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fremde Hilfe angefertigt habe. Sämtliche benutzten Informationsquellen sowie das Gedankengut
Dritter wurden im Text als solche kenntlich gemacht und im Literaturverzeichnis angeführt.
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Abstract

This thesis analyzes and compares different deep learning loss functions in the framework of the

multi-label Remote Sensing (RS) image scene classification problems. We consider seven loss

functions: 1) Cross-Entropy Loss; 2) Weighted Cross-Entropy loss; 3) Focal Loss; 4) Hamming

Loss; 5) Huber Loss; 6) SparseMax Loss; and 7) Ranking Loss. Our analysis aims to reveal their

performance-wise differences and with greater significance, which loss functions are most suitable

in specific contexts. All the considered loss functions are analyzed for the first time in RS and the-

oretically compared in terms of their: 1) capability to address class imbalanced data (for which the

number of samples associated to each class significantly varies); 2) capability to consider outliers;

3) convexity and differentiability; and 4) required time to reach a high performance (i.e., efficiency

of learning). After the theoretical comparison, experimental analysis is carried out on the publicly

available Sentinel-2 benchmark archive, BigEarthNet, to compare different loss functions by consid-

ering the constraints of the learning problem, the training methodologies and the expectations from

deep learning models. Based on our analyses, some guidelines are derived for a proper selection of a

loss function in the context of multi-label RS image classification.
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Zusammenfassung

In dieser Arbeit wurden verschiedene Deep Learning Loss-Funktionen zu Multi-Label-Problemen

in der Fernerkundung verglichen. Dies wurde unter Verwendung des frei verfügbaren Fernerkun-

dungsarchivs “BigEarthNet” durchgeführt, das verschiedene reale Herausforderungen einführt und

dabei hilft, die Eigenschaften jedes Verlusts hervorzuheben. Die Analyse ergab leistungsbezogene

Unterschiede und mit größerer Bedeutung, welche Verlustfunktionen in bestimmten Kontexten am

besten geeignet sind. Abgesehen von herkömmlichen Ansätzen gibt es in der Literatur eine Reihe

neuartiger Verlustfunktionen, die im Bereich der Fernerkundung noch nie verglichen wurden. Unter

diesen ist es erwähnenswert: der Fokusverlust, der Hamming-Verlust, der SparseMax-Verlust, der

Huber-Verlust und der Ranking-Verlust. Der absolute analytische Vergleich wurde aufgrund des Gle-

ichgewichts zwischen Präzision und Rückruf unter Verwendung des F1-Scores als Metrik durchgeführt.

Der qualitative Vergleich berücksichtigt zwei Faktoren, indem er die Merkmale der Verluste entfal-

tet und die Variationen über mehrere Stichproben des positiven (oder negativen) Beitrags mit einem

Rahmen zur Erklärung von DNN beobachtet. Diese Arbeit, beginnend mit den einzelnen Ansprüchen

der Verlustfunktion, führt zu Verknüpfungen zwischen ihren theoretischen Merkmalen und pragma-

tischen Anwendungen in verschiedenen Umgebungen.
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1 Introduction

The wealth of data available and its higher quality are among the foundations for enabling better per-

formances of Deep Learning approaches. Deep Learning methods have attracted great recognition in

the Remote Sensing realm thanks to their achievements. There are several tasks in which Deep Learn-

ing methods are used and in which we see a growing application of novel techniques. Examples of

that are Land Use and Land Cover (LULC) classification, Scene Classification, and Object Detection.

[29] Scene Classification is a critical field in Remote Sensing with extensive operative applications,

which can be defined as the categorization of scene images into a discrete set of LULC classes co-

herently to its semantic content. Past approaches were focusing on single-label applications which

are summarizing the totality of the sample to one single class. This is an oversimplification of the

underlying problem which cannot be omitted and that requires a different approach. Remote Sensing

scenes and generally speaking, most of the images within the Computer Vision world, contains se-

mantically different objects. A more resembling approach to real-world situations is the Multi-Label

Classification (MLC), which attributes one or several classes to the instance. MLC is a favoured ap-

proach since it characterizes precisely the semantic content of the image with one or several labels.

Scene Classification in Remote Sensing has a particular need for multiple labels to describe an im-

age for its nature of the problem. Relatively to their spatial resolution, images usually describe large

portions of Earth Observations, including several morphologically different land portions. This, how-

ever, introduces several challenges such as skewed distributions of classes, exponential combinations

of labels and potential underlying correlations among them. These MLC characteristics can also be

extended to other fields such as text classification, recommender systems and generally speaking,

to any classification task. Several approaches have been presented in the RS literature. Traditional

methods use a combination of Cross-Entropy loss and Sigmoid activations.[34] Despite the popu-

larity of existing Cross-Entropy based approaches, they neglect several factors which are crucial for

achieving meaningful results and more adherent to the real-world applications of the models. Among

them, we find several failings such as not having a cost-sensitive behaviour. The Cross-Entropy Loss

does not acknowledge the class distribution within the data. [8] The usage of Loss Functions or a

technique that takes into consideration long-tailed class distributions is a need in many real-world ap-

plications which require considering minority classes. A frequently studied problem is how to design

noise-robust learning techniques. Supervised DNN relies on large-scale archives to achieve greater

performance. [23] Often datasets can be affected by errors in the labelling process and models with

loss functions agnostic to noisy labels can affect their performances. In [48] is studied the robustness

of a modified Cross-Entropy Loss with awareness to noisy data, achieving superior performances.
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1 Introduction

Li, Xiaoxu, et al. [28] analyses the limitation of the Cross-Entropy Loss in terms of its inability to

push the decision boundaries. Losses which aim to maximize the margin show better performances,

more stability and easier optimizations.

Inappropriate Loss Function could lead to suboptimal performances or inaccurate correlations be-

tween predictions and the semantic content of instances. Loss Functions are a critical component of a

Deep Learning approach since defines the evaluation of model improvements. This a highly-complex

problem for standard classification tasks and even more challenging for multi-label classification due

to the various circumstances in which predictions can be evaluated. Models using different Loss

Function can have different performances and imply different conditions, which are characteristics

that have to be evaluated relatively to the operational use of the model itself. Therefore is essential

choosing a function that faithfully represents the multi-label objective and the context in which the

model will operate. This work aims to foster the importance of carefully selecting Loss Functions

considering the dataset, the objective of the model and operational context of the models. We ana-

lyze and compare several Deep Learning loss functions for MLC in the context of Remote Sensing.

State-of-the-art loss functions from other fields are presented, that to the best of our knowledge has

never been considered in Remote Sensing. With the need for a framework for studying the different

loss functions relevant to common real-world challenges, a set of most relevant features has been

defined.

Using a large-scale archive and with similar challenges to operational settings is a crucial factor

which comes with drawbacks. One of them is the dataset size itself, forcing the change of training

procedures from directly using raw images to protocol buffers. The wide range of characteristic of

a model is a significant aspect in the analysis of different training procedures. There are numerous

features that each model has by using a specific Loss Function and choosing a subset which is the

most relevant to the Remote Sensing context is a challenging task. Being able to compare them in an

objective way and meaningfully with respect to the Remote Sensing field is a non-trivial challenge.

Moreover, having a comprehensive understanding of what the models are learning is another area

with great importance. Using state-of-the-art methodologies helped to gain insights on this compo-

nent of the analysis.

The thesis has been structured in 7 chapters.

Chapter 2 introduces the main concepts studied. Introducing the Convolutional Neural Networks

and the basics of Loss Minimization to understand the importance of the Loss Function. Also, it’s

present an introduction to the MLC problem with a focus on Remote Sensing.

Chapter 3 describes the different Loss Functions used in the MLC context. The concepts behind

every loss are introduced with their characteristics and providing an insight into the behaviour of the

models.

In Chapter 4 are defined the main properties needed to be evaluated when choosing a Loss Func-

tion. These might be dependent on the application of the model and the dataset itself.

Chapter 5 describes the “BigEarthNet” dataset and why has been selected for this comparison.

2



The technologies and parameters used for the experiments are explained. There is a breakdown of

the type of experiments and how they have been carried out.

In Chapter 6 The results obtained in the experiments are presented, showcasing the different

performances and the behaviours of the models in various situations.

Chapter 7 summarizes the study and the findings. This last chapter provides also hints on how to

choose the proper Loss Function and presents a future extension of this work.

3



2 Related Work

This work has been structured around the concepts of Deep Learning and Image Classification within

the Remote Sensing field. Therefor is beneficial to describe the main concepts and provide founda-

tions for the understanding of the following work.

2.1 Convolutional Neural Networks

Neural Networks are weighted graphs, which take inspirations from the simplification of the archi-

tecture of the human brain. The underlying concept is that each neuron creates outputs based on the

received inputs from other neurons. While being an oversimplification of the real biological process,

Neural Networks have proved to be highly successful in a vast set of applications. The Multi-Layer

Perceptron is the traditional architecture associated with Neural Networks. Multiples nodes form

an input layer, with one or more hidden layers and an output layer. The layers are fully connected

among them, meaning that each node from the previous layer is connected to every node of the

next layer. The inputs are processed with non-linear transformations allowing to compute non-trivial

problems. In Image Classification, the Multi-Layer Perceptron has a significant drawback. Its total

number of parameters can grow vastly while disregarding the spatial information of the inputs. There

are many types of architectures and layers in the Neural Network domain that are great alternatives

with imagery data. The Convolutional Neural Networks (CNN) are among the most successful ar-

chitectures used in the image classification task. They draw inspiration as well from the biological

realm, imitating the overlapping receptive fields of the neurons. The CNN architecture is composed

of three different types of layers: the Convolutional layer, the Activation and Pooling layer and the

Fully Connected layer.

The convolutional layer is the foundation of the architecture, employing the “convolution” mathe-

matical linear operation. For simplicity, we will consider an input image in a two-dimensional form.

The convolution operation covers the input image with a filter (or kernel), sliding over all the pixels

sequentially. The filter itself is a matrix, usually 3x3 or 5x5, which is learned and used to compute

the element-wise product that is then summed.

This process is repeated at every location of the input, by sliding the position of the filter to the

right by s steps. (or pixels) The final result of the convolution over all the image is called the “feature

map”. The network will learn filters that will get activated when receiving a certain semantic feature

in any location of the input. The resulting feature map is smaller than the initial input since it can

be computed only from a minor subregion of the image. There are several hyperparameters to be

4



2.1 Convolutional Neural Networks

Figure 2.1: Convolutional operation over an input. The output is restricted only to positions where
the kernel is entirely included in the input, also called “valid” convolution.

Image source [16]

considered when working with a convolutional layer.

• The filter size is usually regarded as a matrix, however, in practical applications, its depth

is equal to the full depth of the input. The size covered by the filter is associated with the

concept of the receptive field. The convolution uses the spatially local correlation of the input

to enforce patterns sparsely connected in a local area. This results in neurons connected only

to a small region of the input layer.

• The stride is the parameter that regulates the number of pixels or steps which the filter will

slide to the right, for every step. Having a stride set to 1 will move the filter by one pixel at the

time, providing overlapping receptive fields.

• In certain occasions, the corner pixels are “convoluted” only one time as opposed to multiple

times in other regions. To overcome this, the padding adds additional data around the inputs,

such that the true edges are considered as many times as the other regions.

5



2 Related Work

Generally, after the convolution layer is applied a non-linear activation function. The activation

function of a neuron specify the output of that node, provided the inputs. They represent the bio-

logical behaviour, wether the neuron is firing or not. Having an activation function which has only

a positive firing rate, introduces a non-linearity which enhances the decision-making capabilities.

The convolutional operator is simply a linear operator and using a non-linear activation will limit the

problem of vanishing gradient. Using an activation function such as the ReLU will remove negative

values from the activation map. Introducing non-linear properties in the architecture will increase

the decision power of the network without affecting the receptive fields or generalization accuracy.

[16] The resulting output is usually fed into the Pooling layer. The underlying concept of the pooling

operator is to non-linearly down-sample, reducing the spatial size of the representations, parameters

and computational load. The max pooling function is the most common, partitioning the input in

non-overlapping regions based on the filter size and outputs the maximum value among that area.

The specific location of a feature is negligible compared to its approximated position relative to other

features. As shown in Fig. 2.2, pooling with filters in size of 2x2 with a stride of 2, downsamples

the input by 2 along its dimensions, reducing the activations by 75%. An additional benefit from the

pooling operation is that introduces translation invariance, allowing the network to detect features in

various positions in the inputs.

Figure 2.2: Max-Pooling operation over an input
Image source [36]

The final layer of a CNN architecture is usually a Fully Connected layer. The inputs are provided

by the previous Activation or Pooling layer, resulting in N fully connected nodes equivalent to the

number of classes. The Fully Connected layer decides which values in the resulting feature maps

are the most relevant to a specific class. Generally, the resulting vector describes the hypothesized

probability outputs over the classes.

