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Abstract

This thesis proposes a multi-task framework that simultaneously generates compressed bitstream
and hashcodes in large-scale remote sensing (RS) archives. The proposed framework consists of
an auto-encoder-based compression part and a shallow CNN-based hashing part with an atten-
tion module. The thesis also proposes a novel optimization scheme for training this multi-task
framework. The optimization is divided into two stages. In stage one, the CNN-based compres-
sion part is optimized by a multiple-gradient descent algorithm (MGDA) to obtain a range of bit
rates. This is followed by the second stage where the hashing part is jointly trained with the pre-
trained compression part from stage one. During the joint training, a very small learning rate is
set to the compression part and the hashing loss is optimized by projecting conflicted gradients
(PCGrad) among sub losses. Performance analysis of the joint training shows that this proposed
optimization strategy achieves compression performance at par with the single-task pre-trained
compression baseline, and also achieves a competitive retrieval performance when compared
to the single-task hashing baseline. The retrieval performance of the proposed framework is
invariant to the position of the hashing part in the image domain or the compressed domain.
Additionally, the optimization scheme proposed is fully automated and no hyperparameter opti-
mization is required.
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1 Introduction

1.1 Background and Motivation

With the rapid development of space remote sensing (RS) technology in recent years, the tempo-
ral, spatial, and spectral resolution of remote sensing images have been continuously improved,
the corresponding data scale has increased dramatically. For example, by the end of 2019, the
total volume of data that was archived from the Sentinel missions was estimated to be more
than 12.5 PB, and this massive volume of RS data still keeps growing by the speed of 10 Ter-
abytes (TB) every day [27]. Also, with gradual reduction of satellite build and launch cost, more
commercial small low-orbit satellites are launched to capture high resolution RS images, for ex-
ample, until 2020 the company Planet has already about 200+ small satellites in orbit collecting
350 million km2 of multi-spectral imagery daily [50]. Such huge and rapid growing volume of
RS data makes it hard to store and search for relevant images in these immense archives. Thus
it is important to develop efficient techniques for RS image compression and retrieval.

Traditional compression algorithms for multi-spectral images can be mainly summarized to
the following three categories: (1) prediction-based approach; (2) vector quantization approach;
(3) transform-based approach. The prediction-based approach is mainly applied to lossless com-
pression. It uses the correlation between pixels to predict the unknown data based on its neigh-
bors, then encodes the residual between the real value and the predicted value. This type of
compression method has low complexity, however, the compression ratio is also considerably
low, which is not a good option for massive volume of RS data. As for vector quantization
approach, it uses codebooks to group and quantize a large set of vectors for compression. It
can achieve moderate compression ratio comparing to prediction-based approach, however it is
very slow since obtaining these codebooks is quite time-consuming during the training. The
most widely used traditional compression method for multi-spectral images is transform-based
approach due to its high compression ratio and fast calculations. This algorithm reduces the
correlation between pixels by converting the data to frequency domain, so that information can
be concentrated, quantified and encoded.

With the rapid development of deep learning, learning-based compression frameworks [3,
4, 9, 46] have achieved much better performance than traditional compression methods like
JEPG2000, WebP, BPG etc on RGB images. Since RGB images have 3 channels, which can
be considered as a special kind of multi-spectral image, these learning-based image compres-
sion methods for RGB images can also be adapted to multi-spectral images. Kong et al. [29]
adapted end-to-end ResNet compression frameworks (ResConv) to multi-spectral images, which
reported obtaining higher PSNR than that of JPEG2000 by about 2 dB, and the recovered images
did not have obvious block effects which existed in those recovered by JPEG2000 or 3D-SPIHT
[17]. Later Kong et al. [30] further improved the feature extraction module in the previous
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1 Introduction

ResConv, so that both spectral and spatial information in the multi-spectral images can be prop-
erly extracted and recovered. Kong reported that this improved compression algorithm outper-
formed the previous ResConv [29], JPEG2000 and 3D-SPIHT [17] on multi-spectral images of
the Landsat 8 satellite and the WorldView-3 satellite.

The retrieval methods of RS images are also improved significantly due to deep learning.
Traditional image retrieval techniques, also called metadata-based retrieval, strongly depend on
metadata (such as keywords, tags, location, acquisition date or time) to extract images from the
archive. However, the learning-based image retrieval can be done on the basis of the ’contents’,
when given a query image, similar images are returned independent of labor-intensive metadata.
This content-based image retrieval (CBIR) requires efficient feature representations (descrip-
tors) of the image data. Usually these image descriptors have high dimensions which not only
occupy a lot of storage space but also increase the computation time for nearest neighbor search.
To address these problems, hashing methods are introduced to encode high-dimensional image
descriptors to low-dimensional hash codes, which can preserve the discriminative ability of the
original image descriptors. When a query image comes for retrieval, the Hamming distance
between hash codes of the query image and the searching data set are calculated. The candi-
dates with relative smaller Hamming distance are selected for nearest neighbor search. Since
the distance calculation only contains a simple binary XOR operation, it is very fast in practical
applications. The time required for retrieval is linearly correlated with the number of images
in the searching dataset, also the short hash codes can save a lot of storage space. Thus, deep
learning-based hashing method is a good choice for large scale RS image retrieval.

Figure 1.1: General diagram of proposed multi-task framework

The learning-based compression and hashing methods for RS image compression and retrieval
are often tackled in isolation [71], i.e, a separate neural network is designed and trained for each
of the compression and hashing tasks, which greatly waste computational resources in large-
scale image applications. In this thesis, we explore the feasibility of a multi-task framework,
which combines compression and hashing together.

Fig.1.1 shows the general diagram of the proposed multi-task framework. The backbone of
the compression part is an encoder-decoder pair, in which the encoder extracts image features
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1.1 Background and Motivation

from the input image for entropy encoding in compression modules, and the decoder recon-
structs the input image from extracted image features. The hashing part is trained on image
features extracted by the compression part. By joint training the compassion and hashing part,
this trained multi-task framework can generate bitstream and hash codes simultaneously from
the raw images.

The main challenge in joint training of this multi-task framework is that, the compression or
hashing performance can be deteriorated by joint training together. As the objective of both
tasks have different requirements on the the underlying shared image features, an optimization
of joint training is difficult. The compression task requires the image features to be compact and
contain enough information for image reconstruction. However, the hashing task does not need
image features with such high reconstruction ability, since too much focus on trivial variations
in the images may degrade the retrieval performance.

Another challenge lies in the training of the compression part for multiple compression rates,
which can be extremely time-consuming if it is trained in the conventional way. The goal of
the compression part is to get high compression rate (bit-rate) and good reconstructed quality
(lower distortion) of the input image. These two objectives are mutually contrary, lower bit-rate
usually leads to a higher distortion in the reconstructed image. A trained convolutional neural
network (CNN) compression model is only able to get one optimal trade-off between the bit-
rate and the distortion. In order to get multiple compression rates, the current CNN compression
models have to be trained multiple times from scratch to get different optimal trade-offs, and the
hyperparameters for different trade-offs are usually obtained by very computationally expensive
grid-search.

The development of Multi-Task Learning (MTL) has provided many possible solutions for
the above two challenges. We adopt MTL optimization techniques to solve the above two chal-
lenges. The first challenge can be solved by training the compression part first to secure the
compression performance, then fine-tuning the compression part according to the needs of the
hashing part. But how well can the hashing part perform by training it on top of the feature
extractor which was trained on the compression task? Liu et al.[44] proposes task-specific at-
tention modules which allows the network to emphasize the parts in the shared features which
are more important for the corresponding task, and downplay the effect of unimportant parts.
Inspired by Liu’s work, an attention module is inserted to the hashing part for a better hashing
performance. As for the second challenge of training CNN compression models for variable
bit-rates, since the compression task is made of two conflicted sub-tasks: bit-rate minimization
and image reconstruction, MTL optimization algorithm MGDA [16] or its variation MGDA-UB
[54], which are developed to find Pareto optimal solutions for multiple-objective optimization,
can be applied to get optimal trade-offs between the bit-rate and the distortion without any hy-
perparameter searching.

The main contributions of the thesis are as follows:

1 A multi-task deep learning framework for RS image compression and hashing as presented
in Fig.1.1

2 An effective optimization strategy made of MTL optimization techniques for the proposed
framework
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1 Introduction

1.2 Objective

The aim of this work is to design and train a multi-task deep learning framework which can
compress RS images at desire rate-distortion (RD) ratio, also at the same time generate hash
codes for fast CBIR in large-scale RS archives.

The optimization of the proposed framework includes two stages. The first stage is to train the
compression part to a desired rate-distortion point. Then at the second stage, the hashing part
is trained jointly with the pre-trained compression part, a very small learning rate is set to the
compression part during the joint training. Performance analysis on different settings of the joint
training shows that, this proposed training strategy can secure the compression performance, and
achieve competitive hashing performance when compared to corresponding hashing baseline.

In case of RS image compression, we adapt the state-of-art CNN-based compression method
proposed by Zhang et al. [11], which employs residual blocks, GDN [3] and attention modules
in the backbone to extract compact image representations, and uses an entropy model made of
context module, mixed Gaussian module and hierarchical priors for bit-rate optimization on the
extracted image features. MGDA [16] is applied in training to achieve a variable bit-rate adap-
tion. The state-of-art RNN-based compression method proposed by Islam et al. [23] is also
investigated for comparison in the ablation study.

As for the objective of fast and accurate CBIR, a hashing network, which employs shallow
convolution layers to downsize the image feature and applies GreedHash [57] for hashing cod-
ing, is designed to generate compact binary hash codes. The backbone of the compression part is
served as the feature extractor for the designed hashing part, and an attention module is inserted
before the hashing network for better hashing performance. PCGrad [70] is selected as the op-
timization method for the hashing loss. Several other designed hashing networks with different
hashing coding layer are also investigated for comparison in the ablation study.

1.3 Outline

This chapter has provided an overview of the background and the motivation of the thesis. The
rest of the thesis is organized into five chapters. Chapter 2 introduces the existing compression
and supervised hashing methods in the RS domain, as well as optimization algorithms in multi-
task learning. Chapter 3 introduces the proposed framework of learning-based compression and
hashing. Chapter 4 introduces the dataset, and discusses the experimental setups for ablation
studies and performance analysis. Chapter 5 represents the experiment results of ablation stud-
ies and performance analysis. Chapter 6 summarizes the thesis and presents potential future
work.
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2 Related Work

2.1 Overview of Learning-based Compression Methods for
Remote Sensing Images

The RS images applied in this work are multi-spectral images which contains multiple bands
of wavelengths ranged from 380 nm to 3000 nm. They can be viewed as a three dimensional
(3D) matrix which has two spatial dimensions and one spectral dimension. Naturally there are
two kinds of redundancies in RS images: (1) spatial redundancy in neighboring pixels which are
located in regions spanned by similar image features; (2) spectral redundancy in nearby bands
which depict the same spatial area multiple times.

One of the earliest multi-spectral compression methods is CCSDS-MDC [2], a lossless com-
pression method, which predicts the current band based on the previous band and encodes the
residuals to bitstream. It has low complexity, but it also has a very low compression ratio.
Later a lot of lossy compression methods are proposed to further increase the compression ratio,
they can be divided into three types: (1) vector quantization approaches, which independently
reduce clusters of pixels with similar characteristics by grouping them together; (2) transform-
based approaches, which convert the image data to transform domain representation, so that the
correlation among pixels can be reduced, common transform-based approaches are Karhunen-
Loéve transform (KLT) [21], discrete cosine transform (DCT) [1] and discrete wavelet transform
(DWT) [60]; (3) tensor decomposition-based approaches, such as Tucker Decomposition (TD)
which decomposes a tensor into a set of matrices and one small core tensor, TD can be consid-
ered as a higher-order Principal Components Analysis (PCA).

