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Abstract

Thanks to their wide temporal-spatial coverage, minimum five day global revisit time and free
access, Sentinel-2 as one significant data source contributes to remote sensing image processing
and analysis. However, due to storage and transmit limitation of sensor, the high spatial resolu-
tions of some spectral bands are not available. Specifically, thirteen bands of Sentinel-2 are at
different spatial resolutions: 10, 20, and 60 meters Ground Sampling Distance (GSD) depending
on the spectral location. The goal of our research is to super-resolve low resolution 20 m GSD
bands to high resolution 10 m GSD. The proposed method Generative Adversarial Network for
Sentinel-2 remote sensing images (S2GAN) is one learning based method. According to our
knowledge, it is the very first attempt to applying GAN for super-resolving Sentinel 2 images.
S2GAN aims at learning an appropriate mapping of high frequency information from high res-
olution bands to low resolution ones. The data for training is selected randomly over a global
wide range and not limited to specific locations. Hence, the well-trained model can be directly
applied to Sentinel-2 images at any locations either mountains or city with a dense population
and buildings. Notably, S2GAN achieves satisfying results in handling urban areas which con-
tain plentiful detail information. The super-resolved images with high quality are beneficial for
numerous applications, such as disaster monitoring, global change analysis, crop monitoring and
management for food security, road extraction, etc.
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Zusammenfassung

Sentinel-2 ist eine wichtige Datenquelle für die Bildverarbeitung und analyse mit Fernerkun-
dung, da es über eine große zeitliche und räumliche Reichweite verfügt, mindestens fünf Tage
weltweit verfügbar ist und freien Zugang bietet. Aufgrund der Speicher- und übertragungs-
beschränkung des Sensors sind jedoch die hohen rüumlichen Auflösungen einiger Spektralbänder
nicht verfügbar. Insbesondere haben dreizehn Sentinel-2-Bänder unterschiedliche räumliche
Auflösungen: 10, 20 und 60 Meter Ground Sampling Distance (GSD), abhängig vom Spek-
tralort. Das Ziel unserer Forschung ist es, 20 m GSD Bänder mit niedriger Auflösung auf 10
m GSD mit hoher Auflösung aufzulösen. Die vorgeschlagene Methode Generative Adversarial
Network für Sentinel-2-Fernerkundungsbilder (S2GAN) ist eine lernbasierte Methode. Nach
unserer Kenntnis ist dies der allererste Versuch, GAN für die Superauflösung von Sentinel 2-
Bildern anzuwenden. S2GAN zielt darauf ab, eine geeignete Abbildung von Hochfrequenzin-
formationen von hochauflösenden Bändern auf niedrigauflösende zu lernen. Die Daten für das
Training werden zufällig über einen weltweiten weiten Bereich ausgewählt und sind nicht auf
bestimmte Standorte beschränkt. Daher kann das gut trainierte Modell direkt auf Sentinel-2-
Bilder an jedem Ort angewendet werden, entweder in Bergen oder in Städten mit einer dichten
Bevölkerung und Gebäuden. Bemerkenswerterweise erzielt S2GAN zufriedenstellende Ergeb-
nisse beim Umgang mit städtischen Gebieten, die reichlich Detailinformationen enthalten. Die
hochaufgelösten Bilder mit hoher Qualität eignen sich für zahlreiche Anwendungen wie die
Überwachung von Katastrophen, die Analyse globaler Veränderungen, die Überwachung und
das Management von Erntegütern für die Lebensmittelsicherheit, die Straßenextraktion usw.
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1 Introduction

Recently, a growing number of optical earth observation satellite sensors have been launched
such as Landsat-8, Worldview-3 and Sentinel-2. The increased availability of remote sensing
data is beneficial for remote sensing image analysis and processing. In particular, high quality
remote sensing images with useful detailed information are desired and play a significant role in
various remote sensing applications, such as disaster monitoring, object detection, global change
analysis, etc.

However, due to storage and transmit limitation of sensors, the spatial resolutions of multiple
spectral bands are different. In addition, other factors like noise of imaging system, optical
system aberration and unstable atmospheric conditions will also cause remote sensing images
blurred and distort. Therefore, the task to construct high spatial resolution images from low
resolution ones is meaningful.

Resolution is one significant attribute of remote sensing images that affects visual quality.
In remote sensing, resolution can be characterized in several different ways, including spatial
resolution, spectral resolution, radiometric resolution and temporal resolution. Here we focus
on spatial resolution. Spatial resolution is one measurement of the smallest object that can be
resolved by the sensor. It can also be seen as the ground area imaged for the instantaneous field
of view (IFOV) of the sensor [23]. It is usually expressed in meters. For example, Sentinel-2
has 20 meters resolution, which means that a single pixel represents an area on the ground of 20
meters height and width.

Compared with low resolution images (LR), high resolution (HR) ones contain rich detailed
information which is useful for further image processing and analysis. In remote sensing region,
HR images are increasingly desired, which can provide valuable and convincing quantitative
information such as land coverage, the provision of nutrients to crops, water quality of lakes or
the identification of the mineralogy in rocks and soil [27].