6



2.2 Deep Learning Training

2.2 Deep Learning Training

A loss function is a broad term that defines the mapping of an event into a real number, representing

a cost (or loss) associated with the event. [5] In Deep Learning, often the Loss Function is a topic

which is treated lightly even if needs greater attention and understanding. The underlying concept

is that, due to the unknown true distribution of the events, we can minimize the (“empirical”) risk

on a known set of (training) events which are drawn from the same distribution as the true one. The

risk associated with a model is defined as the expectation of the loss function. We can define the

empirical risk as:

Ex,y∼p̂data(x,y)[L( f (x;θ),y)] =
1
m

m

∑
i=1

L( f (x(i);θ),y(i)) (2.1)

where M is the number of training samples, f (x(i);θ) the model predictions with the parameters

θ on the i-th sample having a label y(i). [16] The significance behind the Loss Function is to sum-

marize all the aspects of the problem to a scalar so that an improvement would translate into a better

model. This is a non-trivial task, especially in the MLC case, considering that the Loss Function

has to define a meaningful goal for the search within a considerably more complex parameter space.

Therefore is essential that the function faithfully represents our design goals, avoiding unrelated error

functions to our problem. A different understanding of the Loss Function can be formulated from a

geometrical point of view. The Loss Function L(w) can be seen as a surface sitting over the weight

space w, where every point has a local gradient given by the vector ∇L. The trajectories of the opti-

mizers are described over the Loss Function surface. The Loss Function defines the “goodness” of

a model, however, due to the enormous amount of parameters in Neural Networks, there is the need

for searching the optimal parameters (weights) that will minimize it. The optimizer is strictly linked

to the loss function, defining the direction in the parameter space of the greatest improvement. The

learning process is defined as the search of optimal parameters θ that minimize the loss function

L( f (x;θ),y). While it’s beneficial having a good performance on training data, what we care the

most is having good performances on the true distribution, suggesting having generalization capabil-

ities. The direction of the greatest improvement is given by gradient methods, allowing the update of

the parameters. The traditional formulation is:

θt+1 = θt −ηt∇F(θt) (2.2)

where ηt is the step size of the update (also defined as “learning rate”) and ∇F(θt) is the gradient for

the t-th iteration. [16] Batch or deterministic gradient methods calculate the exact gradient using the

entirety of the dataset. On the other spectrum of the approach, there are online methods, computing

the gradients from a single example. Practical Deep Learning applications use approaches within

these two, computing the gradients with a minibatch of samples, generally addressed as stochastic
methods. The dimension of the batch size defines an index of accuracy of the gradient computation

while offering regularization effects due to the noise provided. The Stochastic Gradient Descent

7



2 Related Work

(SGD) and its variants are among the most popular optimization algorithms in most of the Deep

Learning applications. The method relies on an estimate of the gradient, based on a batch of m

samples. The SGD iterative procedure presented in the Algorithm 1 updates the weight of the model

according to the direction of the greatest improvement, using the estimated gradient shown in Eq.

2.2. This is performed until a stopping criterion has been met (Eq. 2.3), which usually is computed

in terms of the delta between the minimum achieved loss and the current or last n-loss results.

Algorithm 1: Stochastic Gradient Descent (SGD)
Data: Learning rate η and initial parameters θ

while stopping criterion not met do
Sample m instances (x(i),y(i)) from the training set
Compute gradient estimation for the current model θt

∇F(θt) =
1
m ∇θt ∑

m
i L( f (x(i);θt),y(i))

Apply update θt+1 = θt −ηt∇F(θt)

The learning rate η impacts greatly this process and its choice is not a trivial task. The preliminary

phases of the training try to address this problem by monitoring the learning curves of the Loss

Function over the epochs. Having a learning rate that is too small, the training process will be slow

with the risk to be stuck in a local minimum. If the learning rate is too large, the learning curve

will be irregular with strong fluctuations and the risk of skipping the minimizer. The convergence

criterion is defined using the excess error E:

E= J(θ)−minθ J(θ) (2.3)

where J(θ ) is the current loss by the current model θ , while minθ J(θ ) is the loss achieved by the best

performing model. The delta by which the current model improves with regards to the best model

obtained during the training, correspond to the general trend of model improvement. When the model

does not achieve substantial improvements we can stop the training process due to convergence to the

minimizer. Gradient-based methods used on convex problems have an excess error of O( 1√
k
) after k

iterations, while strongly convex problems have an excess error of O(1
k ) after k iterations, where the

lower the error the better the training. These bounds are of greater benefit, however, they cannot be

further developed without implying additional conditions.
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2.3 Multi-label Remote Sensing Image Classification

2.3 Multi-label Remote Sensing Image Classification

The growing number of satellites present in Earth orbits have provided a greater amount of data avail-

able for Remote Sensing applications. Scene Classification is a critical field in Remote Sensing with

extensive applications which have received greater attention. Traditional approaches and datasets

describe the entirety of the sample with a single class associated with the most relevant part of the in-

stance. Remote Sensing scenes can represent a multitude of land-covers which can significantly vary

among the same image. MLC is a favoured approach since it characterizes precisely the semantic

content of the image with one or several labels. This, however, introduces several challenges such as

skewed distributions of classes, exponential combinations of labels and potential underlying correla-

tions among them. Moreover, identifying precisely similar categories (e.g. “Broad-leaved forest” and

“Mixed forest”) is not a trivial task, especially when an instance contains analogous ones. Several

approaches try to solve the MLC problem, with the same purpose, addressing the complex correla-

tion between the semantic content of the input and the broad output space. In [44] a multi-label active

learning framework is proposed, relying on a multi-label support vector machine. (SVM) A condi-

tional random field (CRF) framework is proposed by Zeggada et al. [46] exploiting simultaneously

spatial contextual information and cross-correlation between labels, Karalas et al. [22] analyses a set

of ensemble-based multi-label learning architectures, based on binary relevance classifiers and label

powerset classifiers, achieving good performances. Yet, the semantic complexity of Remote Sensing

instances influences heavily their capacity to generalize on spatially distant samples. Deep Learning

methodologies have attracted great attention in RS for performance-wise advances and generaliza-

tion capabilities. In [45] is presented one of the first efforts using Deep Learning approaches on

Multi-Label Classification tasks for UAV imagery. This approach uses a radial basis function neural

network with a multi-labelling layer made with specific thresholding operations. Given the limited

size of the dataset, they have applied a transfer learning approach using a pre-trained model based

on the ILSVRC2014 dataset. The problem with this approach is that the learned features of these

models are significantly different from the required features of Remote Sensing applications. Y. Wei

et al. [43] proposed a flexible CNN framework where proposed object hypotheses are taken as the

inputs of a shared CNN that is connected with each hypothesis. The results are aggregated with

max-pooling to produce the ultimate multi-label predictions from the initial hypothesises. In [37]

a novel multi-attention driven system that cooperatively utilizes a Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN) to classify multi-label remote sensing (RS) images.

The system uses a “K-Branch CNN” which extracts local descriptors using different CNNs for spe-

cific spatial resolutions, modelling their spatial relationship with a bidirectional RNN. The resulting

local descriptors are used to produce multiple attention scores accounting for the correlation among

the classes and provide the attention-based local descriptors. The final descriptors are used for the

MLC task. Hua et al. [19] propose a 3-elemental module network, distinguished by its capabilities

to produce discriminative label-wise features and reasoning about label relations in a meaningful

way. Most of the works in MLC in Deep Learning and Remote Sensing settings use a traditional
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2 Related Work

combination of Cross-Entropy loss and Sigmoid activations. Using Sigmoid activations each out-

put of the model will consider the classification task with a one-vs-all approach, correctly assuming

class independence. The cross-entropy has been extensively used in several fields and its effective-

ness is backed by its information theory origin. While this has been effective in several studies it’s

not always the most suitable choice since this approach lack of the intrinsic properties of the MLC

problem, such as sparse output distributions, distinguished importance towards specific classes and

correlation among the labels. W. Edwards Deming and Nassim Nicholas Taleb support that loss

functions need much greater attention in its choice should be carefully considered. [10]

Images can be annotated with multiple labels and modelling the rich semantic information in a

precise way is crucial for image understanding. The labels might describe objects, scenes, actions

and attributes and the Computer Vision field has addressed the MLC problem proposing several

approaches. Wang et. al [42] has proposed a CNN and RNN framework employing an end-to-

end model that exploit the semantic redundancy and co-occurrence dependency, both inline with the

multi-label objective. The RNN component can model high-order dependencies and uses an attention

mechanism to improve the prediction of small objects. A similar approach that uses attention maps is

proposed in [49], where the network is able to exploit semantic and spatial relations between labels.

The result translates in a network not only achieving greater performances but also providing more

accurate activations with regards to the considered classes. Kang et. al [12] has presented a novel

framework that explicitly focuses on the high-order correlation between labels. The improvement

compared to traditional systems rely on the simultaneous propagation of multiple labels during the

training. Alfassy et. al [3] address the problem of multi-label few-shot classification. The novel

technique couples pairs of examples in the feature space, producing an integrated feature vector

with labels obtained through set operations on the corresponding input pairs. Although these novel

approaches produce great improvements, they generally address the training procedures blindly with

the traditional Cross-Entropy Loss. Different Loss Functions, carefully chosen, might enhance the

improvements obtained by these techniques.
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3 Deep Learning Loss Functions for

Multi-Label Classification

Traditional classification approaches were built around the assumption that each instance can be cat-

egorized simply by a single class. Recent advances in Machine Learning and real-world applications

showed that there is a need for multiple labels in order to have a more accurate semantic description of

the inputs. Existing work on MLC within Remote Sensing focuses mostly on the conventional com-

bination of Sigmoid and Cross-Entropy Loss. The reason toward the usage of the Sigmoid Activation

Function is the resulting independent Bernoulli distributions as opposed to multinomial distributions

with a Softmax Function. From the Sigmoid function it’s understandable that the predictions of one

class are unrelated to the predictions of another class, producing independent probabilities for each

one of the labels. The Sigmoid function is defined as:

P(ŷi|xi) =
1

1+ e−zi
(3.1)

where zi is the class score for the i-th label.

We can formalize the problem by defining an archive X = {x1, ...,xM} that consists of M images.

The sample xi expresses the ith instance. The archive contains instances that are associated with one

or more classes from a label set L = {l1, ..., lC} with |L| = C. The association of the image xi with

the label information is determined by a binary label vector yi ∈ {0,1}C, where every element of yi

indicates the presence or absence of a label lc ∈ L. A MLC task can be formalized as the minimization

of a general cost function J(θ) = L( f (x;θ),y). The loss function is defined as L(·), the predicted

model scores for the input x are defined as f (·) or ŷ, while yi is the ground truth for the i−th instance.

[37]

3.1 Cross-Entropy Loss

The Cross-Entropy Loss (CEL) has strong foundations from Information Theory. Its principle is a

general method of inference about an unknown probability density, given a prior estimate and new

information as constraints on expected values. From a probabilistic standpoint, the Cross-Entropy

between two probability distributions, drawn from the same underlying set of events, measures the

average number of bits needed to distinguish an event over the set if the coding scheme for the set

is optimized for the predicted probability distribution, rather than the true distribution. [32] The
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3 Deep Learning Loss Functions for Multi-Label Classification

definition of the Cross-Entropy of a distribution q relative to a distribution p is formulated as:

H(p,q) =−Ep[log q] (3.2)

It is defined applying the Kullback-Leibler divergence DKL(p||q) which is the relative entropy of

q with respect to p.

H(p,q) = H(p)+DKL(p||q) (3.3)

where H(p) is the entropy of p. Concerning the classification context, having discrete probability

distributions p and q with the same support χ translates in:

H(p,q) =−∑
x∈χ

p(x) log q(x) (3.4)

The principle behind it is the Kraft-McMillan theorem where any directly decodable coding scheme

for coding a message to identify a value xi out of a set of possible values {x1, . . . ,xn} can be defined

as representing an implicit probability distribution q(xi) = (1
2)

li over {x1, . . . ,xn}, where li is the

length of the code for the values xi in bits.[5] Consequently, the Cross-Entropy can be explained as

the expected message-length per datum when an hypothesized distribution q is assumed while the

data is originated from a distribution p, motivating the expectation over the probability distribution

p. The expectation of the message-length under the true distribution p is:

Ep[l] =−Ep

[
ln q(x)
ln(2)

]
=−Ep[log2 q(x)] = −∑

xi

p(xi)log2 q(xi) =−∑
x

p(x)log2 q(x) = H(p,q)

(3.5)

Used in classification problems, the Cross-Entropy is correlated with the likelihood. The likeli-

hood of the training set to be maximized can be defined as:

L(p,q) = ∏
i

qN pi
i (3.6)

where the number of samples in the training set is N, the predicted probability for a class i is qi

and the empirical probability for the class i is pi. The resulting log-likelihood is obtained by dividing

with the number of samples N, showing that its maximization is equivalent to the minimization of

the Cross-Entropy.