In order to get a better compression ratio, the above traditional lossy compression methods
are often combined to treat the spectral redundancy and spatial redundancy independently. For
example, Qian et al. [18] applies PCA to reduce the correlation along the spectral dimension,
and applies JPEG2000 (a DWT based compression method) to reduce the correlation in the
spatial dimension. Karami et al. [26] applies TD on the DWT coefficients of spectral bands,
which gains higher PSNR than PCA + JPEG2000 in [18]. Báscones et al. [5] proposes to use
a vector quantization step to partition the spectral dimension space into Voronoi diagrams. Dif-
ferent PCAs are applied to further reduce the Voronoi diagrams to remove the correlation in the
spectral dimension, then JPEG2000 is applied to different principal components to remove the
spatial redundancy. Compared to PCA + JPEG2000 proposed in [18], [5] reports an increase of
1 to 3 dB in Signal Noise Ratio (SNR) for the same compression ratio. Despite the high com-
pression performance of the above methods, they suffer of high calculation complexity, which
is impractical for large-scale RS image compression.

In order to reduce the computation complexity of the tensor decomposition method, Li et
al. [34] uses a forward CNN to reduce the scale of the original 3D RS images, then 3D-DCT
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2 Related Work

is applied to the small-scaled tensors to remove the spectral and spatial correlations. Later
Non-negative Tucker Decomposition (NTD) is applied to the small-scale DCT tensors to further
reduce the correlations, and an entropy encoder is used to encode the output core tensor to bit-
stream. In order to make sure the small-scaled DCT tensors keep good structural information
of the original 3D RS images, a reconstruction loss is applied to the input image and the recon-
structed image which is recovered from the small-scaled tensor. Compared to the conventional
method that uses NTD and DCT for compression, [34] is faster in compression time with only a
little sacrifice on PSNR, which does not impact the image quality.

Inspired by the success of learning-based compression methods for RGB images [3], Kong
et al. [29] adapts an end-to-end CNN compression framework with optimized residual units for
multi-spectral image compression. It consists of an auto-encoder for image feature extraction, a
pair of quantizer and reverse quantizer, a rate-distortion optimizer for entropy encoding based on
the importance map [35], an entropy encoder for compressing quantized features into bitstream,
and an entropy decoder for decompressing bitstream. [29] outperforms conventional methods
like JPEG2000 and 3D-SPIHT [17]. Later Kong et al. [30] improves the feature extractor (the
auto-encoder) by adding two parallel modules, which can extract spatial features and spectral
features separately. After the feature extraction, these two kinds of features are fused element-
wise to form the feature map, which will be quantized and compressed by the entropy encoder.
This improvement makes [30] outperform [29] and all the previous conventional compression
methods like JPEG2000 and 3D-SPIHT [17] on datasets from Landsat-8 and WorldView-3 satel-
lites.

Figure 2.1: General diagram of learning-based CNN compression method

Fig.2.1 shows the general diagram of learning-based CNN compression methods. They usu-
ally consist of encoder and decoder pairs. Given an input image, the encoder and the quantization
function Q generate the discrete feature representation (latent) of the image data. Then the im-
age is recovered from the discrete latent by the decoder. Note that the quantization function Q
is often approximated by the addition of uniform noise during the training due to the gradient
back-propagation problem on discrete values. Arithmetic encoder (AE) is used to compress the

6



2.1 Overview of Learning-based Compression Methods for Remote Sensing Images

discrete latent into a bitstream. AE is a lossless compression method based on entropy encoding.
When a string is compressed by AE, frequently used characters will be stored with fewer bits and
vice versa, resulting in fewer bits used in total. Thus the number of bits (bit-rate) of compressed
data is bound by the entropy of the latent. Since it is hard to get the real probability distribution
of the discrete latent, it is necessary to use an entropy model to estimate it. Hence, the bit-rate is
determined by the cross entropy of the real and estimated probability of the discrete latent.

The learning-based CNN compression frameworks can be improved by incorporating more
powerful feature extracting modules in the encoder and decoder blocks, so that the spatial and
spectral redundancy can be further reduced in the image data. Then less correlated latents can
be generated, which leads to less bits for entropy encoding. GDN [3], residual blocks [62], and
some more advanced convolutional architectures like attention module [11], and non-local net-
works [9] have been employed to optimize the network structure, which results in lower bit-rate
for entropy encoding.

The performance of CNN compression frameworks can be more effectively improved by opti-
mizing the entropy model. By learning a more accurate estimation of the probability distribution
of the latents, the bit-rate for entropy encoding can be better controlled. In 2017 Ballé et al. [3]
estimates the probability distribution of latents with a factorized density model, which is a non-
parametric univariate density model defined in an explicit derivative. In 2018 Ballé et al. [4]
adds a simple hyperprior model to extract hyper latents as side information for entropy encoding,
which has greatly advanced the compression performance. In the same year, Cheng et al. [35]
suggests generating an importance map from the image content, then uses this content weighted
map to guide the bit-rate for different contents of the image. Also in 2018, Minnen et al. [47]
proposes to use an autoregressive module (context model) to learn the spatial dependencies
among elements of the latents, then this causal context model is combined with the hyperprior
to get conditional entropy estimation of the latents. In 2019, Lee et al. [33] introduces another
way to combine context model and hyperprior together to learn entropy parameters from the
latents. The causal context model (masked convolution) can help with more accurate entropy es-
timation, however the sequential pixel-by-pixel operations caused by masked convolution have
significantly slowed down the encoding and decoding speed. Later, Hu et al. [22] introduces
a coarse-to-fine model, which estimates the conditional entropy from multi-layer latents with-
out using a causal context model. In 2020, discretized Gaussian mixture likelihoods [12] are
added to further improve the statistic description of latents to enhance entropy coding. Recently
Tong et al. [9] suggests to use parallel 3D masked convolution in the context model, since it can
break the original sequential pixel-by-pixel operations caused by 2D masked convolution, which
would speed up the encoding and decoding process.

The core problem of lossy image compression is to minimize the bit-rate R, and the distortion
D between input image and reconstructed image. Since these two tasks are mutually conflicted,
a coefficient λ is introduced to control the rate-distortion trade-off. By optimizing R+λD, an
overall good rate-distortion performance can be obtained by jointly training the parameters of
encoder, decoder and the entropy model. Usually multiple RD trade-offs are often required in
practice. Since one λ only results in one RD trade-off, the CNN-based compression model has
to be trained from scratch multiple times for different trade-offs. Also, expensive grid search has
to be applied to get different λ . Thus, it is not trivial to train CNN-based compression models
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for variable bit-rates.
The development of recurrent neural network (RNN) compression frameworks is relatively

slow compared to that of CNN compression frameworks. Since Toderici et al. [63] in 2016
proposes the first RNN compression framework, the main components of this method have not
changed much. There are three modules in a single iteration, i.e., an encoding network, a bi-
narizer and a decoding network, where encoder and decoder contain recurrent network com-
ponents. The residual signals between the input image patch and the reconstructed one from
decoding network can be further compressed into bitstream in the next iteration. More specif-
ically, the proposed method is an multi-iteration compression architecture supporting variable
bit-rate compression in progressive style. Compared to the approximation of bit-rate estima-
tion in CNN-based compression models, this RNN-based image compression scheme uses a
scaled-additive coding framework to restrict the number of coding bits. To further improve the
RNN-based image compression, Minnen et al. [14] presents a spatially adaptive image compres-
sion framework, in which the input image is divided into tiles which is similar to the existing
image codecs such as the JPEG and JPEG2000. For each tile, an initial prediction is generated
by a full CNN from the spatial neighboring tiles which have been decoded in the left and above
regions. However, based on the released results, the proposed method only outperforms JPEG
while it is inferior to JPEG2000.

Both CNN and RNN compression frameworks have its own pros and cons. In case of training
time, the one-time feed-forward CNN networks take less time than RNN networks do, since the
latter have a longer path of back-propagation due to multiple iterations in time. In case of support
for variable range of bit-rates, RNN networks naturally can handle variable-rate compression by
changing the number of iterations, however, CNN networks have to be trained separately for
different RD coefficient λ . In case of encoding and decoding time, RNN networks may take
more time than CNN networks when higher bit-rates are required, because RNN networks have
to be executed for more iterations to generate higher bit-rates. Despite these pros and cons, both
Johnston et al. [49] and Minnen et.al [47] in 2018 reported that the compression performance
of CNN framework was generally higher than that of RNN frameworks. Since variable-bit-rate
compression is widely required by applications, it is important to find an effective way for CNN
compression networks to support variable range of bit-rates.

In this work, the state-of-art CNN-based compression method [11] is adopted for the proposed
multi-task framework. MTL optimization techniques are applied in the training to get variable
bit-rates. Also, we will compare this CNN-based compression method against the state-of-art
RNN-based compression method [23] for completion.
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2.2 Overview of Deep Supervised Hashing Algorithms for
Remote Sensing Image Retrieval

Due to the huge and rapidly growing volume of RS data, it is computationally expensive to
search and retrieve images by exhaustively comparing the query image with each image of the
RS archive in high-dimensional feature space. In addition to that, the high-dimensional features
of RS images also occupy a lot of storage space. To address these problems, hashing based
approximate nearest neighbor (ANN) search schemes have attracted a large amount of research
interest due to their high efficiency in both storage cost and search /retrieval speed. The purpose
of the hashing algorithm is to map high dimensional features into a Hamming space, generating
compact hash codes made of 0 and 1. In the case of CBIR, the hash codes generated by a good
hash algorithm should be able to preserve the distance order of the original image space as much
as possible. By this way, the most similar images to the query image can be efficiently retrieved
based on the hamming distance with simple bit-wise operations, and the compact hash codes
can save a lot of storage space comparing to the previous high-dimensional features.

Traditional hashing-based RS CBIR systems extract hand-crafted image features, and map
these high-dimensional representations to low-dimensional binary codes by hashing functions
[15, 36, 52]. Since the image feature extraction and hashing functions are mutually independent,
the hash codes generated by traditional methods are sub-optimal in preserving the similarity of
images in original semantic space. In order to optimize the alignment of similarity between
the image feature space and the hash code space, several deep hashing based CBIR methods
are introduced in the RS domain. For example, Li et al. [39] in 2018 proposes a supervised
deep hashing neural network (DHNN), which contains a deep CNN for image feature learning
and a fully connected layer for hash coding. Because of the gradient vanish problem when
training with binary hash codes, DHNN uses approximated continuous hash-like codes to replace
the binary hash codes during the training. DHNN applies likelihood pairwise loss to align the
similarities of image pairs computed from the input space and the approximated hash-like code
space. Also, it uses a quantization loss to narrow the gap between approximated hash-like codes
and discrete hash codes, which gets competitive performance on the common RS dataset UCMD
[69] and SAT4 [6].

Another representative deep hashing method in the RS domain is MiLAN [53], which employs
a pre-trained Inception Net as image feature extractor and a shallow CNN for hash code learning.
MiLAN combines a triplet loss, quantization loss and bit balance loss to learn a robust and
efficient hashing network on the dataset UCMD [69]. The bit balance loss is to encourage each
bit to have an approximately 50% chance of being 0 or 1, thereby maximizing code variance and
information. The triplet loss is to preserve the similarity orders for more than two images that are
computed in input space and hash code space. Compared to the pairwise loss, the triplet loss can
avoid the situation that similar images are clustered together in the hash code space. Note that
the performance of the triplet loss highly depends on triplet sampling methods. As it is difficult
to sample triplets when the dataset is multi-label, the triplet loss can become computationally
expensive because of triplet sampling when compared to the pairwise loss.

DHCNN [56] is another representative deep hashing method in the RS domain. It takes full
advantage of image label information by adding a classification layer (fully-connected layer) to
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the hash layer, so that predicted image labels can be obtained from the hash codes. By jointly
optimizing the classification loss, pairwise loss and quantization loss, the hash codes generated
by DHCNN are more discriminative, which avoids the disadvantage that similar images are
clustered together in hash code space caused by pairwise loss.

