label in RS implemen-
tation was trained to achieve a precision of 73%. The sensitivity analysis shows the impact the
parameters have on the precision of the model.

However, trained models had their difficulty further discriminating between different classes
to achieve a higher precision. This derives presumably from the selection process for positive
and negative data points as described in section 5.1. To further improve this fine line of selecting
a threshold that considers labels, which are different but not too dissimilar to the input data, is
subject to further study and improvements.

Future work could continue studying the similarity of multi labels and improve the Soft Pair-
wise Similarity Function. Soft Pairwise Similarity does not discriminate data points by classes
that resemble each other, but their position in space. Therefore, an implementation that ex-
amines, which classes of labels are equal and hold semantic similar information may further
improve the comparison of labels.

34

Bibliography

[1] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: (2019).

[2] red bike.de. Blue Bike.

[3] Emilio Chuvieco and Russell G. Congalton. “Application of remote sensing and geo-
graphic information systems to forest fire hazard mapping”. In: Remote Sensing of Envi-
ronment 29.2 (1989), pp. 147–159. ISSN: 0034-4257. DOI: 10.1016/0034-4257(89)
90023 - 0. URL: http : / / www . sciencedirect . com / science / article / pii /
0034425789900230.

[4] H. Daschiel and M. Datcu. “Information mining in remote sensing image archives: sys-
tem evaluation”. In: IEEE Transactions on Geoscience and Remote Sensing 43.1 (2005),
pp. 188–199. ISSN: 0196-2892. DOI: 10.1109/TGRS.2004.838374.

[5] Ritendra Datta, Jia Li, and James Z. Wang. “Content-based image retrieval: approaches
and trends of the new age”. In: Proceedings of the 7th ACM SIGMM international work-
shop on Multimedia information retrieval. 2005, pp. 253–262.

[6] Du Peijun et al. “Study on content-based remote sensing image retrieval”. In: Harmony
between man & nature. Piscataway, NJ: IEEE Operations Center, 2005, pp. 707–710.
ISBN: 0-7803-9050-4. DOI: 10.1109/IGARSS.2005.1525204.

[7] R. D. Hudson and J. W. Hudson. “The military applications of remote sensing by in-
frared”. In: Proceedings of the IEEE 63.1 (1975), pp. 104–128. ISSN: 0018-9219. DOI:
10.1109/PROC.1975.9711.

[8] Jacob Goldberger et al. “Neighbourhood Components Analysis”. In: 2005, pp. 513–520.
URL: https://papers.nips.cc/paper/2566- neighbourhood- components-
analysis.

[9] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385
(2015).

[10] Kihyuk Sohn. “Improved Deep Metric Learning with Multi-class N-pair Loss Objective”.
In: 2016, pp. 1857–1865. URL: http://papers.nips.cc/paper/6200-improved-
deep-metric-learning-with-multiclass.

[11] Sungyeon Kim et al. “Deep Metric Learning Beyond Binary Supervision”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019.

[12] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

35

https://doi.org/10.1016/0034-4257(89)90023-0
https://doi.org/10.1016/0034-4257(89)90023-0
http://www.sciencedirect.com/science/article/pii/0034425789900230
http://www.sciencedirect.com/science/article/pii/0034425789900230
https://doi.org/10.1109/TGRS.2004.838374
https://doi.org/10.1109/IGARSS.2005.1525204
https://doi.org/10.1109/PROC.1975.9711
https://papers.nips.cc/paper/2566-neighbourhood-components-analysis
https://papers.nips.cc/paper/2566-neighbourhood-components-analysis
http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multiclass
http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multiclass

Bibliography

[13] Yansheng Li et al. “Content-Based High-Resolution Remote Sensing Image Retrieval via
Unsupervised Feature Learning and Collaborative Affinity Metric Fusion”. In: Remote
Sensing 8.9 (2016), p. 709. DOI: 10.3390/rs8090709. URL: https://www.mdpi.
com/2072-4292/8/9/709/htm.

[14] Yair Movshovitz-Attias et al. “No Fuss Distance Metric Learning using Proxies”. In: ().
URL: https://arxiv.org/pdf/1703.07464.

[15] David J. Mulla. “Twenty five years of remote sensing in precision agriculture: Key ad-
vances and remaining knowledge gaps”. In: Biosystems Engineering 114.4 (2013), pp. 358–
371. ISSN: 1537-5110. DOI: 10.1016/j.biosystemseng.2012.08.009. URL: http:
//www.sciencedirect.com/science/article/pii/S1537511012001419.

[16] Maik Netzband, William L. Stefanov, and Charles L. Redman. “Remote Sensing as a Tool
for Urban Planning and Sustainability”. In: (), pp. 1–23. DOI: 10.1007/978-3-540-
68009-3{\textunderscore}1.

[17] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Unified Embed-
ding for Face Recognition and Clustering”. In: (2015), pp. 815–823. DOI: 10.1109/
CVPR.2015.7298682. URL: https://arxiv.org/pdf/1503.03832.

[18] Santhosh K. Seelan et al. “Remote sensing applications for precision agriculture: A learn-
ing community approach”. In: Remote Sensing of Environment 88.1-2 (2003), pp. 157–
169. ISSN: 0034-4257. DOI: 10.1016/j.rse.2003.04.007. URL: http://www.
sciencedirect.com/science/article/pii/S0034425703002360.