1
N

log∏
i

qN pi
i =−H(p,q) (3.7)

A possible approach to understand the Cross-Entropy is to define it as the log-likelihood for the

ground truth y under a model ŷ. Evaluating the log-likelihood of a dataset under a model can be

explained as the number of bits expected to use for encoding this data given that the encoding scheme

12



3.2 Focal Loss

is based on the model hypothesis.

A more understandable and informal description can be provided as the “measure of suprise”.

Having a model that predicts exactly zero probability to a specific class means that it has a strong

hypothesis regarding it. However, if the class itself is present, it translates in −log(0) = ∞ infi-

nite suprise. Meaning that the model had a strong hypothesis and yet was extremely surprised of

something did not account for, requiring infinite bits to encode that “impossible” event. When used

as Loss Function the true distribution is given by the true classes, while the estimated distribution

corresponds to the model predictions. Its minimal value (0) is found when the two distributions are

equal, and typically it is computed by taking the average of Cross-Entropies in the dataset. Its effec-

tiveness has been widely proven in several fields, such as Computer Vision and Remote Sensing. For

notational simplicity, we rewrite the loss as:

LCE(y, ŷ) =

−log(ŷ) if y = 1

−log(1− ŷ) otherwise
(3.8)

In the classification case, the derivative of the Cross-Entropy Loss with a Sigmoid Activation for

a particular output unit has the same form of the regression case, formally:

∂CE
∂x

= y(pt−1) (3.9)

where y ∈ {0,1} is the binary target variable and pt is the network output in the form, p if y = 1 and

1-p otherwise.

Loss Function choice and the activation function are strictly correlated components. From the

previous example and the formulation is trivial to understand that the cross-entropy loss will provide

infinite loss for predicting zero probability of non-zero ground truth. This forces to use a conservative

hypothesis model which leaves small probability for any event. From a practical standpoint, the

Cross-Entropy and Sigmoid activations are a great fit, however, this does not leave room for sparse

output probabilities which, especially with a high number of classes, is highly desirable in MLC

settings. This methodology is not suitable in some circumstances such as with unbalanced datasets,

presence of outliers, time constraints on the training phase or when there is a demand to conform to

label correlations. These conditions are the norm for operational settings and the choice of the Loss

Function is a crucial component in solving them. The Cross-Entropy Loss and Sigmoid activations

are the most popular choices in the MLC task, however, other options better address the challenges

described beforehand.

3.2 Focal Loss

Lin et al. [27] propose a novel approach to solve the problem of extreme imbalance between fore-

ground and background classes for one-stage object detector. It has been designed to increase the
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3 Deep Learning Loss Functions for Multi-Label Classification

accuracy of the one-stage detectors, to match the performances of computationally heavier and more

complex two-stage detectors. The main challenge that prevents one-stage detectors from achieving

superior performances is the class imbalance. This class of detectors has a large pool of candidate

object locations covering different spatial positions, scales and aspect ratios.

One problem of the standard Cross-Entropy criterion is that “treats equally” hard and easily classi-

fied samples. The Focal Loss introduces several properties and handles naturally the class imbalance

without having to consider the class distribution.

The Cross-Entropy Loss is characterized by the fact that instances classified with high confidence

obtain a considerable loss. When framed over the training set, a large number of easily classified

instances can overpower the most difficult classes. From a numerical standpoint, easily classified

samples compose the majority of the loss and control the gradient. It’s worth noting that this is par-

ticularly relevant because heavily directs the model updates and therefore degenerate the learning

process. The Focal Loss reshapes the Cross-Entropy Loss, accounting for the sample “hardness”,

for calculating the penalization factor. The following discussion is formulated around the assump-

tion that the computation of the probability p is done with sigmoid activation, delivering improved

accuracy and greater numerical stability. We define pt :

pt =

ŷ if y = 1

1− ŷ otherwise
(3.10)

The Focal Loss adds a modulating factor to the Cross-Entropy, resulting in:

LFL(pt) =−(1− pt)
γ log(pt) (3.11)

where the labels are defined as y ∈ {±1}, the model estimated probability for positive classes as pt

and γ is the focusing parameter. The gradient w.r.t. x is defined as:

∂FL
∂x

= y(1− pt)
γ(γ pt log(pt)+ pt −1) (3.12)

where pt is defined in Eq.3.10 and y is the ground truth.

The Focal Loss introduces two likeable properties:

• For instances misclassified with low confidence, the modulating factor is close to 1 and the loss

for that sample is almost unaffected. As the confidence rises, the modulating factor approaches

0, down-weighting significantly the loss for well-classified instances.

• The rate at which instances are down-weighted is regulated by the focusing parameter γ .

With this mechanism the Focal Loss is able to address at training time, the imbalance between fore-

ground and background classes depending on the focusing parameter. (e.g. 1:1000 for γ = 2) Com-

pared to larger backbone networks or more complex two-stage detectors, one-stage detectors trained
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3.3 Weighted Cross-Entropy Loss

with the Focal Loss have higher accuracy delivered with faster inference speeds on a simpler archi-

tecture. Recently, there have been proposed in literature several applications using the Focal Loss.

An example of that is the detection of lung cancer using a CNN with the Focal Loss on Computed To-

mography scans, achieving significant results. [41] Another case is the application of the Focal Loss

on an imbalanced dataset of the drug to drug interactions, using a hybrid Recurrent-Convolutional

Neural Network. [40]

3.3 Weighted Cross-Entropy Loss

When dealing with imbalanced dataset many solutions attempt to address the problem. Resampling

techniques approach this challenge by downsampling a subset of the majority classes or artificially

upsampling the minority classes. However, studies in this direction have shown that this approach

does not lead to significant improvements even with optimized parameter settings. [7] A typical

approach to overcome the class imbalance problems is with cost-sensitive re-weighting. Trivially,

this results in treating the cost of misclassifying a minority class as many times like the loss incurred

from another class. Generally, re-weighting is performed by multiplying the Loss Function by a

weighting vector inversely proportional to the class distribution. Using prior probabilities into the

Loss Function improves the performance on imbalanced datasets. This technique is agnostic to

the loss function used. However, the goal of our work is to understand the behaviour of the loss

function, also when it is artificially modified. In fact, by multiplying the loss function by a scalar, the

magnitude of the gradient is affected and therefore optimizers that rely on it might have a different

behaviour. To have a fair comparison, we will apply weighting to the Cross-Entropy Loss, since its

popularity. We formalize the weighting approach for the Cross-Entropy loss as:

LW−CE(y, ŷ) =−wLCE(y, ŷ) (3.13)

where w ∈ Rk with elements wk > 0 defined over the dimension of the label set L = {l1, ..., lC} with

|L|=C. The weighting vector can also be treated as a hyperparameter set using cross-validation. It is

worth noting that using a class-balanced term is complementary to a differentiated behaviour based

on sample difficulty, such as with the Focal Loss.

3.4 Hamming Loss

In Multi-Label Classification tasks, the ultimate objective is to predict the set of label(s) of a sample x
from an output space L. Generally, the output space of multi-label problems increases exponentially

with is the cardinality. A solution to this problem is to shift the initial problem with 2|L| parame-

ters, into a set of simpler problems. The Binary Relevance (BR) transformation technique solves the

obstacle with independent binary problems for each class, driving down the estimation to |L| param-

eters. Another problem of the MLC task is that there might be incomplete observations for certain
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3 Deep Learning Loss Functions for Multi-Label Classification

instances or where there is a high number of classes with a substantial set of irrelevant ones. This

domain of labels is generally called weak labels. [11] The Hamming measure is mainly considered

as a metric for reporting performances in MLC problems. The Hamming Loss is defined as the nor-

malized count of incorrectly classified labels. Minimizing this measure is adherent to the multi-label

task and its usage in this realm is having greater attention. This can be seen as the relaxed objective

of multi-label problems, more forgiving than the 0/1 Loss which is considering a prediction correct

only if there is the exact match. It is defined as:

LHA(y, ŷ) =
1
|L|

xor(y, ŷ) (3.14)

where XOR is the Boolean operator and ŷ the label prediction of the model.

However, it is a non-convex and discontinuous function therefore difficult or even impossible to

optimize it for certain problems.[14] Another problem is that the Hamming Loss treats all the labels

equally, neglecting the possibility of having different degrees of importance for the labels or pushing

for the concept of label sparsity. Although the Hamming Loss addressed concisely the MLC problem,

it might be unsuitable for situations where the output space is vast. Prabhu et. al [21] show discuss

that the Hamming Loss is inadequate for solving Extreme Multi-Label problems with a number of

labels orders of magnitude higher than the traditional MLC. For this context the Hamming Loss

would penalize models that predict missing labels which coould have been relevant to the instance.

The Hamming Loss does not focus on a set of relevant labels, treating the uniformly the various

classes and resulting in Extreme Multi-Label models that perform inadequately. Many works have

been proposed to improve the simple formulation of the Hamming Loss. Among them it is worth

noting Dembczyński et.[9] al analyzing the label dependence using the Hamming Loss, identifying

mainly two scenarios conditional and marginal dependence. In [11] is described an approach for the

estimation of approximated partial predictions. The Hamming Loss is used addressing the problem

by efficiently focusing on label-wise information on convex sets of probabilities. Results are shown

in terms of improvements regarding the prediction with missing or incomplete data.

3.5 Huber Loss

The Huber Loss is regarded as an important tool in robust statistics. It’s a loss function mainly used in

regression problems, however, its likeable properties are helpful also for classification settings. The

Huber Loss is less sensitive to outliers when compared to a squared error loss. This Loss Function

has a mixed behaviour; based on two functions, the squared loss and the absolute loss:

LHU(y, ŷ) =

max(0,1− yŷ)2, for yŷ≥−1

−4yŷ, otherwise
(3.15)

The idea is to combine them and exploit the advantages of each one of them. The drawback of the

16



3.6 Ranking Loss

squared loss is that it’s heavily influenced by outliers, shifting the focus of the training away from

inliers. The drawback of the absolute loss instead is that, when close to the neighbourhood of its min-

imum, does not reward enough changes toward the goal. The Huber Loss combines the advantages

from the previous two losses providing robustness on data including outliers. An interesting property

of the Huber Loss is that it’s strongly convex in a uniform neighbourhood of its target. Strong con-

vexity implies several conditions, among them the Polyak-Lojasiewicz (PL) inequality which can be

formalized as:

1
2
‖ ∇ f (x)‖2 ≥ µ( f (x)− f ·),∀x (3.16)

The linear convergence guaranteed by the PL inequality can be applied to functions which could

be not convex. Therefore gradient method can have linear convergence to global minimizers without

the convexity constraint. This property enables faster and linear convergence rate compared to other

approaches. More specifically the Huber Loss yields an excess error of O(1
k ) after k iterations. This

great convergence rate hits the boundaries of the achievable decrease of generalization error. [6]

discusses that would not be beneficial searching for optimization algorithms with convergence rate

faster than O(1
k ) because would lead to increased overfitting. Different than the function convexity,

another characteristic which supports the optimization of loss functions is its actual differentiability.

The Huber Loss is once-differentiable since has an MSE behaviour in the proximity of the target,

as opposed to the MAE. It’s worth noting that the differentiability is not a sufficient condition for

guaranteeing convergence to a global minimum, however, it’s a required condition for providing a

non-zero gradient back to the model. (i.e. backpropagation)

3.6 Ranking Loss

Ranking frameworks have recently got great attention, achieving excellent results in several fields.

Label dependency is a significant component of the MLC problem that ranking approaches are lever-

aging. Several variations have been proposed in literature, however, we will focus on the standard

Ranking approach to represent this class of tecniques. The concept behind the Ranking Loss is that,

while it is certainly relevant to classify positive labels, it is also important for the model to perform

“sensible” mistakes by assigning higher ranks to the positive labels than to most of the negative la-

bels. An equivalent perspective on the approach is discussed in [22], where the Ranking Loss is

defined as the evaluation of the average fraction of label pairs that are ordered incorrectly. This intro-

duces likable properties in terms of continous improvements of the predictions for irrelevant labels,

efficiently using the sample information. The Ranking Loss induce the model to produce a vector of

prediction with higher values for the positive labels y (ground truths) than the negative labels.

fu(x)> fv(x), ∀u ∈ y,v /∈ y (3.17)
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3 Deep Learning Loss Functions for Multi-Label Classification

The Ranking Loss can be defined as:

LR(y, ŷ) = ∑
v/∈y

∑
u∈y

max(0,α + fv(xi)− fu(xi)) (3.18)

where u is the label set associated with the relevant ground truths y, v is its complement of irrelevant

labels and α is an hyperparameter that introduces a margin, usually set to 1. One drawback is that

the ranking objective, minimizing the occurrences where a positive label has a lower rank than a

negative label; is different from the actual multi-label objective. In other words, the Ranking Loss

optimizes the area under the ROC curve (AUC) but does not directly optimize the top-k annotation

accuracy. When Ranking Losses are applied to multi-label problems, they lack a decision-maker

component defining what labels are included in the predictions. Several approaches can be included

in the training process to overcome this problem such as top-k and thresholding. Li et. al [26] is

an example of a smooth version of the Ranking Loss with a label decision module that provides

estimations with the optimal confidence thresholds for each class. A differen approach is the one

by Gong et. al [15] where there is an approximate top-k ranking objectives, accurately selecting the

first k labels to be included in the final prediction. However, they do not take into consideration the

semantic content of the image since an instance might contain a single visual concept and be forced

to include k classes. A drawback of the Ranking Loss is that, generally, this approach can not model

higher-order correlations.