After examining the above representative deep hashing methods in the RS domain, we can
find that there are generally four issues in designing a deep supervised hashing method:

(1) Which kind of architecture to generate hash codes?
Fig 2.2 illustrates the common overall architecture of deep supervised hashing methods in
the RS domain, which comprises an Image feature extractor, a Hash network, a Hash layer
for hash coding, and a Quantization layer for generating binary hash codes. The choice of
Image feature extractor often depends on the complexity of the dataset. In case of simple
datasets, a shallow convolution network is enough. In case of more complex datasets like
multi-label RS datasets BigEarthNet [58] or MLRSNet [48], deep learning models such
as ResNet50, VGGNet and Inception are often utilized. The Hash network is to downsize
high-dimensional image features to low-dimensional hidden features, it is usually made
of several convolution layers with Relu or pooling operation in-between. The Hash layer
is usually made of a fully connected layer and an activation function (sigmoid / tahn). The
Quantization layer is a sign function.

Figure 2.2: General diagram of supervised deep hashing

(2) How to obtain gradients when training with binary hash codes?
As for obtaining gradients when training with binary hash codes, a common way is to ap-
proximate the binary hash codes by the continuous output before the Quantization layer.
Since this method doesn’t optimize the hash codes directly, a quantization loss [39] is
applied to push the approximated binary-like values close to the discrete hash codes. By
this way, the sign function in the Quantization layer is gradually approximated by sig-
moid/tahn function in the Hash layer. There are some other ways to solve the gradient
vanish problem caused by training with binary hash codes. Su et al. [57] proposes Greedy
Hash for hash coding. It uses the sign function in the forward pass to directly generate
binary codes. In back propagation, the straight-through estimator (STE) [8] is applied to
calculate the gradients by simply ignoring the sign function. Thus, the quantization loss
is not required by Greedy Hash method. Li et al. [40] designs a Bi-half layer, which also
adapts STE method to obtain gradients for binary codes. Differ to Greedy Hash, Bi-half
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not only generates binary codes directly, but also makes binary codes approximate the op-
timal half-half bit distribution, so Bi-half does not need quantization loss and bit balance
loss.

(3) How to design the metric loss to keep the similarity information of the original image
space?
Designing the metric loss for similarity preservation is the essential goal of deep hashing.
The similarity preservation can be generally categorized to two types: (1) pairwise sim-
ilarity algorithms, which align the distances or similarities of a pair of items computed
from the input space and the hash code space; (2) multiwise similarity algorithms such as
the popular triplet loss, which preserve the similarity orders for more than two items that
are computed in input space and hash code space.
Suppose there are N images in the current training batch. The multi-hot label vectors for
i-th image and j-th image are l(i) and l( j), the hash code vectors are b(i) and b( j). Let the
semantic similarity and distance of this image pair be denoted as so

i j and do
i j; the similarity

and distance of the image pair in the hash code space be denoted as sh
i j and dh

i j. We can
get:

so
i j =

< l(i), l( j) >

∥l(i)∥2∥l( j)∥2
,

do
i j = ∥l(i)− l( j)∥2,

sh
i j =< b(i),b( j) >,

dh
i j = ∥b(i)−b( j)∥2,

where <.> means dot product, ξ = {(i, j) |i, j ∈ {1,2,3, ...N}}
As summarized by Luo et al. [45], pairwise losses generally have three forms to align the
similarity information between the input space and the hash code space.

– The similarity-distance product form
Eg. min ∑(i, j)∈ξ so

i jd
h
i j in the pairwise loss of DSH [42] or PCDH [68], which tries to

make semantically similar image pairs have smaller distance in hash code space.

– The difference form
Eg. min ∑(i, j)∈ξ (so

i j − sh
i j)

2 or ∑(i, j)∈ξ (do
i j −dh

i j)
2 in the pairwise loss of CNNH [67]

or DDSH [25].

– The likelihood form
Eg. ∑(i, j)∈ξ

(
log(1+ esh

i j)− so
i js

h
i j

)
in the pairwise loss of DHNN [39].

As for multiwise loss, it tries to preserve the relative similarity orders among more than
two items in both input space and hash code space. The most popular multiwise loss is the
triplet loss applied in DNNH [32] or MiLAN [53], it also has a negative likelihood form
introduced by DTSH [64]:

ζ (b(a),b(p),b(n)) = log(1+ esh
ap−sh

an−m)− (sh
ap − sh

an −m). (2.1)
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where a, p and n are indexes for the anchor, the positive and the negative samples. m is
the margin.
The performance of triple loss can be significantly impacted by the triplet sampling meth-
ods. If there are many negative samples which satisfy dh

an > dh
ap +m, the triplet loss will

be close to zero, which is hard to be reduced. It is necessary to sample more hard negative
samples to make triplet loss work well. However, it is difficult to choose triplets especially
when the training dataset is multi-label. Comparing to pairwise loss, triplet loss can be
more computationally expensive because of triplet sampling.

(4) What other skills can improve the hashing performance?
Bit balance and bit independence are very common techniques to improve the hashing
performance. Bit balance means that each bit has an approximately 50% chance of being
+1 or -1, thereby maximizing code variance and information. DAPH [55] has showed that
code balance is very significant for hashing. Bit independence means that different bits
are uncorrelated. Since there is very little redundancy in the codes, a given set of bits can
represent more information within a given code length. Bit independence is also added to
the loss function by some representative hashing methods like SH-BDNN [61] and DAPH
[55].
Classification loss is another skill to improve the hashing performance. For example, Luo
et al. [45] investigated the retrieval performance of representative deep hashing methods
on CIFAR-10 [31] and NUS-WIDE [13] datasets. The experiment results showed that
DSDH[37] outperformed DPSH [38] evidently. These two methods are very similar ex-
cept that DSDH adds a classification loss to the loss function to make the hash codes be
more discriminative.
In addition to that, recent work like PCDH [68] reports that adding a pair sampling mod-
ule can improve the optimization of its product-formed pairwise loss. PCDH employs a
pair-sampling method called Pairwise Hard, which samples positive pairs with the max-
imum distance in the deep feature space, and samples negative pairs randomly with the
distance smaller than the threshold. The pairs sampled by Pairwise Hard have large loss
for effective hash code learning.

All above works are trained on fully annotated images. In this work, since we focus more on
jointly training deep compression and hashing on multi-label RS datasets, we will design a deep
supervised hashing module based on above-mentioned techniques. The exploration on more
cost-effective hashing methods such as supervised hashing on cheep noisy data, semi-supervised
or unsupervised hashing will be left to future works.
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2.3 Overview of Optimization Techniques in Multi-Task
Learning

In machine learning, it is typical to optimize the model for a particular metric, whether it is a
precision score on a certain benchmark or a business KPI. In order to do this, a single model
or ensemble of models are trained to perform the desired task. By laser-focusing on one single
task, we may ignore a lot of other information from related tasks which may help to improve
the metric. Also, it can be a big waste of computation resources when several tasks which share
a lot of parameters are trained separately in different models. By jointly training different tasks
which have shared representation, we can enable one model to optimize multiple tasks. This
approach is called Multi-Task learning (MTL). A significant challenge in MTL comes from the
optimization procedure itself. In particular, we need to address the optimization problems caused
by dominant tasks or conflicted tasks during the joint training.

2.3.1 Loss Weighting

One common optimization technique in MTL is loss weighting. It adjusts the weights of differ-
ent losses, and optimizes the aggregated weighted sum of all task-specific losses to get a global
optimum for all the tasks. Kendall et al. [28] proposes to learn weights by the uncertainty to
optimize multiple regression and classification objectives. Following Kendall et al., some re-
searchers suggest to learn the weights by the learning speed on that task. Liu et al.[43] proposes
Dynamic Weight Averaging (DWA), which explicitly set the loss weight of one task using a ratio
of the current loss to a previous loss. Let the loss of task i at time step t be denoted as ζi(t), the
weight of task i at time step t be denoted as wi(t), which can be formulated as:

ri(t −1) = ζi(t −1)/ζi(t −2),

wi(t) =
Neri(t−1)/T

∑ j er j(t−1)/T
,

(2.2)

where N is the number of tasks, T is a temperature hyperparameter.
DWA uses the ratio of the losses from the last two training steps to set the loss weight for the
current step. The loss weights can also be learned by the changing rate of the performance of
each task. Dynamic Task Prioritization [20] uses the performance metrics other than the loss
function to weigh tasks. Gong et al. [19] in 2019 conducts an empirical comparison of loss
weighting by uncertainty and by speed, and finds that careful selection of task pairs is very
important for loss weighting methods. In a lot of the cases, loss weighting methods can not
improve MTL performance when a lot of conflicting gradient signals exist among randomly
combined tasks.

2.3.2 Gradient Modulation

Another type of popular MTL optimization techniques is based on gradients. These gradient-
based methods manipulate the back-propagation of the network. Inspired by DWA, Chen et
al.[10] in 2018 introduces GradNorm, which doesn’t scale losses explicitly. Instead, GradNorm
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dynamically scales gradient norms on the last shared layer according to the learning speeds of
different tasks. The weights are shifted among gradient magnitudes so that a higher learning
speed yields gradients with a smaller magnitude, and a lower learning speed yields gradients
with a larger magnitude. Chen’s experiments show that GradNorm matches or outperforms
exhaustive grid search methods on classification or regression tasks. However, similar to DWA,
GradNorm only solves the optimization problems caused by dominated tasks, it doesn’t work
well when a lot of conflicted gradient signals exist among tasks. Yu et al. [70] in 2020 proposes
PCGrad, which hypothesizes the following three conditions resulting in detrimental gradient
interference:

• Negative gradient cosine similarity

CosineSimilarity = cosi j =
gT

i g j
∥gi∥2∥g j∥2

< 0

• Small (close to zero) gradient magnitude similarity
MagnitudeSimilarity =

2∥gi∥2∥g j∥2
∥gi∥

2
2+∥g j∥

2
2
< 1

• High multi-task curvature

Curvature = (1− cos2
i j)

∥gi−g j∥
2
2

∥gi+g j∥
2
2

where gi,g j are gradients of task i and task j.
Gradient cosine similarity is to measure the angle between task gradients. A negative cosine
value indicates the gradients of two tasks are conflicting. PCGrad suggests to avoid these detri-
mental gradient interference by projecting one task’s gradient onto the normal plane of any other
task’s gradient when their gradients are conflicting. This projection operation can also help to
solve the problems caused by small magnitude similarity and high learning curvature.
Suppose there are T sub tasks in total. Each task has its own loss function denoted as ζi, where i
∈ ξ = {1,2, ...,T}. The model parameters are denoted as θ . Table2.1 shows the PCGrad Update
rules for updating θ .

PCGrad Update Rule
1: for i ∈ ξ :
2: gPC

i = ∇θ ζi

3: for random j ∈ ξ :
4: g j = ∇θ ζ j

5: if i ̸= j and cosi j =
gPC

i gT
j

∥gi∥2∥g j∥2
< 0:

6: gPC
i = gPC

i − gPC
i gT

j

∥g j∥2
2

g j

7: ∆θ = ∑
T
i gPC

i

Table 2.1: PCGrad Update Rule

The limited part of PCGrad is that it only alters the gradients when negative cosine similarity
exists among task pairs. It becomes inactive when there are detrimentally low positive cosine
similarity between task pairs. Wang et al. [66] proposes GradVac to deal with both negative and
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positive cases in gradient cosine similarity between task pairs. Javaloy and Valera [24] argue that
the gradient updates provided by methods like PCGrad do not guarantee that the global optima
moves towards the local optimal points of individual tasks, because conflicted gradients may
indicate that the local optimal points exist in completely different parts of the shared parameter
space. Thus, they introduce RotoGrad, which can cooperate with GradNorm to homogenize the
per-task gradient magnitudes, but also brings the local optima of different tasks closer to each
other by rotating the shared-representation space.