[19] Hyun Oh Song et al. “Deep Metric Learning via Lifted Structured Feature Embedding”.
In: (). DOI: 10.1109/cvpr.2016.434.

[20] Senduru Srinivasulu and P. Sakthivel. “Extracting spatial semantics in association rules
for weather forecasting image”. In: Trendz in Information Sciences & Computing(TISC2010).
IEEE, 12/17/2010 - 12/19/2010, pp. 54–57. ISBN: 978-1-4244-9007-3. DOI: 10.1109/
TISC.2010.5714608.

[21] Gencer Sumbul et al. “Bigearthnet: A Large-Scale Benchmark Archive for Remote Sens-
ing Image Understanding”. In: IGARSS 2019 - 2019 IEEE International Geoscience and
Remote Sensing Symposium. 2019, pp. 5901–5904. ISBN: 2153-7003. DOI: 10.1109/
IGARSS.2019.8900532.

[22] F. Sunar and C. Özkan. “Forest fire analysis with remote sensing data”. In: International
Journal of Remote Sensing 22.12 (2001), pp. 2265–2277. ISSN: 0143-1161. DOI: 10.
1080/01431160118510.

[23] Jiang Wang et al. “Learning fine-grained image similarity with deep ranking”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014,
pp. 1386–1393.

[24] Xinshao Wang et al. “Ranked List Loss for Deep Metric Learning”. In: (). URL: https:
//arxiv.org/pdf/1903.03238.

36

https://doi.org/10.3390/rs8090709
https://www.mdpi.com/2072-4292/8/9/709/htm
https://www.mdpi.com/2072-4292/8/9/709/htm
https://arxiv.org/pdf/1703.07464
https://doi.org/10.1016/j.biosystemseng.2012.08.009
http://www.sciencedirect.com/science/article/pii/S1537511012001419
http://www.sciencedirect.com/science/article/pii/S1537511012001419
https://doi.org/10.1007/978-3-540-68009-3{\textunderscore }1
https://doi.org/10.1007/978-3-540-68009-3{\textunderscore }1
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/pdf/1503.03832
https://doi.org/10.1016/j.rse.2003.04.007
http://www.sciencedirect.com/science/article/pii/S0034425703002360
http://www.sciencedirect.com/science/article/pii/S0034425703002360
https://doi.org/10.1109/cvpr.2016.434
https://doi.org/10.1109/TISC.2010.5714608
https://doi.org/10.1109/TISC.2010.5714608
https://doi.org/10.1109/IGARSS.2019.8900532
https://doi.org/10.1109/IGARSS.2019.8900532
https://doi.org/10.1080/01431160118510
https://doi.org/10.1080/01431160118510
https://arxiv.org/pdf/1903.03238
https://arxiv.org/pdf/1903.03238

Bibliography

[25] Kilian Q. Weinberger and Lawrence K. Saul. “Distance Metric Learning for Large Margin
Nearest Neighbor Classification”. In: J. Mach. Learn. Res. 10 (2009), pp. 207–244. ISSN:
1532-4435.

[26] Chao-Yuan Wu et al. “Sampling Matters in Deep Embedding Learning”. In: (). URL:
https://arxiv.org/pdf/1706.07567.

[27] Z. Zhang et al. “Improved Deep Hashing With Soft Pairwise Similarity for Multi-Label
Image Retrieval”. In: IEEE Transactions on Multimedia 22.2 (2020), pp. 540–553. DOI:
10.1109/TMM.2019.2929957.

[28] Shizhou Zhang et al. “Person Re-Identification With Triplet Focal Loss”. In: IEEE Access
6 (2018), pp. 78092–78099. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2884743.

[29] Wengang Zhou, Houqiang Li, and Qi Tian. “Recent Advance in Content-based Image
Retrieval: A Literature Survey”. In: (). URL: https://arxiv.org/pdf/1706.06064.

37

https://arxiv.org/pdf/1706.07567
https://doi.org/10.1109/TMM.2019.2929957
https://doi.org/10.1109/ACCESS.2018.2884743
https://arxiv.org/pdf/1706.06064

Appendix

The code used in the experiments can be found on the GitLab of the TU Berlin, https://
gitlab.tubit.tu-berlin.de/rsim/ranked-list-loss.

38

https://gitlab.tubit.tu-berlin.de/rsim/ranked-list-loss
https://gitlab.tubit.tu-berlin.de/rsim/ranked-list-loss

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Outline

	Related Work
	Content Based Image Retrieval (CBIR)
	CBIR in Remote Sensing
	Similarity Ranking Functions
	Triplet Loss
	Ranking Motivated Loss

	Proposed Method
	Introduction into Ranked List Loss
	Ranked List Loss
	Pairwise constraint
	The Positive and Negative Set
	Weighting Pairs
	Overall Optimization Objective
	Calculating RLL
	RLL Algorithm

	Differences in single label and multi label
	Changes in RLL for multi label adaption

	Data Set Description and Design of Experiments
	Description of the Data Set
	Design of Experiments
	Design of Experiments

	Experimental Results
	Sensitivity Analysis of Experiments

	Conclusion and Future Work
	Bibliography
	Appendix