3.7 SparseMax Loss

A radically different approach is the one introduced by the SparseMax Loss, which coupled with the

SparseMax activation function can output sparse support, assigning exactly a probability of zero to

some outputs. Having sparse posterior distributions is appealing when there is the need for filtering

large output spaces, to identify which group of variables are potentially relevant and to predict mul-

tiple labels. Filtering large output spaces and predicting multiple labels makes the SparseMax loss

and SparseMax transformation very appealing for the MLC problem since addresses specifically the

multi-label objective. The SparseMax transformation introduces these properties while yielding most

of the likeable properties of the softmax activations. An example of that is the two-class case, where

the softmax activation becomes the sigmoid function, which employs the same for the SparseMax

transformation. It uses the softmax function as a starting point, by acknowledging the limitation of

the resulting probability distribution, which always has full support. Defining the (K-1)-dimensional

simplex δ K−1 := p ∈ R|1T p = 1,p≥ 0, the SparseMax transformation maps a vector of real weights

RK (e.g. label scores) to δ K−1 probability distributions. The SparseMax transformation is defined

as:

sparsemax
p∈∇K−1

(z) := ||p-z||2 (3.19)

Which results in the Euclidean projection of the input vector z onto the probability simplex. This
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3.7 SparseMax Loss

projection is likely to be on the boundaries of the simplex resulting in sparse support with regard to

the initial input vector. The construction of the SparseMax Loss starts with defining a gradient that

resembles the one from logistic loss with softmax activations. The gradient for the SparseMax Loss

for the multi-label classification case is:

∇zLsparsemax(z;q) =−q+ sparsemax(z) (3.20)

where δk is the delta distribution on sample label, providing [δk] j = 1 if j= yi and 0 otherwise.

Following with the SparseMax Loss formulation

LSM(q,z) =−qT z+
1
2 ∑

j∈S(z)
(z2

j − τ
2(z))+

1
2
‖q‖2 (3.21)

where τ is the thresholding function, S(z) is the support of sparsemax(z) and q the target distribu-

tions. The SparseMax transformation computes a threshold τ(z) for which coordinates above it will

be shifted by the support of the input, while the others will be floored to zero. The resulting Loss

Function is differentiable everywhere, with a gradient defined in Eq. 3.20 and it’s convex. Another

appealing property in the context of classification is that holds a separation margin like the Hinge

Loss. However, retaining important properties for smooth optimization methods, such as being dif-

ferentiable everywhere and convex. Furthermore, the SparseMax Loss in the binary case reduces to

the Huber classification loss. The Eq. 3.21 for |S(z)|= 1 is:

Lsparsemax(z;k) =−zk + z(1) (3.22)

While for |S(z)|= 2 becomes:

Lsparsemax(z;k) =−zk +
1+(z(1)− z(2))2

4
+

z(1)− z(2)
2

(3.23)

where z(1) ≥ z(2) ≥ . . . are the sorted components of z and t = z1− z2.

Lsparsemax(t) =


0 if t≥ 1

−t if t≤−1
(t−1)2

4 if −1 < t < 1

(3.24)
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4 Comparative Analysis of Deep Learning

Loss Functions

There are several properties that can be used for studying and comparing the above-mentioned loss

functions. We have identified the most relevant ones in terms of applicability to real problems that

a model might incur, which are: 1) capabilities to handle imbalanced data sets; 2) robustness to

outliers; 3) function convexity and differentiability; 4) learning efficiency. Loss functions that do

not have these features lack in terms of performance and, to a certain degree, their applicability is

limited. We use generally the term “feature” as a broad term to define properties or applicability on

operative contexts. In Table 4.1 we categorize the features of the various Loss Functions in terms of

None (-), Low, Medium or High adherence to the concept.

Table 4.1: Comparison of MLC losses under considered criteria

Losses

Class
Imbalance
Awareness

Outlier
Awareness

Convex and
Differentiable

Learning
Efficiency

CEL [18] L L M H
W-CEL [18] H L M L
FL [27] H L M M
HAL [13] L L − M
HL [20] L H H M
SML [30] L L M H
RL [26] L L − H

4.1 Capability of Loss Functions to Handle Class Imbalance

The majority of real-world applications include some degree of class imbalance within the dataset.

This can be summarized as when one or multiple classes are not equally represented in the data. Tra-

ditional Deep Learning classifiers such as with the Cross-Entropy Loss with low awareness toward

specific labels will incur in bias towards the majority class, and possibly neglecting the minority class.

This obstacle is indeed enhanced in MLC because one class might not be represented in most of the

samples, due to the intrinsic nature of the problem. Within the same domain of learning procedures,

class-weighting techniques are a traditional approach dealing with skewed class distributions that in-

troduce differentiated consideration toward specific classes. The intent is to adjust the contribution to
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4.2 Capability of Loss Functions to Handle Outliers

the total loss roughly on the same scale, from the different classes. This approach is de-coupled from

the actual loss-choice and can be applied independently to any function. As discussed in Section 3.3,

artificially modifying the magnitude of the gradient significantly changes the training procedure and

therefore the weighting vector has to be chosen very precisely. Similarly, a distinct approach is based

on the sample “hardness”, which generally speaking, is more likely to belong to poorly represented

classes. The Focal Loss exploits this effect, however, there is no direct correlation between sample

hardness and class numerosity, which might lead the training process to focus on hard samples but

associated with vastly represented classes. To have an understanding of the difference with regards

to the standard Cross-Entropy Loss is useful to compare them from a numerical standpoint.

Table 4.2: Cost-sensitivity comparison between Cross-Entropy and Focal Loss

CEL FL Down-weighting power
P(0.1) 1 0.81 ≈ 1.23
P(0.5) 0.3 0.0752 ≈ 3.92
P(0.9) 0.04575 0.0004575 100
P(0.968) 0.01412 0.00001446 ≈ 976

With a default focusing parameter γ = 2, we see that for hard samples the down-weighting effect

is limited at most ≈ 4x. In Table 1 we show that for easily classified samples, the Focal Loss has a

much lower loss (≈1000x) compared to the standard Cross-Entropy. The results translate in a loss

that focuses on instances with low support, directing the training on a sparse set of hard examples.

Depending on the γ parameter, this behaviour has a much stronger down-weighting effect compared

to the Weighted-Cross Entropy Loss since has an exponential nature. However, it is worth noting

the two techniques are not exclusive and could be used together to further improve the prediction

towards difficult and minority classes. The Hamming, Huber and Ranking Loss do not specifically

address a differentiated behaviour for particular classes like the SparseMax Loss, however, the latter

has shown greater performances on minority classes.

4.2 Capability of Loss Functions to Handle Outliers

Large scale datasets are key elements that allow DNNs to achieve great performances. They rely on

high-quality datasets which are usually expensive and often limited in size. Crowdsource labelling

platforms (such as Amazon Mechanical Turk) for classifying datasets, allow annotating a great num-

ber of instances in a relatively cheap and fast way. However, the quality of the annotation process is

correlated with price and time availabilities; often resulting in noisy datasets. It follows that many

datasets contain noise and many applications require robustness to outliers; more specifically that a

model is not heavily influenced or biased by outliers. Outlier and noise are mostly concepts that are

well covered in the regression field, however, they affect as much as in the classification settings.

Training procedures that can learn effectively from noisy datasets would allow a broader applica-
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tion. It’s worth noting that in the regression context is much easier to define an outlier, yet, for

the classification realm, is necessary to abstract the concept to a broader set of possible situations.

Relatively to the setting, there can be many types of outliers (e.g. wrongly labelled data, missing

labels, instances with Gaussian noise, areas with extremely high spectral value,.. [1] ), which can

greatly affect models that do not consider these sets of instances. These approaches would result in

models overly sensitive to outliers, unreliable predictions and having an inconsistent behaviour in

the training over the samples. The Cross-Entropy Loss (and therefore the Weighted version) does

not show robustness to outliers since its equivalent to a Maximum Likelihood Estimation, which is

known for not exhibiting robustness. The Hamming Loss does not have a differentiated behaviour

for addressing the problem of outliers. The Huber Loss, initially conceived for regression problems,

has a differentiated form depending on the situation. It combines the advantages of the linear loss for

large misclassifications, with the quadratic loss for margin values close to the target providing high

awareness to possible outliers. This behaviour shifts the attention to observations that are correctly

classified and therefore linearly penalize the samples which are incorrectly classified. As introduced

in Section 3.2, one drawback of the Focal Loss is that could focus extensively on a small set of out-

liers, biasing the training procedure for precisely annotated samples. We can relate the two losses in

terms of the nature of samples on which the focus is addressed. Intuitively, the Huber Loss reduces

the contribution of outliers by down-weighting the loss of samples with large errors (hard-samples).

Differently, the Focal Loss instead of addressing outliers, down-weights inliers (easy samples) fo-

cusing on a sparse set of hard examples.[27] From here the feature that, if the training information

is highly affected by outliers, the Focal Loss might not be the best choice and that the Huber Loss

should be considered instead. For their nature, the Ranking and the SparseMax Loss do not have

special attention to outliers.

4.3 Convexity and Differentiability of Loss Functions

Good performances of Deep Neural Networks are based on the ability to properly minimize the

loss; obtaining a model, usually in a neighbourhood of a minimizer, using gradient methods. The

optimization tasks of Deep Neural Networks are generally non-convex problems, exhibiting convex

properties in the trajectory of gradient minimizers. [17] It’s worth specifying that the term “convex”

and “convexity” are related to the function itself, which differs from the non-convexity nature of

Deep Neural Networks with regards to the model parameters. However, has been shown that using

convex Loss Functions yields likeable properties, such as the better trainability due to a smoother

profile or pushing for large-margin solutions resulting in better generalization capabilities. [35] The

concept of optimizing a loss function is an NP-complete problem however gradients methods provide

a way to determine minimizers. Some convex Loss Functions provide a flat “minima” region where

any of the points could be a good model. Opposed, with non-convex functions, we can encounter

a high number of local minima and saddle points. We can state that the actual convexity or non-
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convexity structure of a Loss Function is correlated to its actual trainability. The characteristics of the

landscape of the neighbourhood within the minimizer heavily impacts the generalization capabilities

of a model and its reliability in terms of predictions. These features are defined by the geometry of

the surface of the loss and are influenced by several choices such as the network depth, the optimizer,

the network initialization and many other factors. Because of its nature, (requiring training over

all the dataset) studying and evaluating Loss Functions is extremely time-consuming, therefore the

research in this field is primarily theoretical. Entropy-based Losses are convex, the Hamming Loss

and the Ranking Loss do not satisfy the required conditions, while the SparseMax Loss has been

designed with a convex and differentiable nature. Some functions exhibit additional properties to

just convexity such as the Huber Loss with strong convexity. This property enables faster and linear

convergence rate compared to normal convexities which will be later covered. The byproduct of a

strongly convex function is the well-behaved surface loss, providing a much smoother baseline that

could be better optimized even with deeper architectures. As shown in Section 3.5 the Huber Loss

is quadratic in the proximity of the target. Following certain conditions, when the Loss Function is

quadratic, every local minimum of the empirical loss are global minimizers. Yet, having a global

minimum does not translate in no misclassification error. Different than the function convexity,

another characteristic which supports the optimization of loss functions is its actual differentiability.

It’s worth noting that the differentiability is not a sufficient condition for guaranteeing convergence

to a global minimum, however, it’s a required condition for providing a non-zero gradient back

to the model. (i.e. backpropagation) [4] Several techniques allow the training of loss functions

which have points of non-differentiability. However, in doing so, they will undesirably change the

scope of the cost function and introduce an additional layer of complexity computationally-wise.

Generally speaking, we can also link the differentiability of a loss function, simplifying the topic, as

the introduction of a certain degree of local smoothness.