2.3.3 Multi-Objective Optimization

Though DWA, GradNorm or PCGrad works well on classification, regression and segmentaion
tasks, they can’t work on mulit-objective problems like bitrate and reconstruction in deep com-
pression, in which tasks are so conflicted that the performance of one task can only be improved
by worsening the performance of another task. To address the optimization of conflicted ob-
jectives, Désidéri proposes a multiple-gradient descent algorithm (MGDA) [16] to converge the
training to an optimal trade-off point among task losses, which is the best feasible solution for
solving multi-objective problems. This optimal trade-off point is also called Pareto optimal
point, which should satisfy the following condition:

gi = ∇θ ζi, i ∈ [1,2,3, ...T],

wi ≥ 0(∀i),
T

∑
i

wigi = 0,
T

∑
i

wi = 1,
(2.3)

where ζi is the loss for task i, gi is the gradient of task i, T is the total number of tasks, wi is the
weight for task i.
If the current point is not Pareto optimal, the descent direction can be obtained by optimizing
the following problem:

min
{
∥u∥2

2

∣∣∣ u =
T

∑
i

wigi,
T

∑
i

wi = 1,wi ≥ 0,∀i
}
. (2.4)

In case it is a two-objective optimization problem (T=2), the above optimization problem can be
rewritten as:

min
{
∥u∥2

2

∣∣∣ u = wg1 +(1−w)g2,0 ≤ w ≤ 1
}
. (2.5)

As shown in Fig.2.3, the gradient descent direction is along vector u (blue). It is either a perpen-
dicular case or an edge case.

Figure 2.3: Case N=2: possible positions of vector u wrt. two gradient vectors g1 and g2
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In 2018 Sener and Koltum [54] extend MGDA to a form that scales well to an increasing
number of tasks in deep learning by minimizing an upper bound to the MGDA loss. When the
number of tasks increases, this improvement yields a smaller computational overhead comparing
to traditional MGDA. Since MGDA is only able to produce one Pareto optimal point, in 2019
Lin et al. [41] extend MGDA further to find a set of Pareto optimal solutions by decomposing a
given MTL problem into several sub-problems with a set of preference vectors, and finding one
Pareto solution in each restricted preference region. Lin’s method is more flexible and useful
than a single solution. However, its performance highly depends on a proper selection of prefer-
ence vectors, which requires a lot of empirical experiences on related objectives.

In the next chapter, we will apply the above MTL optimization techniques to gain compet-
itive compression and hashing performance in the jointly training of both tasks without any
grid-search for hyperparameters.
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3 Proposed Framework on Learning-based
Compression and Hashing

Given a training set of N images X = {x(1),x(2), ...,x(N)}, where x(i) is the i-th image vector,
and its label sets L = {l(1), l(2), ..., l(N)}, where l(i) is the multi-hot label vector of i-th image.
The goal of learning-based compression in the proposed framework is to learn a quantized rep-
resentation ŷ, and its estimated distribution pŷ(ŷ) from a given input image vector x, so that the
given image can be encoded to bitstream with minimum bit-rates R, and can be reconstructed
from bitstream with tolerated distortion D. Let the set of N image representations learned by the
compression part be denoted as Y, where Y = {y(1),y(2), ...,y(N)}, the goal of hash learning in
the proposed framework is to learn a mapping f : Y 7→ {−1,1}q, so that an input image feature
vector y(i) can be encoded into a q-bit binary vector b(i), with the semantic similarities of im-
ages being kept aligned with the similarities in the hash code space. The semantic similarity is
defined by the cosine similarity between l(i) and l( j). The similarity of image pairs in hash code
space is defined by the dot product of b(i) and b( j).

In order to make sure the performance of the compression part not be deteriorated by the hash-
ing part, the optimization of this proposed multi-task framework is divided into two stages. The
first stage is to train the compression part to desired rate-distortion trade-off points. Traditionally
it is non-trivial to train CNN-based compression networks for a variable range of bit-rates, i.e,
the network has to be trained multiple times separately from scratch for different rate-distortion
(RD) trade-off points, and grid search is required during the training to get the weights for each
RD trade-off point. In this work, we propose to apply MGDA [16] to optimize the distortion
and bit-rate loss, so that multiple optimal trade-offs can be obtained without grid-searching for
hyperparameters, also without training the network multiple times from scratch for different bit-
rates.

The second stage is to train the hashing part on the image features which were trained by the
compression part. In order to get a competitive hashing performance compared to the single-task
hashing baseline, an attention module is inserted into the hashing part to extract task-specific fea-
tures from the shared image features. Also, a very small learning rate is set to the pre-trained
compression part, so that the shared image features can be fine-tuned according to the needs of
the hashing part. PCGrad [70] is applied to optimize the hashing loss.

The novelty of the proposed framework includes: i) Joint compression and hashing frame-
work with performance equivalent to the baseline trained individual; ii) An optimization scheme
using MTL optimization methods that avoids hyperparameter search.
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3.1 Introduction to Proposed Multi-task Framework

As illustrated in Fig.3.1, the proposed framework consists of two parts: the compression part and
the hashing part. The compression part adapts the state-of-art CNN-based image compression
method, which consists of two sub-networks. The first sub-network is the core autoencoder
(Encoder and Decoder blocks), which is responsible for image feature extraction and image
reconstruction. The second sub-network is responsible for entropy encoding, which consists
an auto-regressive model (Context model), Entropy parameters module and a hyper-network
(Hyper Encoder, Hyper Decoder and Factorized entropy model). The hashing part contains an
attention module [11] for task-specific feature extraction, a Hash Network for downsizing the
image features, a Hash Layer for generating discrete hash codes and a Classification Layer for
predicting image labels.

Figure 3.1: Overall architecture of the proposed multi-task framework
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3.1.1 Introduction to the Compression Part

The processing flow of the first sub-network of the compression part is described in Eq.3.1.
The Encoder block extracts latents y from the input image x. During training, a uniform noise
(function U) is added to latents to generate approximated discrete values (ŷ). During inference, a
real round function Q is employed to get discrete values. The reconstructed image x̂ is recovered
by the Decoder block from the discrete latents. The above processing can be formulated as:

y = Encoder(x),

ŷ =

{
y+U(−1

2 ,
1
2), during training

round(y), otherwise

x̂ = Decoder(ŷ).

(3.1)

The probability estimation of the discrete hyper-latents is described in Eq.3.2. The latents y
are fed to the Hyper Encoder block to get hyper-latents z, then the same quantization function
is applied to the hyper-latents to get discrete hyper-latents ẑ. The Factorized entropy model in
the hyper-network is to learn an arbitrary distribution pẑ from the quantized hyper-latents, pẑ is
modeled by a non-parametric, fully factorized density model ψ , in which the vector ψ(i) contains
parameters of each univariate distribution pzi|ψ(i) . The above processing can be formulated as:

z = HyperEncoder(y),

ẑ =
{

z +U(−1
2 ,

1
2), during training

round(z), otherwise

pẑ|ψ(z|ψ) = ∏
i=1

(
pzi|ψ(i) ∗U(−1

2
,
1
2
)
)
(ẑi),

(3.2)

where zi denotes the i-th element of z, and i specifies to the position of each element.
The conditional probability estimation of the discrete latents is described in Eq.3.3. The

Context model learns the context-based predictions from the quantized latents ŷ, and the hyper-
network learns information from quantized hyper-latents ẑ to correct the context-based predic-
tions. The outputs of Context model and the hyper-network are concatenated and fed to Entropy
parameters module, which learns parameters (weights w, means µ and variances δ 2 ) for a mix-
ture conditional Gaussian distribution pŷ|ẑ(ŷ|ẑ) of the quantized latents. The above processing
can be formulated as:

pŷ|ẑ(ŷ|ẑ) = ∏
i

pŷ|ẑ(ŷi|ẑ),

pŷ|ẑ(ŷi|ẑ) =
( K

∑
k=1

w(k)
i N(µ

(k)
i ,δ

2(k)
i )∗U(−1

2
,
1
2
)
)
(ŷi)

=
K

∑
k=1

w(k)
i ∗

(
c
( ŷi +

1
2 −µ

(k)
i

δ
(k)
i

)
− c

( ŷi − 1
2 −µ

(k)
i

δ
(k)
i

))
,

(3.3)

where i specifies the location of each element of the vector, i.e. yi denotes the i-th element of
the latent vector y. k denotes the index of the Gaussian model, k ∈ {1,2,3} by default, the k-th
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mixture Gaussian model for each element ŷi is characterized by three parameters, i.e weight w(k)
i ,

mean µ
(k)
i and variance δ

(k)
i . c(.) is a cumulative function of a standard normal distribution.

The core problem of lossy image compression is to minimize the distortion D between input
image and reconstructed image, also to minimize the bit-rate R. In this work, the distortion D
is measured by structural similarity index measure [65] (SSIM). The bit-rate is determined by
the cross entropy of the real and estimated probability of the discrete latents. Since the real
probability distributions are usually unknown, Eq.3.2 and Eq.3.3 are utilized to get estimated
distributions of the discrete latents. Thus, the loss function of the compression part ζcompression

is formulated as:

ζD = 1−SSIM(x, x̂),
ζR = E

[
− log2(pŷ(ŷ))

]
= E

[
− log2(pŷ|ẑ(ŷ|ẑ))

]
+E

[
− log2(pẑ|ψ(ẑ|ψ))

]
,

ζcompression = ζR +λζD.

(3.4)

where λ is a coefficient for different rate-distortion trade-offs.
The network structure of the compression part is adapted from current state-of-art CNN com-

pression network proposed by [11], in which the Encoder and Decoder blocks employ residual
blocks [62] with GDN [3] activation and attention modules [11] for better image reconstruction
and compression ratio. The Context model is a 5x5 2D mask convolution layer. The structures
of the Hyper Encoder and Hyper Decoder are unsymmetrical. The output of Context model and
Hyper Decoder are concatenated and sent to the Entropy parameters module (three 1x1 convo-
lution layers) to get parameters of the mixture Gaussian model, which has 3xNxK channels. K
is the number of Gaussian models, K = 3 by default. N is the number of channels in latents,
N = 192 by default. The number of channels in hyper-latents is M = 128. Suppose the input
image size is (B, C, 128, 128), where B is the batch size, C is the number of image channels.
Then the output size of the latents will be (B, 192, 8, 8), and the output size of hyper latents will
be (B, 128, 2, 2).
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3.1 Introduction to Proposed Multi-task Framework

3.1.2 Introduction to the Hashing Part

The processing flow of the hashing part is described by Eq.3.5. The latents y from the compres-
sion part is fed to the Hash Network to get downsized hidden features h, which are sent to the
Hash Layer to generate hash codes b valued in {1, -1}, and also sent to the Classification Layer
to get predicted labels l̂. The above processing can be formulated as:

h = HashNetwork(y),
b = HashLayer(h),

l̂ =Classi f icationLayer(h).
(3.5)

Let the size of input image features extracted from the compression part be denoted as (B,
192, 8, 8). The number of label classes is denoted as |l|, where |.| is the number of elements
presented in a vector, i.e, |l| = 19. The length of hashing bits is denoted as q. Table 3.1 shows
the structure of the hashing part. Greed Hash [57] is selected as the activation function in the
hash layer, which generates discrete hash codes directly in the forward pass, and uses the straight
through estimation method (STE) [8] for back-propagation.