4.4 Efficiency of the Considered Learning Mechanism

Applications may require fast training procedures. This can be interpreted as reaching a specific per-

formance in fewer iterations or achieving superior performances with equal training time. Producing

a model with greater performances in fewer iterations can be defined as “learning efficiently”. This

can be visualized as a dimensionless performance concept that relates results and the data used. The

name “efficiency of learning mechanism” has been chosen to define how much more improvement

of the parameter space is provided by equal amounts of information. Having all the models per-

forming the training procedure on the same dataset is helpful to highlight the Loss Functions that

have better optimization trajectories. From a mathematical perspective, the different Loss Functions

yields different gradients during the backpropagation. Deep Neural Networks problems are highly

non-convex problems, therefore an analysis of their performance using convex optimization methods

is a non-trivial task. A different interpretation can be obtained by reframing the problem relative to
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the starting point of the training procedure and the final minimizer within the loss landscape. Models

with stronger gradients have better usage of the data, providing a smaller distance between the initial

training state and the neighbourhood of the minimizer. As shown in Section 2.2, the properties of

the Loss Function affect the bounds of the rate at which a problem can converge. Using Stochastic

Gradient Descent, after k iterations, convex functions will provide a excess error of O( 1√
k
) while

strongly convex functions will have an excess error of O(1
k ). This is a relevant property when eval-

uating the convergence of a procedure, however as shown in our results, the other aspects of the

models might considerably affect its convergence. The number of local minima and saddle points

plays an important role in the trajectory of the optimizers, reflecting on the actual performance of

the model. There are several aspects from the architectural perspective that affect this, such as the

network depth, the usage of skip connections or the model width. Neglecting the analysis of the

influence optimizers with adaptive learning rates, we can investigate and compare the behaviour of

the different loss functions in the first epochs of the training. Improvements in this direction are very

beneficial, not only for fixed-time training procedure but also to have an optimization process with

better trajectories within the landscape loss.
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5 Data Set Description and Design of

Experiments

5.1 Description of the Data Set

Comparing different models trained with different Loss Functions needs a meaningful framework

that would challenge them under several aspects. The experiments have been carried out on the

large-scale archive “BigEarthNet”, formed over 125 Sentinel-2 tiles on 10 European countries and

acquired between June 2017 and May 2018. [38] The tiles have been divided into 590,326 non-

overlapping patches, initially annotated with 43 land-cover classes (i.e. multi-labels) provided from

the CORINE Land Cover database of the year 2018. Consequently, the archive has been updated

with an improved labelling structure including 19 land-cover classes, providing less ambiguity while

achieving an accurate sample description. [39] The size and diversity of the archive are an important

factor for providing a realistic benchmark to the various Loss Functions.

The images are composed of 12 spectral bands, with different spatial resolutions. (120x120 pixels

for the 10m bands; 60x60 pixels for the 20m bands and 20x20 pixels for the 60m bands) The samples

have a number of labels that extends from 1 to 12, with 5% of the images described by more than

five classes. In Tab. 5.1 are shown examples of BigEarthNet-19 scenes with their multi-labels. The

dataset identifies 70,987 patches that are fully covered by seasonal snow, cloud and cloud shadow,

which we promptly removed. The remaining images are shuffled and split in 52% for the training set,

24% for the validation set and 24% for the test set, respectively with 269695, 123723 and 125866

instances. In order to identify the most and least represented classes is useful to know the class

distribution over the dataset. Table 5.2 shows the number of samples for each class in the various

splits of the dataset.

5.2 Considered Deep Learning Technologies

Comparing different Loss Functions requires extensive iterations between the training of a model,

evaluating its performances and assessing its meaningfulness. In order to speed up this process and

have an agile approach that allows fast changes, it has been employed a cloud-based Python notebook

allowing the transformation of data, training on GPUs and visualization of the results. More specif-

ically Google Colab has been choosen as the platform for assessing the validity of the data, starting

the training of the models and then analysing the results. However, for the complete training of the
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Table 5.1: An example of Sentinel-2 image patches and their multi-labels in the BigEarthNet archive

Arable land, Mixed forest,
Transitional woodland/shrub

and Urban fabric

Arable land Broad-leaved forest

Complex cultivation patterns,
Coniferous forest and Mixed

Forest

Beaches, dunes, sands, Marine
waters and Urban fabric

Beaches, dunes, sands, Marine
waters and Permanent crops

models, we used the High-Performance Computing (HPC) cluster kindly provided by Faculty IV at

TU Berlin. This has been necessary since the training was carried out on 80 epochs, exceding the

availability time of the Google Colab sessions. Within the HPC, the greater computational power for

the training was provided by the GPUs, the Tesla P100, enabling faster training times. The frame-

work used for training the models is Tensorflow, providing a comprehensive, flexible ecosystem,

libraries and a large community for developing Deep Learning models. An example of a tool made

available by Tensorflow which has been used to plot some results is TensorBoard, which seamlessly

integrates within the framework allowing the visualization of the training losses and metrics. Another

relevant set of component used to compare the different losses has been the explainability element.

In doing so, the state-of-the-art techniques have been employed for evaluating the predictions. More

specifically, the Layer-wise Relevance Propagation (LRP)[2] has been used which decompose the

prediction in terms of the contributions of individual input features in a simple way, allowing the

visualization of the explanations in the same form as the input data. LRP perform a conservative

relevance redistribution procedure with a backward pass on the Neural Network.
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Table 5.2: Number of samples in train, validation and test set for each class

Label
Num. Images

Train Val Test
Agro-forestry areas 15790 7598 7261

Arable land 100394 46604 47150
Beaches, dunes, sands 1197 118 221

Broad-leaved forest 73411 33759 34130
Complex cultivation patterns 53534 25031 25638

Coniferous forest 86569 38674 39532
Costal wetlands 1037 219 310

Industrial or commercial units 6182 2875 2808
Inland waters 35349 15751 16177

Inland wetlands 11620 5131 5349
Land principally occupied by agriculture, .. 67260 31325 32052

Marine waters 39114 17740 18023
Mixed forest 91930 41996 42641

Moors, heathland and sclerophyllous vegetation 8438 3970 3859
Natural grassland and sparsely vegetated areas 6663 2560 2799

Pastures 50981 23846 24170
Permanent crops 15862 6676 6812

Transitional woodland/shrub 77593 35146 36211
Urban fabric 38783 18180 17928

5.3 Design of Experiments

Optimization of Deep Neural Network is generally a difficult task for different aspects introduced

by the complex nature of this approach. Therefore the evaluation of different training procedures re-

quires a comprehensive analysis under different points of view. The experiments have been designed

to avoid bias, providing a fair platform for analysing and compare the different losses. A fine choice

of training parameters (batch size, learning rate, optimizer) produces superior performance and min-

imizers that generalize better. The causes for these changes are not well understood [25], however,

the goal of our study is not to obtain the greatest performances but to understand the changes in

behaviour among the models trained with different losses and therefore the training parameters have

been chosen in an agnostic way. We have identified 4 factors, that generally affects the different

training procedure the network depth, the batch size, the learning rate and the activation function.

Most of pragmatic Deep Learning training procedures have the assumption that we can compute

the exact gradient for our model. In reality, we have access only to an approximated version which

could introduce error or bias. Algorithms rely on mini-batches to sample the dataset and compute an

approximation of the true gradient. One way of mitigating this factor is by choosing a relatively large

mini-batch which would have a slightly more reliable gradient compared to a small one. This is espe-

cially helpful in determining which Loss Function focus on less represented classes. Having a small
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mini-batches could avoid entirely the evaluation of such classes because they would not be included

in the sample itself and therefore not highlight the differentiated behaviour of specific losses. Archi-

tecture choices impact heavily the landscape of the Loss Function with noticeable differences in term

of the sharpness of minimizers. One crucial choice is the actual structure of the architecture, which

can be defined in terms of type of layers, usage of skip connections, filters and more importantly

the depth of the network. In [25] is visualized the correlation between the network depth and the

resulting loss surface, visibly becoming more complex and sharp, as the number of layers increases.

The degradation of the loss surface can be characterize in terms of non-convex sections, such as large

regions with chaotic gradient directions and increased steepness of the surface in most of the direc-

tions. For example purposes, we can define a deep model as several iterations of the multiplication

of a weight matrix W. Supposing that the matrix W can be eigen-decomposed in W =V diag(λ )V−1.

Having T layers, can be associated to as many multiplications, which can be formalized as:

W ×W ×W . . .W︸ ︷︷ ︸
|T | layers

=W T = (V diag(λ )V−1)t =V diag(λ )tV−1 (5.1)

Resulting in a gradient balanced with respect to diag(λ )t . Eigenvalues that are less than 1 in absolute

value, will vanish, significantly increasing the challenge to detect the course in which the Loss Func-

tion should improve. Eigenvalues that are greater than 1 in absolute values, will explode resulting in

very steep cliffs within the loss surface. The goal of this work is to analyse the differences within the

Loss Functions in an objective way and not to achieve state-of-the-art numerical performances, so

using a low number of layers is a meaningful choice in addressing it. Having a shallow network ar-

chitecture will less likely form irregular and scattered regions in the loss landscape. Another feature

linked to the network architecture is the choice of activation functions. Architectures using Rectifiers

(ReLU activation function) are less prone to vanish the gradient since they saturate only in one di-

rection. Neural Networks that uses ReLU activations are trainable in faster times and do not penalize

the generalization accuracy. [24] Other than being among the most used activation functions and

therefore more adherent to operational settings, using ReLU activations, would provide a framework

to understand the features of generally less trainable Loss Functions. Goldstein et al. [25] support

that generally, the majority of the training process is spent tracing a wide arc around a mountain-

shaped minimizer. Several works in the literature plan to address this problem by finding good initial

points for the training procedure. Other features that factor for the goodness of the trajectory and

the training process, are the batch size and learning rate. It’s generally agreed that having training

procedures with small-batches are more likely to result in ”flat” minima while large-batches will re-

sult in ”sharp” minima. The shape of the minima is strongly related to the generalization capabilities

of a model, so having a large batch-sizes will lead to poor generalization capabilities, while small

batch-sizes can lead to good generalization capabilities. This is explained by the ”noise” introduced

by the approximation of the small-batch, which reduce the certainty on the training set and avoiding

overfitting. However, having a batch size that is too small, will most likely lead to poor performance,
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so it’s helpful searching for a good batch size between the two extremes. Poor conditioning and dis-

continuous gradients of the Loss Function might steepen (or tightening) the area with a minimizer,

yet the initial experiments showed that a batch size of 1024 is a good spot between generalization

capabilities and trainability. The second parameter that affects the training to good minimizers is

the learning rate. It affects both the trainability and the generalization capabilities of the model.

Lower learning rates provide better training procedures and have poor generalization ability, while

larger learning rates provide more irregular training and better generalization abilities. A logical

approach would be to sensibly reduce the step size of the local descent however this would result

in higher computational costs to reach the minimizer. In other scenarios, such as with an extremely

small learning rate, the local descent could result in landing on an area with saddle point or wide flat

regions, impeeding continuing the search towards valid solutions. [25] For this work, the learning

rate has been choosen to 10−4 with a set of preliminary experiments for all the losses, to provide a

good trainability and good generalizations capabilities. Later we present how Loss Function with

poor conditioning and discontinuous gradients does not have a well-behaved profile, incurring in

more frequent saddle points and irregular contribution heatmap. The comparison of models trained

with different Loss Functions can be performed under different aspects. The main two perspectives

are the analytical performances and empirical results in terms of heatmaps. A trivial approach to

compare Loss Functions is by examining their prediction performances. Due to the various nature

of the losses a numerical comparison of the changes in terms of absolute value is meaningful only

when the Loss Function has the same underlying concept. This can be applied to the Cross-Entropy

Loss, Focal Loss and Weighted Cross-Entropy Loss, since are all constructed around the concept

of entropy. Comparing the raw loss values would be helpful in the cases above, for showcasing on

which cases the Loss Function would draw more attention, such as on less represented classes. In

traditional multi-class classification methods, the evaluation of the performance of a model is a much

more simplified task due to its unambiguous definition and therefore evaluation of correct (or wrong)

prediction. In multi-label classification problems, this role is much more complex since predictions

could be neither completely wrong nor completely right. It is easy to understand why the absolute

accuracy is not an appropriate metric since would not measure how models are performing when pre-

dictions are not completely correct. Other metrics such as Precision and Recall offer more flexibility

on this front, allowing different measurements in terms of labels or instances. [47] We can define

Precision as the average portion of predicted correct labels to the total number of actual labels:

Precision =
T P

T P+FP
(5.2)

The Recall can be defined as the average portion of predicted correct labels to the total number of

predicted labels:

Recall =
T P

T P+FN
(5.3)

Precision and Recall measure disjoint aspects of predictions, so it is more meaningful to take into
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consideration a metric that takes into consideration both aspects. The F1-Measure is the harmonic

mean of precision and recall, allowing to shrink to a single number the performance of a model in a

reliable way.

F1 = 2 · precision · recall
precision+ recall

(5.4)

For these metrics, we can have a distinction in terms of how we evaluate the labels. One approach

called macro-averaging is to evaluate the individual class labels first and then average it over the

classes. (e.g. calculating precision for each label and finding their unweighted mean) The opposite

approach called micro-averaging is to evaluate globally over all the instances and all the class labels.

(e.g. calculating the precision by finding the total true positives and false positives)

precisionmicro =
T P1 + . . .+T Pn

T P1 + . . .+T Pn +FP1 + . . .+FPn
(5.5)

where T P1 + . . .+T Pn is the sum of the true positives for each of n classes and FP1 + . . .+FPn

is the sum of false positives for each of n classes. Another approach is the weighted one, where the

macro-averaging is calculated with an average weighted by the class support. This can change the F1-

Score and shift it value outside the precision-recall range. The last approach is the sample one, where

the metric is calculated for each instance and then averaged over them providing a balanced metric for

the MLC problem. The results and the discussion have been articulated in terms of sample-average

metrics. One way of comparing the various models, with one of the previous approaches, is on the

validation set over the training. In this way, it is easy to identify the model with the best (or worst)

overall performance. However, this information is relatively important since some applications have

interests in understanding the performances in different classes and possibly choose a model (or Loss

Function) based on that. Having a relatively large number of classes, it is challenging to visualize

the performances for each class of each model. A different case in which the F1-Score helps to

understand the behaviour of a model is by plotting the performance of the model on the validation

set, during the training process. This allows understanding how fast a model can lean and therefor

achieve a specific performance. Some applications have strict requirements in term of duration of the

training phases and having a Loss Function that allows a model to achieve much higher performance

(F1-Score in our case) with the same number of epochs, is of great advantage.

Deep Neural Networks generally have high predictive accuracy but the results are usually not eas-

ily understandable by a human. Having the ability to interpret the results of a model helps to gain trust

and define some traits from the heatmap contributions. [31] Explanations of Deep Learning models

are relative and they make a significant difference when explaining a (correct or incorrect) predic-

tion, visualizing what a model “sees” about a true class or relatively to another class choice. Methods

like the Layer-wise Relevance Propagation address these topics. Models trained with different Loss

Functions can express different properties and showcase different behaviour within the contribution

heatmaps. LRP works by propagating the prediction f(x) backwards in the neural network, subject

to a conservation property intrinsic of the Neural Network architecture, where the input of a specific
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neuron is redistributed to the lower layer in equal amounts. [33] Fig. 5.1 shows the overall LRP

procedure, propagating the relevance score backwards in the Neural Network to the inputs. Defining

two neurons j and k of consecutive layers, the propagation of relevance scores ((Rk)k) is defined by

the rule:

R j = ∑
k

z jk

∑ j z jk
Rk (5.6)

where the quantity zjk defines the contribution from neuron j towards neuron k. The relevance

score Rk is expressed as a function of the lower-level activations on which are performed first-order

Taylor expansions for specific reference points in the space of activations. [33]

Figure 5.1: LRP procedure showing the redistribution of the relevance scores from each neuron to
the lower layer.

Image source [33]

The LRP heatmapping technique has been used to compare the following features:

• Behaviour with imbalanced data. Areas of heatmaps, of models addressing this problem, with

less represented classes have different degrees of contributions than models using traditional

losses
• Outlier awareness. Loss Functions that deals with outliers should have lower (or higher) con-

tributions on instance sections that are semantically different from the class descriptors and

possibly have better predictions.
• Convexity and differentiability. Loss Functions that are convex and differentiable are generally

smoother with a well-behaved surface. The contribution profile of these models should be more

coherent with the semantic content of the instance and smoother with regard to the number of

areas with positive and negative contributions.
• Learning efficiency. Showing the evolution of the LRP heatmaps over the training showcase

how quickly, different Loss Functions, can correlate the semantic content of the input to a

class.

From an empirical perspective, having the LRP contributions of a model helps to define what a

model is actually learning. In the context of loss choice, having an overview of which losses leads to

models with more meaningful predictions is of a great contribution.
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Several experiments have been carried out in order to assess the performances and behaviour of the

different Loss Functions in various settings. The qualities analyzed are the ones identified for the

different losses; class imbalance awareness, outlier awareness, convexity and differentiability, and

the learning efficiency. The experiments assessing the class imbalance awareness aims to showcase

the ability to recognise samples of minority classes in imbalanced datasets. The identification of

these classes can be evaluated in terms of actual performances (F1-Score) over the various classes

but also visually, with LRP heatmaps with respect to specific classes. Similarly, the experiments

testing a model’s ability to deal with outliers can be visualized in terms of LRP heatmaps. Analyzing

the performances in an analytical way was not possible due to the dataset arrangement and therefore

was neglected. The analysis of Loss Functions which are convex and differentiable is mainly a

theoretical topic. However, it is possible to showcase the better behaviour of the losses with these

properties in terms of a better accuracy between the semantic content of the image and the pixel-wise

LRP contributions. The learning efficiency of a Loss Function has been evaluated in two aspects. In

analytical terms by presenting the F1-Score over the validation set at training time and in empirical

terms, presenting the evolution of the LRP contributions over the training phase.

6.1 Comparison of the Classification Performance of Loss

Functions

The overall multi-label classification performance in terms of F1-Score over the test set is summa-

rized in Table 6.1, using the samples averaging approach. In Tab. 6.2, Tab. 6.3 and Tab. 6.4 are show

the analytical performances on different metrics of all the Loss Functions over all the BigEarthNet

classes with different averaging techniques. It is worth noting that, for a limited set of applications,

the objective relies on the maximization of either the Precision or the Recall. However, these met-

rics happen to be in tension, improving one will lead to lower results in the other one. In order to

comprehensively evaluate the performance of a model is important to consider the F1-Score since

summarizes both metrics. From a general perspective, the models trained with the SparseMax Loss

achieves significantly better performances, both from an analytical and empirical point of view. A

significant improvement is also provided by the weighting approach of the Cross-Entropy Loss, sen-

sibly increasing the recall and therefore the proportion of actual positives correctly identified. Tab.

6.2 and Tab. 6.3 shows that Cross-Entropy-based Losses, the Hamming Loss and the Huber Loss
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have a more skewed distribution towards the precision metric. Instead, the Ranking Loss shows a

strongly skewed distribution towards the Recall despite failing to identify several classes, such as

“Agro-forestry areas”, “Beaches, dunes, sands”, “Costal wetlands” and so on. A likeable feature of

the SparseMax Loss is that has a more balanced behaviour between precision and recall. It’s worth

noting that the overall best performing loss from an analytical perspective is the SparseMax Loss,

due to the marked gap between the other Loss Functions in terms of F1-Score under every averaging

method. There are very few “class” cases where the Huber Loss and Weighted Cross-Entropy Loss

match the SparseMax Loss F1-score performances. More specifically it’s worth noting the Weighted

Cross-Entropy Loss achieving an F1-Score of 0.66 on “Broad-leaved forest”, 0.93 on “Marine wa-

ters” and 0.34 on “Natural grassland” like the SprarseMax Loss. Likewise, the Huber Loss meets the

same SparseMax Loss F1-Score of 0.79 on “Coniferous forest”. It is worth noting the good perfor-

mance overall of the Hamming Loss, which is close to the performances achieved by the SparseMax

Loss but lacks in minority classes such as “Industrial or commercial units” with 0.13 or “Permanent

crops” with 0.02. This suggests that, possibly with a good weighting technique, this Loss Function

might yield very good performances on the majority of the classes. Another relevant aspect is that

most of the Loss Functions have similar performances on the most represented and easier classes,

while the significant gaps are among difficult classes. An example of that is for the “Permanent

crops”, which is barely recognized by the Cross-Entropy, Focal and Hamming Losses (0.03, 0.02,

0.01 F1-Scores), while the SparseMax Loss achieves a considerably better performance. (0.39)

Table 6.1: Overall classification accuracies on the test set of the BigEarthNet archive

CEL FL HAL HL SML RL W-CEL
Pmicro 0.75 0.72 0.74 0.76 0.66 0.52 0.74
Pmacro 0.69 0.70 0.70 0.70 0.61 0.35 0.70
Psample 0.75 0.72 0.76 0.77 0.71 0.58 0.76
Rmicro 0.51 0.51 0.54 0.53 0.70 0.73 0.57
Rmacro 0.35 0.34 0.38 0.38 0.53 0.48 0.40
Rsample 0.58 0.58 0.60 0.60 0.74 0.77 0.64
F1micro 0.61 0.60 0.62 0.63 0.68 0.61 0.65
F1macro 0.42 0.40 0.44 0.45 0.54 0.40 0.46
F1sample 0.62 0.61 0.64 0.64 0.70 0.63 0.66

In Tab. 6.5 and Tab. 6.6 are shown the different contribution heatmaps for every Loss Function

with their predictions. We can start noting strongly distinct behaviours, with models being sensitive

to different areas of the input image. They have different intensities and patterns, perceiving dif-

ferent parts of the input image as important. The Cross-Entropy and Hamming Loss have a strong

perception of relevant areas, which could saturate other classes that might be more accurate. It’s also

notable, the reduced and less marked LRP contribution in the Focal and Weighted Cross-Entropy

Loss which effectively are less prone to be biased to the majority or specific classes. The Huber Loss
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shows a smooth profile, coherent with the content of the image, while the Ranking Loss has a more

irregular shape and the SparseMax Loss shows an adequate amounts of intensity from the input.

Table 6.2: Class-based sample-averaged Precision on the test set of BigEarthNet

Label
Precision

CEL FL HAL HL SML RL W-CEL
Agro-forestry areas 0,94 0,97 0,82 0,89 0,78 0,00 0,76

Arable land 0,85 0,88 0,86 0,90 0,76 0,67 0,79
Beaches, dunes, sands 0,66 0,82 0,69 0,69 0,63 0,00 0,73

Broad-leaved forest 0,68 0,60 0,67 0,67 0,55 0,48 0,63
Complex cultivation patterns 0,67 0,59 0,74 0,68 0,57 0,47 0,71

Coniferous forest 0,77 0,81 0,75 0,80 0,79 0,59 0,85
Costal wetlands 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Industrial or commercial units 0,63 0,68 0,70 0,75 0,52 0,00 0,71
Inland waters 0,90 0,91 0,91 0,94 0,85 0,66 0,92

Inland wetlands 0,56 0,70 0,55 0,62 0,54 0,25 0,68
Land principally occupied by agriculture.. 0,65 0,57 0,71 0,68 0,56 0,48 0,71

Marine waters 0,89 0,91 0,90 0,90 0,87 0,62 0,94
Mixed forest 0,75 0,77 0,73 0,79 0,72 0,59 0,76

Moors, heathland and sclerophyllous.. 0,58 0,80 0,77 0,58 0,53 0,00 0,80
Natural grassland and sparsely vegetated.. 0,57 0,37 0,40 0,51 0,30 0,00 0,37

Pastures 0,87 0,91 0,82 0,84 0,79 0,58 0,83
Permanent crops 0,72 0,67 0,84 0,70 0,56 0,36 0,63

Transitional woodland/shrub 0,58 0,59 0,56 0,59 0,52 0,39 0,58
Urban fabric 0,85 0,79 0,89 0,81 0,70 0,46 0,85
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Table 6.3: Class-based sample-averaged Recall on the test set of BigEarthNet

Label
Recall

CEL FL HAL HL SML RL W-CEL
Agro-forestry areas 0,14 0,02 0,34 0,32 0,53 0,00 0,34

Arable land 0,64 0,56 0,62 0,55 0,80 0,80 0,76
Beaches, dunes, sands 0,28 0,19 0,28 0,23 0,30 0,00 0,19

Broad-leaved forest 0,51 0,64 0,57 0,62 0,80 0,80 0,69
Complex cultivation patterns 0,29 0,44 0,19 0,37 0,66 0,61 0,34

Coniferous forest 0,78 0,71 0,83 0,79 0,79 0,91 0,70
Costal wetlands 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Industrial or commercial units 0,04 0,04 0,07 0,03 0,22 0,00 0,07
Inland waters 0,44 0,36 0,45 0,41 0,51 0,55 0,41

Inland wetlands 0,15 0,12 0,19 0,18 0,25 0,36 0,11
Land principally occupied by agriculture.. 0,34 0,47 0,28 0,33 0,67 0,60 0,37

Marine waters 0,93 0,91 0,93 0,93 0,95 0,96 0,91
Mixed forest 0,63 0,61 0,75 0,61 0,77 0,90 0,71

Moors, heathland and sclerophyllous.. 0,01 0,00 0,01 0,03 0,17 0,00 0,01
Natural grassland and sparsely vegetated.. 0,11 0,20 0,24 0,17 0,39 0,00 0,31

Pastures 0,40 0,34 0,46 0,45 0,51 0,57 0,46
Permanent crops 0,01 0,01 0,01 0,06 0,30 0,33 0,07

Transitional woodland/shrub 0,56 0,49 0,61 0,60 0,78 0,94 0,65
Urban fabric 0,39 0,42 0,36 0,47 0,62 0,76 0,46
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Table 6.4: Class-based classification accuracies in F1-Score sample-averaged on the test set of
BigEarthNet

Label
F1-Score

CEL FL HAL HL SML RL W-CEL
Agro-forestry areas 0,24 0,05 0,48 0,47 0,63 0,00 0,47

Arable land 0,73 0,69 0,72 0,68 0,78 0,73 0,77
Beaches, dunes, sands 0,39 0,31 0,39 0,35 0,41 0,00 0,30

Broad-leaved forest 0,58 0,62 0,62 0,64 0,65 0,60 0,66
Complex cultivation patterns 0,40 0,51 0,30 0,48 0,61 0,53 0,46

Coniferous forest 0,77 0,76 0,78 0,79 0,79 0,72 0,77
Costal wetlands 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Industrial or commercial units 0,07 0,07 0,13 0,06 0,31 0,00 0,13
Inland waters 0,59 0,52 0,60 0,57 0,64 0,60 0,57

Inland wetlands 0,24 0,20 0,28 0,27 0,34 0,30 0,20
Land principally occupied by agriculture.. 0,44 0,52 0,40 0,45 0,61 0,53 0,49

Marine waters 0,91 0,91 0,92 0,92 0,91 0,75 0,93
Mixed forest 0,69 0,68 0,74 0,69 0,75 0,71 0,73

Moors, heathland and sclerophyllous.. 0,01 0,00 0,01 0,06 0,25 0,00 0,01
Natural grassland and sparsely vegetated.. 0,19 0,26 0,30 0,26 0,34 0,00 0,34

Pastures 0,55 0,49 0,59 0,59 0,62 0,58 0,59
Permanent crops 0,03 0,02 0,01 0,12 0,39 0,35 0,13

Transitional woodland/shrub 0,57 0,54 0,58 0,60 0,63 0,55 0,61
Urban fabric 0,54 0,55 0,51 0,60 0,66 0,58 0,59
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Table 6.5: An example of BigEarthNet patches, their multi-labels and LRP heatmaps for the
considered loss functions.