Component Layer S P Input Shape Output Shape Activation

Hash network
Conv 5x5 2 1 (B, 192, 8, 8) (B, 512, 3, 3) ReLu
Conv 3x3 1 0 (B, 512, 3, 3) (B, 512, 1, 1) ReLu

Classification layer Conv 1x1 1 0 (B, 512, 1, 1) (B, |l|, 1, 1) Sigmoid
Hash layer Conv 1x1 1 0 (B, 512, 1, 1) (B, q, 1, 1) Greed Hash [57]

Table 3.1: Structure of the hashing part, S and P are short for stride and padding

The soft pairwise loss [72] is selected for metric learning in the hash code space, as it can fully
consider the rank difference of semantic pairwise similarity for multi-label images by dividing
it into ”hard similarity” and ”soft similarity”. In the case of ”hard similarity”, the image pair
shares no common labels or shares all the labels; In the case of ”soft similarity”, the image pair
shares labels partially. The cross-entropy loss and mean square loss are adapted to the pairwise
loss of both cases respectively.
The soft pairwise loss is formulated as:

so
i j =

< l(i), l( j) >

∥l(i)∥2∥l( j)∥2
,

sh
i j =< b(i),b( j) >,

ζpairwise =

 ∑(i, j)∈ξ

(
log(1+ esh

i j)− so
i js

h
i j

)
, so

i j ∈ {0,1}

∑(i, j)∈ξ

(∥∥1
2(s

h
i j +q)− so

i jq
∥∥2

2

)
, 0 < so

i j < 1

(3.6)

where ξ is the set of index pairs, ξ = {(i, j)| i, j ∈ {1,2,3, ...N}}, < l(i), l( j) > calculates the
inner product, so

i j is the semantic pairwise similarity between i-th image and j-th image, sh
i j is the
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3 Proposed Framework on Learning-based Compression and Hashing

pairwise similarity in hash code space between the image pair.
ζpairwise can be revised as:

mi j =

{
1 so

i j ∈ {0,1}
0 0 < so

i j < 1

ζpairwise = ∑
(i, j)∈ξ

[
(1−mi j)

(
log(1+ eαsh

i j)−αsh
i js

o
i j

)
+ γ(1−mi j)

(∥∥1
2
(sh

i j +q)− so
i jq

∥∥2
2

)]
,

(3.7)
where mi j is an indicator on the types of semantic similarity, mi j = 1 indicates the hard similar-
ity. α = 5/q,γ = 0.1/q by default.

Another important loss for better hashing performance is the balance loss, which pushes the
codes to have a half-half distribution of -1 and +1, thereby maximizing code variance and infor-
mation. The balance loss is formulated as:

ζbalance = ∑
(i, j)∈ξ

(
∥(b(i)T

1)∥2
2 +∥(b( j)T

1)∥2
2

)
, (3.8)

where 1 is a vector of elements 1.
Classification loss is another helpful sub loss, which makes the hidden features h more dis-

criminative by taking full advantage of image labels. The classification loss is formulated as:

ζclassi f ication = ∑
(i, j)∈ξ

(
∥l̂(i)− l(i)∥2

2 +∥l̂( j)− l( j)∥2
2

)
, (3.9)

where l̂i and l̂ j are predicted multi-hot label vectors.
Finally, the hashing loss function ζhashing is formulated as:

ζhashing = w1ζpairwise +w2ζbalance +w3ζclassi f ication, (3.10)

where w1,w2,w3 are weights for each individual loss.
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3.2 Optimization of Proposed Multi-task Framework

3.2 Optimization of Proposed Multi-task Framework

In order to get competitive performance compared to the corresponding single-task baseline,
the optimization of proposed multi-task framework is divided into two stages: (1) optimize the
compression part to get desired RD trade-off points; (2) optimize the hashing part jointly with
the pre-trained compression part.

3.2.1 Optimization of the Compression Part

Since bit-rate and distortion are two conflicted objectives, decreasing the bit-rate will increase
the distortion. Thus, it is better to train one of them separately to get a desired value, i.e, train
the distortion loss to its convergence, then jointly train both sub tasks with MGDA to get most
nearby RD trade-off point. The training of the compression part is described as follows:

• Step 1: Train the distortion loss to its convergence, then save the model

ζcompression = ζD = 1−SSIM(x, x̂). (3.11)

The convergence point of the distortion loss is illustrated as the red dot in Fig.3.2.

Figure 3.2: Visualization of Pareto points during the training of CNN compression part

• Step 2: Reload the saved model from stage 1, train bit-rate and distortion jointly with
MGDA [16].

ζcompression = w1ζD +w2ζR. (3.12)

Suppose the model parameter is θ , the gradient vectors of the distortion loss and the bit-
rate loss are ∇θ ζD and ∇θ ζR. According to Eq.2.4, the gradient descent direction for
Pareto points can be obtained by optimizing the following formula:

min
{
∥u∥2

2

∣∣∣ u = w1∇θ ζD +w2∇θ ζR,w1 +w2 = 1,w1 ≥ 0,w2 ≥ 0
}
, (3.13)
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3 Proposed Framework on Learning-based Compression and Hashing

where w1 and w2 can be written as:

w1 =


1, ∇θ ζ T

D ∇θ ζR ≥ ∇θ ζ T
D ∇θ ζD

0, ∇θ ζ T
D ∇θ ζR ≥ ∇θ ζ T

R ∇θ ζR
(∇θ ζR−∇θ ζD)

T ∇θ ζR
∥∇θ ζR−∇θ ζD∥2

2
, otherwise

w2 = 1−w1.

(3.14)

Suppose θ is the parameter of the compression part, and the learning rate is η , the model
parameters can be updated as:

θ = θ −ηu
= θ −η(w1∇θ ζD +w2∇θ ζR).

(3.15)

Since distortion and bit-rate loss are mutually conflicted, we can get the conclusion that
∇θ ζ T

D ∇θ ζR < 0, the value of w1 and w2 will always between 0 and 1. In the early training
of Step 2, the distortion loss ζD starts from its convergence point, which has a very small
magnitude, w1 will be very close to 1, and w2 is very close to 0. As the training goes
on with a small learning rate (1e-5), the bit-rate loss will decrease until it reaches its first
Pareto point. Then by increasing the learning rate a little bit, the weight on bit-rate part
(w2) will gradually go up accordingly, and the bit-rate loss will decrease to reach another
Pareto point. By adjusting the learning rate, we obtain multiple optimal trade-off points
between distortion and bit-rate.
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3.2 Optimization of Proposed Multi-task Framework

3.2.2 Optimization of the Hashing Part

After training the compression part to obtain a range of bit-rates, we load the pre-trained com-
pression part at certain bit-rate to the proposed framework, and train the hashing part jointly.
The following loss function is optimized during the joint training:

ζ = ζcompression +ζhashing. (3.16)

Let the model parameters be denoted as θ . According to Fig.3.1, θ can be divided into two
parts: θc for the compression part, and θh for the hashing part. The learning rates of each part is
denoted as ηc and ηh respectively. The model parameters are updated as following:

θc = θc −ηc(∇θcζcompression +∇θcζhashing)

= θc −ηc(w1∇θcζD +w2∇θcζR +∇θcζhashing),

θh = θh −ηh(∇θhζcompression +∇θhζhashing)

= θh −ηh∇θhζhashing,

(3.17)

where w1,w2 are obtained from Eq.3.14. ∇θhζcompression = 0, as the back-propagation of the
compression loss does not pass through the hashing part. ∇θcζhashing and ∇θhζhashing can be
combined to ∇θ ζhashing, and updated by PCGrad Update Rule in Table 2.1.

In order to get competitive hashing performance compared to single-task hashing baseline, a
very small value (i.e. 1e-7) is set to ηc, so that the model parameters of the compression part can
be fine-tuned by the hashing part without changing the compression performance.
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4 Dataset and Experiments

4.1 Dataset

The experiments are conducted on patches from BigEarthNet-S2 [58], which is a multi-label
large-scale RS archive released by Sümbül et al. in 2019. The data source of BigEarthNet-S2
come from Sentinel-2 images, which consist of 13 bands with spectrum ranged from visible
(380nm-700nm), near-infrared (700 nm - 1100nm) to short-wave infrared (1100nm-3000nm)
light. Fig.4.1 illustrates 13 bands and their corresponding ground resolution of Sentinel-2 im-
ages. The low-spatial resolution 60m bands (B01, B09, B10) are helpful to detect aerosol, water
vapour and cirrus cloud. The 20m bands (B05, B06, B07, B8A) in the near-infrared range are
designed for identifying vegetation, while the rest 20m bands (B11, B12) in the short-wave in-
frared spectrum are designed for snow, ice, and cloud detection. The high-spatial resolution 10m
bands (B04, B03, B02) are classic RGB channels, the last 10m band B08 covers a broader spec-
trum than 20m band B08A, since B08A is less resistant against water vapor contamination in the
spectral reflectance. To cover up all use-cases, both B08 and B08A are included in Sentinel-S2
images. Sümbül et al. [58] included 12 bands except B10 of these 13 bands in BigEarthNet-S2
patches, because B10 only provides information for cirrus clouds, which is not useful for image
retrieval and classification on the earth surface.

Figure 4.1: Spectral bands and corresponding ground resolutions of Sentinel-2 images

BigEarthNet-S2 consists of 590,326 pairs of Sentinel-2 image patches across over 10 different
European countries (Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Por-
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4.1 Dataset

tugal, Serbia, Switzerland). After removing 71,042 patches which are covered by seasonal snow
and clouds, 519,284 patches are left for image retrieval and classification. Each patch covers a
region of 1200m x 1200m, and has 12 bands (B10 is excluded) with ground resolutions of 10m,
20m, and 60m, thus, there are three width/height dimensions (120px, 60px and 20px) for each
patch. Fig.4.2 shows an example of individual bands which have been interpolated to the same
width/height, as well as the RGB colored image of the same area.

(a) B02 (10m band) (b) B05 (20m band) (c) B09 (60m band) (d) Ture color image
(B04, B03, B02)

Figure 4.2: Example patch visualization

BigEarthNet-S2 has two types of labels, the original 43 class-nomenclature associated by
class labels from CORINE Land Cover (CLC) database of the year 2018 (CLC 2018), and the
recommended 19 class-nomenclature [59] which drops 11 original labels since they are hard to
be accurately described by only considering BigEarthNet-S2 images. For the following experi-
ments, the recommended 19 class-nomenclature is used.

In order to reduce the training time, the following experiments are conducted on 14832
patches selected from BigEarthNet Serbia Summer area. The selected patches are split to the
train set (7761), the validation set (3508), and the test set (3563).

For data preprocessing, cubic interpolation is applied to 20m bands and 60m bands, so that
all bands in each patch have the same width/height dimensions (120x120). Then each patch
(12x120x120) is scaled down to (0, 1] by dividing the maximum pixel value (20566) of the
whole BigEarthNet-S2.

27



4 Dataset and Experiments

4.2 Experimental Setups for the Proposed Framework

The Adam optimizer is applied for updating the network during the training. Batch size is 32 for
all the experiments. The training of the proposed framework is divided into two stages: (1) train
the compression part to a range of bit-rates; (2) train the hashing part jointly with the pre-trained
compression part.

4.2.1 Experimental Setup for the Compression Part

At the first stage, the CNN compression part of the proposed multi-task framework is trained to
get desired RD trade-off points. In order to get a range of bit-rates, the training of the first stage
is divided to two steps. Step 1 is to optimize the distortion loss only, the learning rate is changed
according to the averaged PSNR on the validation set.

ηstep1 =


1e−4, PSNR(x, x̂)< 45
5e−5, 45 ≤ PSNR(x, x̂)≤ 50
1e−5, PSNR(x, x̂)> 50

(4.1)

Step 2 starts when the distortion loss is close to its convergence point. Step 2 optimizes both
distortion loss and bit-rate loss. The learning rate is set to 1e-5 at the beginning. After the bit-rate
loss reaches its first plateau (around 1.5 bit per pixel (bpp) on current validation set), gradually
increase the learning rate from 1e-5 to 9e-5 to obtain more lower bit-rates.