Loss a) b)

Input

Industrial or commercial
units, Pastures and

Urban fabric

Coniferous forest, Inland
waters and Mixed forest

CE

Urban fabric Coniferous forest, Inland
waters and Mixed forest

FL

Industrial or commercial
units, Urban Fabric

Coniferous forest, Inland
waters and Mixed forest

HAL

Pastures and Urban
Fabric

Coniferous forest, Inland
waters and Mixed forest

HL

Industrial or commercial
units, Pastures and

Urban Fabric

Coniferous forest, Inland
waters and Mixed forest
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Table 6.6: An example of BigEarthNet patches, their multi-labels and LRP heatmaps for the
considered loss functions.

Loss a) b)

Input

Industrial or commercial
units, Pastures and

Urban fabric

Coniferous forest, Inland
waters and Mixed forest

RL

Transitional
woodland-shrub and

Urban fabric

Coniferous forest, Inland
waters, Marine waters

and Mixed forest

SML

Industrial or commercial
units and Urban fabric

Coniferous forest, Inland
waters and Mixed forest

W-CE

Industrial or commercial
units, Pastures and

Urban fabric

Coniferous forest and
Mixed forest
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6.2 Evaluation of Loss Functions in the Context of Class

Imbalance Awareness

In this subsection, has been analyzed how different loss functions perform with minority classes. In

Tab. 6.4 are shown the F1-Score performances in numerical terms, while in Fig. 6.1 the performances

achieved by every loss function over all the classes are plotted to perceive better the overall trend. As

discussed previously, in Tab. 6.5 and Tab. 6.6 are shown the respective performances on precision and

recall. We can observe the superior performances of the SparseMax Loss over all the classes, both

in the most and in the less represented ones, outperforming Loss Functions that specifically address

the class imbalance problem. Examples of that are, the “Moors, heathland and sclerophyllous” and

“Industrial or commercial units” classes, where the SparseMax Loss has achieved respectively 0.25

and 0.31 of F1-Score, while the Focal Loss has achieved 0.01 and 0.07 of F1-Score. Cost-sensitive

Loss Functions, such as the Focal Loss and the Weighted Cross-Entropy Loss, generally show greater

performances. As an example, in 6.4, we can observe that in the class ”Natural grassland and sparsely

vegetated area” the Focal Loss with 0.26 F1-Score and Weighted Cross-Entropy Loss with 0.34

F1-Score achieve better F1-Scores compared to the traditional Cross-Entropy Loss that produce a

0.19 F1-Score. We find a similar outcome with the ”Industrial or commercial units” class, with

the Weighted Cross-Entropy Loss achieving higher F1-Score, from 0.07 to 0.13. However, Focal

Loss shows no improvements in this class, resulting in a 0.07 F1-Score as the Cross-Entropy Loss.

Another significant difference is in the “Agro-forestry areas”, where the Cross-Entropy Loss scores

the best precision (0.94) of any model, however, due to the very low recall (0.14), the resulting F1-

Score is 0.24. Within this class, the SparseMax Loss has a slightly lower precision 0.78, however,

due to the higher recall (0.53) results in a much higher F1-Score. (0.63) None of the losses has been

able to detect “Coastal wetlands” on the test set due to its very low support, approximately ≈1500

samples in the whole dataset. The fine-tuning of the loss parameters has been avoided, which would

have supported to achieve a more complete prediction profile and better performances. However,

this was not the objective of this study, and doing so, would have biased the outcome and possibly

also the loss surface landscape. Highlighting the behaviour of the loss function using an objective

framework helps to have a more detailed understanding of the differences among them.

The Loss Functions that specifically address the class imbalance perform consistently better than

the ones that do not. This is not only quantifiable in terms of increased F1-Scores as observed in

Tab. 6.4, but better observed in the LRP heatmaps. As an example, Tab. 6.7 shows the differences

in contributions among the different approaches for the predicted classes. The Cross-Entropy model

has very strong contributions to the ”Urban Fabric” class. The class ”Industrial or commercial units”

is missed in the prediction and has negative contributions to the objects in the instance that are asso-

ciable to the class. In particular, the bottom left section includes a bright white industrial roof, and

it’s negatively correlated with the ”Industrial or commercial units” class. The section of the image

which includes the river (”Inland waters”) is misclassified by the Cross-Entropy Loss, providing for
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Figure 6.1: Class-based accuracies in F1-score on the test set of the BigEarthNet archive

that region a negative contribution to the related class and positively relating it to the ”Urban Fabric”

class. However, the model based on the Focal Loss has a greater behaviour, identifying the ”Ur-

ban Fabric” class with the left section and the minority class (”Industrial or commercial units”) with

the right area, concurrently with the brighter roofs of the buildings which we can associate to the

class. Another aspect worth noting is the balanced and homogeneous contribution of these sections

as opposed to the Cross-Entropy Loss. The bottom-right section includes a river that the Focal Loss

identifies successfully as the ”Inland waters” class. The Weighted Cross-Entropy, has comparable

contributions to the standard Cross-Entropy, with differences limited to the magnitude of the contri-

bution and not to the correlation with the semantic content. The objects and regions of the instance

are perceived in a very similar way to the standard Cross-Entropy Loss, while the Focal Loss can

detect and have positive or negative contributions of semantically different areas. Another sample

which highlights the difference in the evaluation of the various classes is shown in Tab. 6.8. The

Cross-Entropy Loss correctly associates the ”Urban Fabric” label to the left section of the instance,

however, misses the prediction for ”Industrial or commercial units” class that is wrongly associated

with the top edges of the instance. The strong positive contributions of the top-corners of the instance

are linked to semantically different regions, showing poor correlation of the prediction with the ac-

tual content. The Focal Loss has a more balanced contribution for the ”Urban fabric” and correctly

identifies the ”Industrial or commercial units”, relating it to the area with white roofs in the bottom

and upper part. The class ”Arable Land” is not predicted by the Cross-Entropy Loss and neither by

the Focal Loss, but in the latter, we can see it associated with sections of land with patterns simi-

lar to the class. It’s worth noting that unlike the first examples, the Weighted-Cross Entropy has a
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similar contribution heatmap to the Focal Loss in terms of adherence to the content of the input and

intensities of the contributions. However, it predicts wrongly the ”Arable Land” class in a section

relatable to the ”Industrial or commercial units” class. The detection of minority classes is consistent

throughout the dataset and even if it’s not significant in terms of F1-Score, the contrast is greatly

marked in terms of LRP contributions. The Focal Loss and Weighted Cross-Entropy Loss have a

more precise localization of the less represented classes compared to the other losses. It’s also ex-

pected an improved performance with the usage of weighting techniques or with a careful choice of

the parameters γ on the Focal Loss.
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Table 6.7: LRP heatmaps comparing the detection of the minority class ”Industrial or commercial
units” and ”Inland waters”

Input

Industrial or commercial
units, Inland waters, Urban

fabric

Loss and prediction Urban Fabric
Industrial or

commercial units
Inland waters

CE
Urban Fabric

FL
Urban Fabric,
Industrial or

commercial units and
Inland waters

W-CE
Urban fabric
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Table 6.8: LRP heatmaps comparing the detection of the minority class ”Industrial or commercial
units”

Input

Industrial or commercial
units, Urban fabric

Loss and prediction Urban Fabric
Industrial or

commercial units
Arable Land

CE
Urban Fabric

FL
Urban Fabric,
Industrial or

commercial units

W-CE
Urban fabric,
Arable Land,
Industrial or

commercial units
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6.3 Evaluation of Loss Functions in the Context of Outlier

Awareness

Given the multivariate origin of outliers, it is a complex task having a comprehensive analysis of the

behaviour of the models with different types of outliers. This subsection expands on the topic by

selecting a set of outliers identified in the ”BigEarthNet” dataset, showing the LRP heatmap with

respect to a specific class and the predictions of these models. Other losses such as the SparseMax

Loss have good performances on those samples, however, for visualization purposes, only the Cross-

Entropy Loss, Focal Loss and the Huber Loss are shown. Having two semantically different regions

in the same sample, considered as the same class, could be a difficult task to address with traditional

approaches.

Table 6.9: An example of RS images, their multi-labels and LRP heatmaps for Cross-Entropy Loss
and Huber Loss Functions.

Raw CE HL

a)

Arable land – Arable land

b)

Pastures Pastures Pastures

c)

Pastures Pastures Pastures

In Tab. 6.9.a is shown a sample of the class ”Arable land” which is misclassified by the Cross-

Entropy Loss. The sample has two contrasting regions belonging to the same class, which the tra-
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ditional approach consider both as negative contributions with regards to the ”Arable land” class.

The Huber Loss instead positively correlate both the different sections of the sample and success-

fully predicts the class. In Tab. 6.9.b is shown a sample labelled as ”Pastures”, however, there is a

noticeable portion of the image which (probably) is a mining site. The Cross-Entropy successfully

predicts the label with a strong contribution in most of the input image, however, fails to recognize

as a negative area the zone of the mining site. Contrastly, the Huber Loss has positive contributions

for the class ”Pastures” and precisely delimit the mining site as a negative contribution to the class.

Another example from the same sample, that shows the accuracy of the Huber Loss in addressing

the contribution profile to the input content, is the bottom part of the Tab. 6.9.b which includes a

negatively correlated area. In the input image, this area represents a field with a noticeable elevation

gain, which is less likely to be correlated with the ”Pastures” class. Similarly, in Tab. 6.9.c, the

sample is labelled as “Pastures” however, there is a large water body within the lower section. Both

approaches correctly identify the class with similar objects positively correlated to the label. Yet,

the Cross-Entropy partially recognizes the water body as a positive contribution, with extremely low

areas marked with negative contributions with regards to this class. The Huber Loss has a larger

negative contribution of the water body concerning the “Pastures” class.

Table 6.10: Cross-Entropy Loss and Focal Loss LRP heatmaps for outliers

Raw CE FL

a)

Marine Waters Marine Waters Marine Waters

b)

Marine Waters Marine Waters Marine Waters

Although BigEarthNet is not heavily affected by outliers, the results confirm the properties yield

by the Huber Loss in terms of efficacy on outliers. In contrast, we show how the behaviour of

the Focal Loss compared to the traditional Cross-Entropy Loss. From a theoretical perspective is

understandable a poor performance, since the Focal Loss directs the focus on a set of hard samples.
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In Tab. 6.10.a is shown that the Cross-Entropy Loss has positive contributions around and concerning

the island, with slight negative contributions in sparse sections of the sample. Oppositely, the Focal

Loss draws most of its relevance from the island visual features and has a negative contribution in

wide sections of the water bodies. In Tab. 6.10.b a similar example shows the drastic change of

focus in the LRP contribution. The Cross-Entropy Loss correctly classifies the sample as Marine

Waters, with some areas with negative contributions but overall a homogeneous profile. The Focal

Loss instead has most of its attention toward a very small section of the sample in the bottom-left

area while having negative contributions sparse across the area addressable as Marine Waters. This

behaviour validates the underlying concept of the Focal Loss which focuses on a small set of hard

examples. Having datasets with many outliers and/or very noisy samples should direct the Loss

Function choice away from the Focal Loss and more towards to the Huber Loss.

6.4 Evaluation of Loss Functions in the Context of Convexity and

Differentiability

Although the analysis of the convexity and differentiability of the Loss Function is a theoretical

aspect, it is also interesting to showcase the differences among them with this discriminant. The

analysis is carried evaluating two aspects, the coherence of the LRP contribution with input regions

of the same area and the consistency of the LRP contributions over the training epochs. Both aspects

increase the reliability of the model, showing a better understanding (or learning) of the classes and

better coherence through the training. Regarding the latter, having a model that consistently correctly

classifies it’s a crucial feature that introduces reliability in the predictions by design, regardless of

the method for selecting a model during training. The generalization capabilities of a model are

related to the geometry of the neighbourhood minimizers. [25] Having a surrounding landscape

with a flat region of similar minimizers translates in a model that, regardless of the specific minima,

will perform reliably and coherently in the proximity of the global minima. This also translates

to a model that reaches a minimizer in a flat region with incremental gains. In Tab. 6.11 are shown

examples that compare the coherence in the prediction of equivalent areas of the inputs. The Ranking

Loss shows incongruities in several samples, while the SparseMax Loss (and other losses, such

as the Huber Loss) show a more coherent LRP contribution. Tab 6.11 shows the LRP heatmaps

concerning a specific class, allowing the understanding of which sections of the image compose the

model prediction for a specific class. In detail, within Tab 6.11.a we can identify 3 objects (top-left,

top right and bottom-centre part) that we can associate with the “Arable Land” class. The Ranking

Loss has within the top-left and top-right areas, negative contributions to sections of these objects.

The SparseMax better delimits those areas with strong positive contributions. In Tab. 6.11.b there is

a large area (specifically, with brown/yellow land cover) of land associated with the “Arable Land”

class, while the rest of the sample associates the green fields to the “Pastures” class. Logically, the

contribution profile for the “Pastures” class should delimit and negatively correlate this area. In those
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regards, the Ranking Loss has a scattered negative contribution towards the “Pastures” class. Instead,

the SparseMax Loss delimits negatively the sections in the centre and mid-left in a precise manner,

coherently among the input area. In Tab. 6.11.c is shown a sample where the Ranking Loss has

most of its contribution from a small bottom-left area, while the actual majority of the instance is an

homogeneous “Arable Land” area. In contrast, the SparseMax Loss has strong uniform contributions

towards these areas. In Tab. 6.12 and Tab. 6.13 we can show the consistency of the LRP contribution

over the various training epochs. The main aspect to note on different losses is the change of LRP

contribution, from negative to positive or vice-versa. Generally, is acceptable a change of profile in

the contribution, especially in the first epochs. However, starts to become a negative feature when

this behaviour is observed in the last epochs. This because, the neighbourhood of a minimizer is

where there is a higher chance of model selection from one epoch to the other, due to the lowest

loss or best F1-Score. The Huber Loss in Tab. 6.12 has a marked change of the contribution for

the Marine Waters class, however, in the 60th epoch reaches a good contribution for the class. The

Cross-Entropy Loss has initially a positive correlation with the left section of the instance, associated

with “Marine Waters”. However, later in the training, this changes towards a negative contribution.

The SparseMax Loss instead, has a stable and reliable contribution from the epoch 20. In Tab. 6.13

the Cross-Entropy Loss has a similar behaviour for the class “Beaches, dunes, sands”, alternating

with positive and negative contributions between the epoch 20, 40 and 60. The Huber Loss show a

coherent evolution of the contributions, that are mostly linked to the white foam of crashed waves.

The SparseMax Loss has a strong positive contribution to the objects relatable with “Beaches, dunes,

sands”. However, start showing a change in contributions (from positive to negative) in the left

section of the instance associated with a water body, in the epoch 60.
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Table 6.11: LRP heatmaps showing different degrees of accuracy on different classes

Raw RL SML

a)

Heatmaps for
Arable Land

b)

Heatmaps for
Pastures

c)

Heatmaps for
Arable Land
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6.5 Evaluation of Loss Functions in the Context of Efficiency of

the Learning Mechanism

This subchapter provides insight on which losses have a more efficient learning procedure. The anal-

ysis of this property has been done via a performance-wise comparison and an empirical comparison

of the learned regions in LRP heatmaps. Examining which models have a better and faster learning

process allow the investigation of the behaviour of the losses in terms of reaching a global minimizer.

A characteristics worth noting is that, different training runs might have minor differences in terms of

intermediate F1-Scores and also LRP heatmaps. Having different starting points and random shuf-

fling drives the training in different directions, however, those results have been observed through

multiple experiment runs. This result in models that will likely reach global minimizers using dif-

ferent optimization trajectories. In Fig. 6.2 are shown the F1-Score performances of the models

trained over different loss functions over the training. Models that achieve better performances at

earlier stages are highly desirable. It is noticeable the superior performance in the initial epochs of

the SparseMax and Ranking Loss. Similar performances are shown by other models trained with

other losses only after 20 to 30 epochs. In numerical terms, an F1-Score of 0.55% is achieved by

the SparseMax Loss after 12 epochs, by the Ranking Loss after 17 epochs, while the Huber loss

achieves it only after 35 epochs. This is opposite with respect to the theoretical properties of the Hu-

Figure 6.2: Overall classification accuracies in F-1 Score of the validation set of the BigEarthNet
archive.

ber Loss, which thanks to the PL inequality, has a linear convergence. This behaviour can be possibly

explained by the shallow structure of the CNN architecture. Deeper models, which could be more

difficult to be trained, could exalt the performance-over-epoch gains of the Huber Loss compared to

Loss Functions that do not guarantee linear convergence. By analyzing Fig. 6.2, it is also relevant

that applying a weighting approach to the Cross-Entropy Loss, slows down the performance curve

compared to the un-weighted Cross-Entropy Loss which is surpassed at a later stage. The Focal Loss
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and the Weighted Cross-Entropy Loss reach an F1-Score of 0.55% around the 40 epoch mark, a major

difference compared to the other Loss Functions. This is understandable since these Loss Functions

are harsher in their evaluation since the majority of the attention of the training is focused on hard

samples and/or minority classes that might only affect lightly the F1-Score performance. Summariz-

ing, the SparseMax Loss, Ranking Loss and Cross-Entropy Loss can deliver superior performances

with an equal number of epochs.

A diversified approach to understand the learning efficiency of the different Loss Functions is to

plot the LRP heatmaps during training. Efficient Loss Functions will produce models which have

better-shaped heatmaps and semantically more adherent contributions, at earlier stages compared

to “slower” Loss Functions. Displaying the evolution of the learned classes at different stages of

the training phase supports the findings based on F1-Score performances over the training process.

Using Fig. 6.3 as an input instance, we can understand how different the Loss Functions perform.

Figure 6.3: A BigEarthNet patch used for the comparison of LRP heatmaps

In Tab. 6.12 is shown the evolution of the contribution for the class Marine Waters during training.

Due to visualization reasons, we have shown the evolution of the heatmaps every 20 epochs, yet

a more detailed approach would be showcasing the development with a finer scale. (e.g. every 2-

5 epochs) The Cross-Entropy Loss and the SparseMax Loss display a positive contribution of the

left section, associated with the actual water body of the input image, from the 20th epoch, while the

Huber Loss achieves it at a later stage. It’s worth noting the consistent shape and intensity of the LRP

contributions of the SparseMax Loss, as opposed to the marked changes of the LRP contributions

of the Cross-Entropy Loss. There a strong positive contribution also of the border with beaches and

sand areas, mostly because it’s usual to find the class ”Marine Waters” presence of these objects

in the dataset. Similar behaviour is presented in Tab. 6.13 with the class ”Beaches, dunes, sands”.

In this case, the SparseMax Loss shows the localization of the zone associated (central part to the

central-bottom area) with the label from the 20th epoch. The positive contribution is marked and

continuous, precisely describing the input image. Meanwhile, the Cross-Entropy Loss and the Huber

Loss partially fail to identify these regions with scattered contributions in wrong areas, moreover

showing negative contributions in the position that we would associate with the label. The Huber

Loss, without considering the first epoch, has a smooth and consisted evolution. Instead, the Cross-

Entropy Loss has an unreliable profile providing an alternating behaviour, switching from strongly

positive to strongly negative LRP contributions. An example of that is the top-right corner, with an

object relatable to the white foam of the crashing waves. The Cross-Entropy Loss has a strongly
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negative contribution in the epoch 20, subsequently, in the epoch 40, it is considered as a strongly

correlated area. At a later stage, there is a further scattered contribution. This alternating behaviour

shows an unreliable component of the model, where the quality of the prediction is highly dependent

on the model at a specific epoch. More reliable models such as the SparseMax Loss and Huber Loss,

are preferred since the learned classes are consistent regardless of the method of model selection.

Table 6.12: Change of LRP heatmaps during training of Cross-Entropy, SparseMax and Huber Loss
Functions for the Marine Waters class
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6 Experimental Results

Table 6.13: Change of LRP heatmaps during training of Cross-Entropy, SparseMax and Huber Loss
Functions for the Beaches, dunes, sands class
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7 Conclusion and Discussion

The choice of Loss Function is a crucial factor in the design of Deep Learning models, especially

guiding the training in a considerably more complex output space such as in the MLC. We have tested

different Loss Functions on the BigEarthNet dataset to have a framework that challenges the models

with real-world problems. The best performing Loss Function is the SparseMax Loss, both from a

performance-wise perspective (in terms of F1-Score) and from an empirical perspective. (in terms of

LRP heatmaps) The advantages of this Loss Function and its activation function are multiple, among

them: the sparse output distribution which is closely related with the multi-label objective, hold-

ing of a separation margin and its convex and differentiable properties. These set of properties are

highly desirable, both from a theoretical perspective and an operational outlook. (e.g. extreme multi-

label classification) The high performances compared to the Cross-Entropy and the more meaningful

heatmaps confirm these findings, which has never been explored in the Remote Sensing realm. The

SparseMax Loss does not have a differentiated behaviour for minority classes, however, has out-

standing performances also on this set of samples. The Focal Loss which focuses on hard samples

has an improved performance on less represented classes, showing a more meaningful heatmap pro-

file as opposed to the Weighted Cross-Entropy. Directing the training on instances with low support

can include samples from minority classes. However, there is not enough correlation between the

”hardness” of a sample and its class distribution in the dataset. The negative consequence of this

approach would be diverging the focus of the training on a set of difficult samples. (e.g. outliers,

wrongly labelled data) The Weighted Cross-Entropy Loss avoids this problem by explicitly setting

class weights. The drawback of this approach is that scales the range of the loss from a numerical per-

spective. Optimizers that rely on the range of the gradient might (e.g. Stochastic Gradient Descent)

not be usable, posing a strong constraint on the implementation. Performance-wise the Weighted

Cross-Entropy Loss might seem a better choice for handling minority classes, however, the heatmap

analysis has shown unreliable results and a more precise outcome is obtained with the Focal Loss.

It’s worth noting that the two approaches can be combined and possibly achieving remarkable per-

formances, also with a finer choice of class weights and loss parameters.

Models that require the training on datasets with a large number of outliers are suggested to choose

the Huber Loss. The LRP heatmap has shown that models trained with traditional Cross-Entropy

Loss do not have a clear detection of sections of the instance which might be unrelated to the label

associated. Also, the Focal Loss directs the focus on a set of hard samples, therefore is specifically

not suitable on datasets with a significant presence of outliers. On the contrary, the Huber Loss has

excellent behaviour, precisely detecting the classes associated with the semantic content of the image
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7 Conclusion and Discussion

and providing smoother contribution heatmaps. However, due to the various nature of the potential

outliers, is not possible to generalize this feature to similar situations without further analysis. This

emphasizes the importance of evaluating models not only in terms of performance-wise metrics but

also with a more pragmatic approach, on what the models are learning. Loss functions that are convex

and differentiable have shown better LRP heatmaps, resulting in more coherent and accurate output

contributions to the classes. Applications that require fast training procedures should use the Sparse-

Max Loss. Besides superior performances, the experiments show that SparseMax Loss can deliver

specific performances with a fewer number of epochs compared to the traditional Cross-Entropy.

Contrarily to its theoretical properties, the Huber Loss has shown a “slow” behaviour compared to

the other losses. This behaviour can be explained as its linear convergence rate could be better appre-

ciated in more complex and deeper architectures. It’s possible to improve the learning efficiency of

the training procedures with a careful choice of optimizers and parameters, however, having a Loss

Function that provides a higher baseline for faster training is a desirable choice. Concluding, this

work has shown that the choice of Loss Functions is not a trivial task, touching several components

of the problem. The performance metrics are not the only aspect to evaluate and equally important is

the understanding of the behaviour of the model. Addressing the right training procedure and under-

standing what Neural Networks are learning is one step forward in building reliable and trustable AI

systems.

In terms of future work, there are several directions in which this could evolve. Personally, the most

interesting topic is the visualization of the different Loss Function landscapes. Performing these set

of experiments would give an understanding of the Loss Function, not only for regions in proximity

of the optimizer path but also in the surroundings. Another branch of studies would be related to the

behaviour of these losses with more complex architectures, such as VGGs and ResNets. Analyzing

the behaviour of these models, their performances, it’s trainability and contribution heatmaps; is of

great interest. Lastly, another relevant future study would explore the improvements of having an

ensemble approach, with multiple losses which ideally would be joint for complementary features.
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