Ablation Study on the Compression Part

The proposed framework employs a CNN-based compression method in the compression part.
In order to prove that CNN-based method is superior to other compression methods, a RNN-
based compression method and JPEG 2000 are investigated for comparison in terms of rate-
distortion performance, compression and decompression time.

Figure 4.3: The architecture of RNN compression network

Fig 4.3 shows the architecture of the recent RNN compression network adapted from [23].
The encoder is made of a 3x3 convolution layer with stride 2 and padding 1, a GDN [3] layer,
three RNN cells and another 1x1 convolution layer. The decoder is made of a 1x1 convolution

28



4.2 Experimental Setups for the Proposed Framework

layer, an inverse GDN layer, four up-sampling RNN cells and a 1x1 convolution layer in the
end. The latents are binarized to bitstream valued in {-1,1} by the Sign Layer. Straight through
estimation (STE) [51] is applied in the Sign Layer for the back-propagation of the gradients from
the binarized latents. The decoder reconstructs the image from binarized latents. Compared to
the first RNN compression network proposed by Toderici et al.[63], [23] adds GDN layers to the
encoder and the decoder.

The compression is done by progressively encoding the iterative residues of the input image.
In order to finally reconstruct the input image, bits from all the iterations are decoded sequen-
tially to recover the residue at each iteration. Then these decoded bits are added together to
form the reconstructed image. The loss function takes the skip-connection scheme, in which the
loss function encourages the total sum of the outputs from all iterations to be close to the input
image. In this case the whole RNN network acts like a residual network. The whole process can
be formulated as:

r(0) = x(0),

b(0) = SignLayer(Encoder(r(0))),

r̂(0) = Decoder(b(0)),

r(1) = r0 − r̂(0),

b(1) = SignLayer(Encoder(r(1))),

r̂(1) = Decoder(b(1)),

...

r(t−1) = r(t−2)− r̂(t−2),

b(t−1) = SignLayer(Encoder(r(t−1))),

r̂(t−1) = Decoder(b(t−1)),

bitstream = np.stack(b(0),b(1), ...,b(t−1)),

x = x(0), x̂ =
T

∑
t=1

r̂(t−1),

ζcompression = 1−SSIM(x, x̂),

(4.2)

where T is the number of iteration, t ∈ {1,2,3, ...T}, x(0) is the initial input data, r(0) is the
initial residual, r̂(0) is the recovered output at the initial iteration, r(1) is the residual at the first
iteration. b(0) is the compressed binary code at iteration 1.

A variable range of bit-rates is achieved by changing the total iterations T. For example,
suppose the size of the input data is (C, H, W), C stands for channels, H stands for heights, W
stands for widths. The size of the latents from the encoder will be (38, H/16, W/16), after T
iterations, the size of bitstream (binarized latents) is T ∗38∗H/16∗W/16, and the bit-rate for T
iterations is T∗38∗H/16∗W/16

H∗W = 38∗T
16∗16 .

We set batch size to 32, use Adam optimizer, and train the RNN compression method for
280 epochs with iterations 3, 4, 5, 6 and 7 with the learning rate in Eq.4.1. Since the bit-
rate is determined by the number of iterations, we first train the model of iterations 4 to its
convergence. Then we train the model of other iterations based on the pre-trained model of the
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adjacent iterations, i.e. the model of iterations 3 is trained based on that of iterations 4.

Evaluation Metrics for Compression

To evaluate the compression performance on multi-spectral RS images, the metrics of bit-rate,
peak signal-to-noise ratio (PSNR) and spectral angle (SA) are applied.

Bit-rate is the number of bits required to represent one pixel in image compression. The unit
of bit-rate is bits per pixel (bpp). Lower bit-rate indicates better compression ratio. Suppose the
input image has 12 channels with width 100 and height 100, and it is compressed to 1440 bits,
then the bit-rate for compression is 1440

100∗100 = 0.144 bpp.
PSNR is to measure the quality of reconstruction of lossy image compression. The unit of

PSNR is decibel (dB). A higher PSNR indicates better quality of the recovered image. It is
mostly defined via Mean Square Error (MSE). Suppose the input image and its reconstruction
are denoted as x and x̂. The width, height and channels of the input image are W, H and C, the
maximum pixel value of the input image is MAXx. PSNR is formulated as:

MSE =
1

W ∗H ∗C

W

∑
i=1

H

∑
j=1

C

∑
k=1

[x(i, j,k)− x̂(i, j,k)]22,

PSNR(x, x̂) = 20∗ log10
MAXx√

MSE
,

(4.3)

where (i, j, k) is the location index of the pixel in the input image x, i ∈ {1,2, ...W}, j ∈
{1,2, ...H}, k ∈ {1,2, ...C}.

SA measures the spectral similarity between two multi-spectral images. It is the averaged
angle between spectra vectors of these two multi-spectral images, note that a spectra is a pixel
vector in a space with dimensions equal to the number of bands. The unit of SA is rad (radian).
The value of SA is ranged between 0 and π

2 . The closer the SA is to zero, the more similar the
two multi-spectral images are. SA is formulated as:

SA =
1

W ∗H

W

∑
i=1

H

∑
j=1

cos−1
(

∑
C
k=1

(
x(i, j,k)∗ x̂(i, j,k)

)√
∑

C
k=1 x2(i, j,k)∑

C
k=1 x̂2(i, j,k)

)
. (4.4)
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4.2.2 Experimental Setup for the Hashing Part

At the second stage, the hashing part of the proposed multi-task framework is jointly trained
with the pre-trained compression part with bit-rate around 0.6 bpp on the test data. The learning
rates of hashing part and compression part is set to 1e-4 and 1e-7 respectively. These two parts
are jointly trained for 40 epochs with hash bits at 16, 32 and 64.

Ablation Study on the Hashing Part

The hashing part in the proposed framework selects Greed Hash [57] as the activation function
for hash coding, and PCGrad [70] as the optimization algorithm of the hashing loss. To validate
this selection, a hashing baseline is designed to test different activation functions in the Hash
Layer. Also, another optimization algorithm DWA [43] is applied to the hashing loss for com-
parison with PCGrad in terms of the retrieval performance.

Fig.4.4 shows the overall architecture of the hashing baseline. The Encoder and Decoder
blocks and the hashing part have the same network structures as those in the proposed frame-
work in Fig.3.1.

Figure 4.4: Overall architecture of hashing baseline

There are five choices for the activation function of the Hash Layer. Table 4.1 presents the
forward pass, backward pass and related loss functions for each choice of the Hash Layer. In
Table 4.1, with N as the number of images in current training batch, U ∈ RNxq are continuous
feature representations in the last convolution layer of Hash Layer, B ∈ {−1,1}Nxq are encoded
compact binary codes, B̂ ∈ (−1,1)Nxq are the continuous approximation of B, and γ is a hyper-
parameter.

Activation function Forward pass Backward pass
Quantization

loss
Balance

loss
Sigmoid B̂ = 2

1+e−U −1 ∂ζ

∂ B̂ ✓ ✓

Tanh B̂ = 2
1+e−2U −1 ∂ζ

∂ B̂ ✓ ✓

SoftSign B̂ = U
1+|U|

∂ζ

∂ B̂ ✓ ✓

Greedy Hash [57] B = sign(U) ∂ζ

∂B + γ(U−B) ✓

Bi-half [40] B = sign(U−median(U)) ∂ζ

∂B + γ(U−B)

Table 4.1: Choices of activation functions for hash coding
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4 Dataset and Experiments

The hashing loss function is different when choosing different activation function for the
Hash Layer. Sigmoid, Tanh and SoftSign require a quantization loss to narrow the gap between
approximated codes and discrete codes, which is formulated as:

ζquantization = ∑
(i, j)∈ξ

(
∥sign(b̂(i)

)− b̂(i)∥1 +∥sign(b̂( j)
)− b̂( j)∥1

)
(4.5)

GreedyHash [57] and Bi-half [40] don’t need quantization loss, since they generate discrete
codes directly, and use the straight through estimation method (STE) [8] for back-propagation.
Bi-half doesn’t need the balance loss, by ranking U column-wisely and assigning the top half of
the elements to +1, and the remaining half to -1, the discrete hash codes from Bi-half activation
are already half-half distribution.

ζhashing =


w1ζpairwise +w2ζbalance +w3ζquantization Sigmoid or Tanh or So f tSign

w1ζpairwise +w2ζbalance GreedyHash
w1ζpairwise Bi−hal f

(4.6)
where w1,w2,w3 are weights for each individual loss, ζpairwise is presented in Eq.3.7, ζbalance is
presented in Eq.3.8.

Since the backbone of hashing baseline is an autoencoder, a distortion loss (Eq.3.4), which
measures the quality of reconstructed image, should be added to the loss of the hashing baseline.
Also, it is useful to add a classification loss (Eq.3.9), which narrows the gap between the ground
truth labels and predicted labels from the classification layer. Thus, the total loss of hashing
baseline is:

ζhashing baseline = ζhashing +w4ζD +w5ζclassi f ication (4.7)

where w4,w5 are weights for corresponding individual loss.
We set the hash bits to 32, the learning rate to 1e-4, and train the hashing baseline of different

activation functions for 40 epochs. DWA and PCGrad [70], two commonly used MTL optimiza-
tion algorithms in classification and regression tasks, are applied to optimize ζhash baseline.

Evaluation Metrics for Retrieval

The metrics to evaluate the hashing retrieval performance are: (1) average precision; (2) average
recall.

Precision is the percentage of correctly predicted labels in all predicted labels. Average preci-
sion is calculated by averaging the precision of multiple queries. Let the label set for one query
image as Lq, the label set for one retrieved image as Lr. |.| denotes the number of elements in
the set. Suppose there are Q query images, and the number of retrieved images for each query
image is R. Average precision is formulated as:

Average precision =
1

Q∗R

Q

∑
q=1

R

∑
r=1

|Lr ∩Lq|
|Lr|

. (4.8)
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Recall is the percentage of correctly predicted labels in all the ground truth labels. Average
recall is calculated by averaging the recall of multiple queries. Average recall is formulated as:

Average recall =
1

Q∗R

Q

∑
q=1

R

∑
r=1

|Lr ∩Lq|
|Lq|

. (4.9)

In the hashing experiments, the number of retrieved images is fixed to 8 (i.e, R=8), the number
of query images is the size of the validation set (i.e, Q= 3508), average precision and average
recall are evaluated by performing 3508 queries from the gallery (the test set).

4.2.3 Performance Analysis of the Hashing Part

Since the hashing part is trained on the image features which were trained by the compression
part, it is necessary to analyse how well the hashing part performs with different settings during
the joint training. Table 4.2 summarizes the default settings of the joint training at the second
stage.

Table 4.2: Default setting of joint training of the proposed framework

Modules Description losses Learning rate Optimization

Compression part
pre-trained

CNN compression part
at bit-rate 0.63bpp

ζD,ζR 1e-7 MGDA

Hashing part
with GreedyHash
for hash coding

attention module
in the hashing part

ζpairwise,
ζbalance,

ζclassi f ication

1e-4 PCGrad

Analysis of the learning rate of compression part

In order to prove that the learning rate of compression part impacts the hashing performance, we
change the learning rate of the compression part ηcompression as follows, and keep other settings
unchanged in Table 4.2. Then jointly train the compression and hashing framework for 20
epochs, and compare the retrieval performance at hash bits 64.

• ηcompression =0

• very small ηcompression (i.e, 1e-7),

• ηcompression = ηhashing = 1e-4

Analysis of the attention module in the hashing part

In order to prove that the attention module is helpful for the hashing performance, we remove
the attention module from the hashing part, and keep other settings in Table 4.2 unchanged, then
train the CNN framework for 20 epochs, and compare the retrieval performance at hash bits 64
to that with attention module.
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Analysis of different pre-trained compression parts

In order to check if the hashing performance changes with different compression parts, we load
CNN/RNN pre-trained compression models at different bit-rates (i.e,0.5 bpp to 0.8 bpp) to the
compression part, and keep other settings in Table 4.2 unchanged. Then train the framework for
40 epochs, and check the retrieval performance at hash bits 64.

Analysis of different locations of the hashing part

In order to check if the hashing performance changes with the location of the hashing part,
we move the hashing part to the decoder side as shown in Fig.4.5, and we load pre-trained
compression parts at different bit-rates (i.e, 0.5 bpp to 0.8 bpp), and keep other settings in Table
4.2 unchanged. Then train the framework for 40 epochs, and check the retrieval performance at
hash bits 16, 32 and 64.

Figure 4.5: General diagram of proposed multi-task framework with the hashing part at the de-
coder side
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All the experimental results were obtained by training on NVIDIA Tesla V100 GPUs with 32
GBs of memory. The code of the compression part was built upon CompressionAI [7].

The compression metrics (bit-rate/PSNR/SA) on the validation set were averaged estimated
values generated by testing the trained model on the validation set during the training. Note
the compression metrics such as bit-rates on the validation set were calculated from estimated
entropy values, as AE and AD were not involved during the training. The compression metrics
on the test set were averaged actual values, i.e, the bit-rates were actual bits counted on produced
bitstream. The retrieval metrics (precision/recall) were averaged values generated by retrieving
8 most similar samples from the test set (3563) for each patch in the validation set (3508).

5.1 Training Results of the Proposed Framework

5.1.1 Training Results of the Compression Part

(a) Averaged PSNR at step 1 (b) Averaged bit-rate at step 1 (c) learning rate at step 1

(d) Averaged PSNR at step 2 (e) Averaged bit-rate at step 2 (f) learning rate at step 2

Figure 5.1: Training results of the CNN compression part

Fig.5.1 shows the averaged PSNR and bit-rate on the validation set during the training of the
compression part. The first step took about 120 epochs for the distortion loss to converge. Since
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the first stage only trained the distortion loss and left the bit-rate loss untrained, the averaged
PSNR reached to its highest value around 51db at epoch 120, while the averaged bit-rate in-
creased to its highest value 23 bpp. Then at the second step (after 120 epochs), the distortion
loss and the bit-rate loss were trained jointly and optimized by MGDA [16]. The averaged PSNR
kept improving while the averaged bit-rate dropped very quickly and reach a plateau at around
1.5 bpp. The averaged bit-rate continued to decrease to lower values when increasing the learn-
ing rate.

(a) Gradient weights of distortion loss (b) Gradient weights of bit-rate loss

Figure 5.2: Gradient weights generated by MGDA during the training of the CNN compression
part

Fig.5.2 shows the gradient weights of the distortion loss and the bit-rate loss during the train-
ing of the second step. The gradient weights of the distortion loss were way much higher than
that of the bit-rate loss. It dropped a little bit around epoch 820 when the learning rate was
increased from 1e-5 to 4e-5, which resulted in a very slow degradation on averaged PSNR and
quick decrease on averaged bit-rate in Fig.5.1(d-e). Increasing the learning rate would increase
the gradient weight for bit-rate loss, which resulted in lower bit-rates. The range of averaged
bit-rates obtained on the test set was between 0.6 bpp to 1.5 bpp by training the network on
current training data. Note that the learning rate should be kept at a small value (less than 1e-4),
otherwise the averaged PSNR would degrade very suddenly, which resulted in unrecognizable
reconstructed images.

For illustrative purposes, Fig.5.3 shows the reconstructed individual bands and colored image
of two test patches at different bit-rates by the trained compression part.
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(a) Test patch 1

(b) Test patch 2

Figure 5.3: Reconstructed multi-spectral image at different bit-rates by the CNN compression
part
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Ablation Study Results on the Compression Part

This ablation study is carried out in order to compare CNN-based compression method against
RNN-based compression method and JPEG 2000 in terms of the rate-distortion performance,
the compression and decompression time.

(a) Averaged PSNR (b) Averaged spectral angle

Figure 5.4: Comparison of compression performance on BigEarthNet Serbia summer area

(a) Averaged compress time (b) Averaged decompress time

Figure 5.5: Comparison of compression and decompression time on BigEarthNet Serbia summer
area

Fig.5.4 shows the comparison of compression performance of different methods. The com-
pared metrics were PSNR, Spectral Angle and bit-rate averaged over 3563 patches of the test
data. Both learned compression methods (CNN/RNN) performed better than JPEG 2000. Re-
garding PSNR, the CNN-based method performed better than the RNN-based method. However,
when evaluating the spectral angle (SA), the CNN-based method got similar SA curve over dif-
ferent bit-rates as the RNN-based method did.

PSNR is an approximation to human perception of reconstruction quality, which more focuses
on the recovery of the spatial information in the image, and SA is a measurement for spectral
information recovery. Since the distortion loss in both CNN and RNN based compression meth-
ods were calculated by SSIM [65], which minimized the spatial structure difference between
input image and reconstructed image, it is possible that the spectral information recovery was
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not further optimized during the training. Also the 2D convolutions applied in the CNN com-
pression baseline mainly focused on extracting structure information, which may be not able to
extract the spectral information in the multi-spectral images.

Fig.5.5 shows the comparison of processing time (CPU) require by each method. The com-
pression and decompression time were averaged over 3563 patches of the test data. The pro-
cessing time of the CNN method is way more than JPEG 2000, but still significantly less than
that of the RNN-based method which increased linearly with the bit-rates.

5.1.2 Training Results of the Hashing Part

Ablation Study Results on the Hashing Part

This ablation study is carried out to select proper hash coding function and optimization method
for the hashing part. Table 5.1 shows the retrieval performance of CNN hashing baseline at
hashbits 32 based on different settings. Regarding both precision and recall scores, Sigmoid,
Tanh and Greedy Hash perform better than Softsign and Bi-half. Given different combinations of
the activation functions and optimization methods, DWA works best with Sigmoid while PCGrad
works well with Tanh and Greedy Hash. Since GreedyHash has got very close precision and
recall scores compared to Sigmoid and Tanh, and it doesn’t need quantization loss like Sigmoid
or Tanh does as illustrated in Table 4.1, Greedy Hash is selected as the activation function in the
hashing layer, and PCGrad is selected for the optimization of the hashing loss.

Table 5.1: Retrieval performance of CNN hashing baseline at hashbits 32 with different combi-
nations of activation functions and optimization methods

Optimization Activation function Precision Recall

DWA

Sigmoid 0.73 0.70
Tanh 0.71 0.71
Softsign 0.71 0.71
Greedy Hash 0.71 0.70
Bi-half 0.66 0.66

PCGrad

Sigmoid 0.71 0.70
Tanh 0.72 0.70
Softsign 0.71 0.65
Greedy Hash 0.72 0.70
Bi-half 0.68 0.68

Table 5.2: Retrieval performance of CNN hashing baseline when Greedy Hash is the activation
function in the hashing layer and optimization method is PCGrad

Hash bits Precision Recall
16 0.72 0.69
32 0.72 0.70
64 0.75 0.71
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Figure 5.6: Comparison of retrieved images of hashing baseline at hashbits 16, 32 and 64

Fig.5.6 shows retrieved images at hashbits 16, 32 and 64. The first image in each row is the
same query image selected from the validation set. The rest 8 images in each row are the re-
trieved images from the test set. They are ordered ascending according to the hamming distance
from the query image, smaller hamming distance means higher similarity in hashing space. The
text below each image contains the hamming distance (i.e, ham dist) and the number of correctly
matched labels between the query and the retrieved image, as well as the ground truth labels of
each image, the red color indicates unmatched labels.

As shown in Fig.5.6, the query image contains three almost equally proportioned land types:
pastures, inland waters and arable land. The expected most similar retrieved image should con-
tain at least one of above land types. Obviously hashbits 16 is not long enough to rank different
images in hashing space, since the first four retrieved images at hashbits 16 got 0 hamming
distance to the query. Hashbits 32 and hashbits 64 have a better ranking of hamming distance
than hashbits 16. Their retrieved images all contain at least one land type which exists in the
query image. Hashbits 64 retrieved more visually similar images than hashbits 32 did. Since
hashbits 16 is too short for meaningful retrieval in hashing space, we will check retrieval results
at hashbits 32 and 64 in the following analysis.
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Table 5.3 compares the retrieval performance of joint training and hashing baseline (Table
5.2). The precision and recall scores of joint training are very close to those of hashing baseline
especially at hash bits 32, but they are slightly lower than those of the hashing baseline at hash-
bits 64.

Table 5.3: Comparison of retrieval performance between joint training and hashing baseline

Hashbits
Precision Recall

joint baseline joint baseline
32 0.72 0.72 0.70 0.70
64 0.73 0.75 0.69 0.71

Fig.5.7 compares the retrieved images of the joint training and hashing baseline at hashbits
64. The query image is the same one used in Section 5.1.2, which contains three almost equally
proportioned land types: pastures, inland waters and arable land. The retrieved images from
joint training contained large areas of inland waters but very small portions of arable land, while
those from hashing baseline focus both on arable land and inland waters, which leads to a higher
precision/recall score than joint training.

(a) Hashbits 64, precision 0.73, recall 0.69, CNN compression part (0.63bpp, PSNR 48,7dB)

(b) Hashbits 64, precision 0.75, recall 0.71, CNN hashing baseline

Figure 5.7: Comparison of retrieved images between joint training and hashing baseline
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5.1.3 Performance Analysis of the Hashing Part

Performance analysis on the learning rate of the compression part

Fig.5.8 shows the joint training results when the learning rate of the compression part was set to
different values. PSNR and bit-rate are compression metrics, which averaged on the validation
set. Precision and recall are hashing metrics at hashbits 64, which were calculated by retrieving
8 most similar images from the test set for each query image in the validation set.

(a) Averaged PSNR (b) Averaged bit-rate

(c) Averaged precision (hashbits 64) (d) Averaged recall (hashbits 64)

Figure 5.8: Joint training results with different learning rates of the compression part

• ηcompression =0 (Green line)
The compression metrics kept stable. However, the hashing metrics were the lowest. The
compression part was frozen when the learning rate was set to 0. This indicates that the
hashing part can not learn well when it is not able to adjust the shared image features
which extracted from the compression part.

• ηcompression = ηhashing = 1e-4 (Blue line)
The compression performance was degraded from the pre-trained rate-distortion point.
However, the hashing metrics were the highest, which were very close to those of hashing
baseline at hashbits 64 (precision 0.75, recall 0.71). Since a lower PSNR of the compres-
sion part corresponds to better retrieval performance in the hashing part, we can get the
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conclusion that the hashing part does not require high reconstruction ability on the image
features as the compression part does.

• ηcompression=1e-7 (Orange line)
The compression metrics varied little from the pre-trained rate-distortion point. The hash-
ing metrics were higher than those when the compression part was frozen, and were close
to those when the learning rate of compression part was 1e-4. We can get the conclusion
that, a very small learning rate of the compression part, which allows the hashing part
to adjust shared image features, can result in an acceptable compromise on the hashing
performance with very little impact on the compression performance of the pre-trained
compression part.

Performance analysis on the attention module in the hashing part

Fig.5.9 show joint training results when the attention module in the hashing part was kept or
removed. The blue line represents joint training with attention module in the hashing part, and
the orange line represents without attention module.

(a) Averaged PSNR (b) Averaged bit-rate

(c) Averaged precision (hashbits 64) (d) Averaged recall (hashbits 64)

Figure 5.9: Joint training results with or without the attention module in the hashing part

The compression performance was not changed that much by adding an attention module to the
hashing part. The retrieval performance was improved comparing to that without the attention
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module, though it was slightly lower than that from the hashing baseline as showed in Table 5.4.

Table 5.4: Comparison of retrieval performance
when joint training with or without attention module in hashing part

Hashbits 64 Precision Recall
Hashing baseline 0.75 0.71

With attention module 0.73 0.69
Without attention module 0.71 0.68

Fig.5.10 compares retrieval results at hashbits 64 when joint training with and without at-
tention module in the hashing part. The retrieved images in Fig.5.10(a) were structurally more
similar to the query image than those in Fig.5.10(b), especially when comparing the retrieved
images with the smallest hamming distances to the query image. From the retrieved results, it
looks like the attention module can help the hashing part to learn more task-specific information
which is beneficial for discriminating different images in the hashing space.

(a) With attention module, hashbits 64, precision 0.73, recall 0.69
CNN compression part (0.63bpp, PSNR 48.7dB)

(b) Without attention module, hashbits 64, precision 0.71, recall 0.68
CNN compression part (0.63bpp, PSNR 48.7dB)

Figure 5.10: Comparison of retrieved images when joint training with or without attention mod-
ule in the hashing part
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Performance analysis on different compression parts

Table 5.5 shows the retrieval performance when joint training with different compression parts.
It is easy to find that the retrieval performance of joint training did not change that much when
pre-trained CNN/RNN compression models at different bit-rates were loaded to the compression
part.

Table 5.5: Comparison of retrieval performance when joint training with different compression
parts

(a) CNN framework, hashbits 64
CNN compression part Precision Recall
Bpp 0.63, PSNR 48.7 0.73 0.69
Bpp 0.79, PSNR 49.7 0.73 0.68
Bpp 1.03, PSNR 50.5 0.73 0.68

(b) RNN framework, hashbits 64
RNN compression part Precision Recall
Bpp 0.51, PSNR 47.3 0.71 0.70
Bpp 0.67, PSNR 48.5 0.73 0.70
Bpp 0.84, PSNR 49.4 0.71 0.69

Fig.5.11 compares retrieved images at hashbits 64 when joint training with different pre-
trained compression parts. The comparison shows that the retrieved images of joint training
did not change that much when the compression part were loaded at different bit-rates, though
the hashing part trained with CNN compression parts retrieved more structurally similar images
than that trained with RNN compression parts.
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(a) CNN compression part (0.63bpp, PSNR 48.7dB), hashbits 64, precision 0.73, recall 0.69

(b) CNN compression part (0.79bpp, PSNR 49.7dB), hashbits 64, precision 0.73, recall 0.68

(c) CNN compression part (1.03bpp, PSNR 50.5dB), hashbits 64, precision 0.73, recall 0.68

(d) RNN compression part (0.51bpp, PSNR 47.3dB), hashbits 64, precision 0.71, recall 0.70

(e) RNN compression part (0.67bpp, PSNR 48.5dB), hashbits 64, precision 0.73, recall 0.70

(f) RNN compression part (0.84bpp, PSNR 49.4dB), hashbits 64, precision 0.71, recall 0.69

Figure 5.11: Comparison of retrieved images when joint training with different compression
parts
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Performance analysis on the location of the hashing part

In this performance study, first we fixed the compression part, put the hashing module at the
decoder side, and checked the retrieval performance at different hashbits. Then we kept the
hashbits at 64, and checked the retrieval performance when joint training with different pre-
trained compression parts. Table 5.7 shows the retrieval performance when the hashing part
was moved from the encoder part to the decoder part. There were very small changes in the
precision/recall scores especially at hashbits 64, regardless of the network type, rate-distortion
points of the pre-trained compression part or the location of the hashing part.

Table 5.7: Comparison of retrieval performance when joint training with hashing module at en-
coder or decoder side

(a) CNN compression part (Bpp 0.63, PSNR 48.7)

Hash bits
Precision Recall

encoder decoder encoder decoder
16 0.68 0.70 0.67 0.68
32 0.72 0.70 0.69 0.68
64 0.73 0.72 0.69 0.69

(b) RNN compression part (Bpp 0.67, PSNR 49)

Hashbits
Precision Recall

encoder decoder encoder decoder
16 0.68 0.65 0.67 0.65
32 0.72 0.69 0.70 0.69
64 0.73 0.73 0.70 0.70

(c) CNN compression part, hashbits 64

CNN compression part
Precision Recall

encoder decoder encoder decoder
Bpp 0.63, PSNR 48.7 0.73 0.72 0.69 0.69
Bpp 0.79, PSNR 49.7 0.73 0.73 0.69 0.69
Bpp 1.03, PSNR 50.5 0.73 0.72 0.68 0.68

(d) RNN compression part, hashbits 64

RNN compression part
Precision Recall

encoder decoder encoder decoder
Bpp 0.51, PSNR 47.3 0.71 0.71 0.70 0.70
Bpp 0.67, PSNR 48.5 0.73 0.73 0.70 0.70
Bpp 0.84, PSNR 49.4 0.71 0.73 0.69 0.70
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When the hashing part is at the encoder side, during the training and inference, hash codes
are trained and generated from continuous latents which are extracted from the image data.
When the hashing part is at the decoder side, during the training, it’s trained on approximated
quantized latents which extracted from the image data, during the inference, hash codes are
generated from latents recovered from the bitstream. In other words, the retrieval is carried out
in the image domain when the hashing part is at the encoder side, and it is carried out in the
bitstream domain when the hashing part is at the decoder side.

Fig.5.12 shows the comparison of retrieved images in the image domain and in the bitstream
domain. The results show that retrieved images were similar no matter the retrieval was done
in the image domain or the bitstream domain, which indicates that the quantization of image
features does not impact the hashing performance.

Fig.5.13 shows the comparison of retrieved images in the bitstream domain when joint training
with different compression parts. The results show that retrieved images from bitstreams were
quite similar when the compression part was loaded with pre-trained CNN/RNN parameters at
different bit-rates, though the hashing part trained with CNN compression parts retrieved more
structurally similar images than that trained with RNN compression parts.
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(a) Retrieved from images, hashbits 64, precision 0.73, recall 0.69
CNN compression part (0.63bpp, PSNR 48.7dB)

(b) Retrieved from bitstream, hashbits 64, precision 0.72, recall 0.69
CNN compression part (0.63bpp, PSNR 48.7dB)

(c) Retrieved from images, hashbits 64, precision 0.73, recall 0.70
RNN compression part (0.67bpp, PSNR 48.5dB)

(d) Retrieved from bitstream, hashbits 64, precision 0.73, recall 0.70
RNN compression part (0.67bpp, PSNR 48.5dB)

Figure 5.12: Comparison of retrieved images in the image domain and in the bitstream domain
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(a) CNN compression part (0.63bpp, PSNR 48,7dB), hashbits 64, precision 0.72, recall 0.69

(b) CNN compression part (0.79bpp, PSNR 49.7dB), hashbits 64, precision 0.73, recall 0.68

(c) CNN compression part (1.03bpp, PSNR 50.5dB), hashbits 64, precision 0.72, recall 0.68

(d) RNN compression part (0.51bpp, PSNR 47.3dB), hashbits 64, precision 0.71, recall 0.70

(e) RNN compression part (0.67bpp, PSNR 48.5dB), hashbits 64, precision 0.73, recall 0.70

(f) RNN compression part (0.84bpp, PSNR 49.4dB), hashbits 64, precision 0.71, recall 0.70

Figure 5.13: Comparison of retrieved images in the bitstream domain when joint training with
different compression parts50



6 Conclusion

With the advancement in space exploration, very large volumes of RS data are archived on a
daily basis. This necessitates the need for compression and hashing for efficient storage, trans-
mission, and retrieval from large-scale RS archives. Compression and hashing are treated as
separate problems in literature and worked on independently. A joint framework would rather
save computational time and provide a solution for both the problems at a single pass.

This thesis addressed the very problem of joining the two tasks into a multi-task framework
which simultaneously generates compressed bitstream and hash codes from the input RS images.
It also provided effective optimization strategies for both compression and hashing tasks during
the training, so that the multi-task framework can get competitive compression and hashing per-
formance when compared to the corresponding single-task baseline. An additional advantage of
this proposed framework is that it avoided the need for any hyperparameter search when training
the joint model or the separate parts involved in the framework.

Since the proposed framework consisted of two parts: compression with an autoencoder and
hashing with shallow CNN, separate optimization schemes were proposed to minimize the in-
terference between these two parts. The first stage was to optimize the CNN compression part
with MGDA [16] to get a wide range of RD trade-off points. This approach avoided training
the network multiple times from scratch for different bit-rates as done in the literature. The
proposed compression part with the optimization algorithm was compared against the state-of-
the-art RNN based compression and JPEG 2000. When evaluating rate-distortion performance,
the CNN based compression outperformed the RNN based compression and JPEG 2000. When
evaluating compression/decompression time, CNN based compression was faster than RNN
based compression, but significantly slower than JPEG 2000.

In order to select proper hash coding function and optimization algorithm for the hashing part,
a hashing baseline, which consisted of the same autoencoder as that in the proposed framework,
was designed and tested in terms of retrieval performance. PCGrad [70] was selected to optimize
the hashing loss, and Greedy Hash [57] was selected for efficient hash coding in the hashing part.

The hashing part of the proposed framework was trained on the image features extracted from
the pre-trained compression part. It was observed that the initial retrieval performance of the
multi-task framework was much lower than that of the hashing network trained separately. This
is due to the fact that the hashing part was directly trained on image features provided by the
compression part, which contained a lot of details that were beneficial for image reconstruction
but were not that suitable for image retrieval. In order to narrow this gap of hashing performance
between the multi-task framework and the hashing baseline, a very small learning rate was set
to the compression part, so that the shared image features can be fine-tuned by the hashing part.
Also, an attention module was inserted in front of the hashing network so that the hashing part
can extract more task-specific information from the shared image features. After adding up these
two improvements, the retrieval performance of the multi-task framework was observed to be at
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par with that of the hashing baseline.
The thesis further explored the impact of the compression part on the retrieval performance of

the multi-task framework. It was observed that when different pre-trained compression models
were loaded to the compression part, the multi-task framework got similar retrieval scores and
retrieved images. Hence making the proposed framework unaltered with the change in the com-
pression part.

Finally, the thesis also analyzed the impact of placing the hashing part at the encoder and de-
coder side of the compression part. It was observed here that when the hashing part was trained
at the decoder side, and hash codes were generated from latents that were recovered from the
bitstream, the multi-task framework still got similar retrieval scores and retrieved images when
compared to that trained with the hashing part at the encoder side. In other words, the proposed
framework got very similar retrieval performance in the image domain and the compressed do-
main. There are extra benefits when the retrieval can be done in the compressed domain, i.e,
when the bandwidth is limited, only the bitstream and meta information are required to be sent
to the receiver. The retrieval at the receiver side can be carried out on hash codes which are
generated from the bitstream.

Directions for Future Work

The compression part used in the framework is presently made of 2D convolution layers. This
does not exploit the spectral redundancy in the RS data to the full extent. The compression
performance on RS images can be improved by adding 3D convolution layers into the feature
extraction modules so that the image features can be extracted in both spatial and spectral di-
mensions, which would further reduce the redundancy in the latent and lead to fewer bit-rates
for entropy coding.

The distortion loss of the compression part is made of SSIM [65], which focuses on preserving
the spatial structural similarity between the input image and the reconstructed image. However,
for multi-spectral RS images, the reconstruction on the spectral dimension is equally important
to that on the spatial dimension. Thus, the reconstruction quality of RS images could be further
improved by adding a distortion loss that focuses on preserving the spectral similarity between
input and reconstructed image.

The present hashing part is a deep supervised method, which requires a lot of image labels
during the training. Since it is impractical to get so many labels for large-scale RS archives,
the hashing part can be improved to a semi-supervised deep hashing method, which uses a few
ground-truth labels and pseudo labels predicted by the classification layer for hash code learning.
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