There are two approaches to obtain HR remote sensing images. One approach is to improve
the accuracy of image acquisition equipment. As for remote sensors, there is one trade-off be-
tween spectral and spatial information. For a given small spectral bandwidth, when the pixel size
decreases for higher spatial resolution, the light arriving at the sensor also decreases and reduces
the signal-to-noise ratio (SNR). The increased shot noise will damage the image enormously.
On the other hand, some multi-spectral sensors acquire multiple bands at different spatial res-
olutions. For example, Sentinel-2 acquires images at 10 m, 20 m and 60 m spatial resolutions.
The reason for some band at lower spatial resolution is to reduce the amount of data that is
needed to be transmitted to the ground. The limit of slow data transmission to the ground is hard
to overcome. Moreover, the expensive cost for high precision optics and image sensors is also
an important concern in many applications. The technological advances of optics and sensors
are in some aspects near the physical limits and we have reached this level, where any more
improvements would mean having to sacrifice spectral, spatial or temporal resolution.
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1 Introduction

In addition to breaking through the limitation of image acquisition equipment, diverse image
processing algorithms are proposed in order to reconstruct high spatial resolution images from
low spatial resolution ones, which is termed image super resolution (SR). According to the
number of input LR images, the SR methods can be classified into single frame and multi-frame
(different acquisition time of the same scene). The single frame SR reconstruction technology is
introduced by Harris [7] and Goodman [6]. In 1984, Tsai and Huang [36] proposed multi-frame
SR technology, in order to improve the spatial resolution of Landsat TM images.

The SR technology has been applied to many fields such as normal RGB images, video im-
ages and remote sensing images. In remote sensing region, numerous excellent SR algorithms
have been proposed. H. Tao et al. [34] applied wavelet transform to decompose remote sens-
ing image and adopt the nearest interpolation, bilinear interpolation and bicubic interpolation
for getting wavelet coefficients. The wavelet transform combined with interpolation algorithm
can well maintain the high frequency information and obtain HR image with good quality. In
2013, Y. Zhang et al. [43] proposed one sparse dictionary for dealing with remote sensing image
SR. The sparse dictionary is composed of two parts. The first part is called original dictionary
which is used to obtain the initial HR remote sensing image from LR ones. The second part is
termed residual dictionary and is used to reconstruct the initial loss of HR image information.
Brodu [1] proposed one SR method for multi-resolution and multi-spectral satellite images,
which is termed Superres. This method exploits both the local consistency between neighbor-
hood pixels and the geometric consistency of sub-pixel constituents across multi-spectral bands.
It first separates band-dependent spectral information from information that is common across
all bands and then super-resolves the LR bands, preserving their reflectance, while propagating
band-independent information to preserve the subpixel details. Lanaras et al. [16] proposed
one method which is termed SUPer-REsolution for multispectral Multiresolution Estimation
(SupReME). This method relies on the observation model of the imaging process that generates
the LR images. The observation model with per-band point spread functions accounts for convo-
lutional blur, downsampling, and noise during imaging process. The inverse of the observation
model is the SR model. To obtain it, a regularizer is utilized by encoding the discontinuities of
the data and propagating the spatial information of HR bands to the LR bands.

Pan-sharpening is used to integrate the combination information of panchromatic images and
multi spectral ones, in order to obtain high spatial and high spectral resolutions images. As one
data fusion method, pan-sharpening can be seen as an extension of SR. There still exits some
differences between pan-sharpening and SR: one is that the band at the HR is not fixed to one
and another is that the HR bands need not spectrally overlap the LR ones. Furthermore, Pan-
sharpening is limited because the availability of higher resolution panchromatic images is the key
point that whether we can apply this technology to obtain HR remote sensing images. Wang et
al. [37] proposed Area-ToPoint Regression Kriging (ATPRK) method for pan-sharpening. This
method consists of regression modeling and residual downscaling. The coarse band is treated as
the primary variable and the fine spatial resolution band is treated as a covariate. ATPRK has
the appealing advantage of precisely preserving the spectral properties of the observed coarse
images.

Recently Convolution Neural Networks (CNN) has played one essential role in computer
vision. Various SR algorithms based on CNN have been proposed. SRCNN proposed by Dong
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1 Introduction

et al. [2] was the first convolution neural network used for solving SR problem. In remote
sensing region, Liebel et al. [24] utilized the SR convolution neural network (SRCNN) for
multi-spectral satellite image SR. Lei et al. [19] proposed a local-global combined network
(LGCNet) to enhance remote sensing images by learning multilevel representations of remote
sensing images including both local details and global environmental priors. However, networks
such as SRCNN and LGCNet are very shallow and the network layers of them are less than three.
Moreover, these methods ignore the local information produced by lower layers and sometimes
cannot reconstruct image details correctly, which may cause errors for object detection, image
classification, etc.

Nowadays, Generative Adversarial Network (GAN) proposed by Goodfellow et al. [5] have
made a huge breakthrough in many tasks such as text to image synthesis, medical in tumor
detection, object detection, video generation, etc. In particular, one of the successful applications
of GAN is SR.

SRGAN proposed by Ledig et al. [18] was the first GAN used for SR, which is capable of
inferring photo-realistic natural images for 4× upscaling factors. A perceptual loss function
which consists of an adversarial loss and a content loss is utilized for optimizing the network.
Based on it, Wang et al. [39] proposed one Enhanced SR Generative Adversarial Networks (ES-
RGAN) which achieves better visual quality with more realistic and natural textures compared
with SRGAN. Liu et al. [26] utilized GAN framework to address remote sensing image pan-
sharpening problem. The strong power, successful applications in various regions and excellent
performance of GAN in solving SR issues inspire us to apply this method to remote sensing SR.

Motivated by the above considerations, we proposed a novel method based on GAN for super
resolving multi-spectral multi-resolution Sentinel-2 remote sensing images, named S2GAN.

Figure 1.1: From left to right: input Sentinel-2 bands at 10 m, 20 m GSD and super-resolved
bands to 10 m GSD, with the proposed method S2GAN.

Sentinel-2 provides images at three different spatial resolutions: 10 m, 20 m and 60 m. Our
work aims to obtain HR (10 m) remote sensed images from LR (20 m) bands and try to recover
the fine texture detail as much as possible. One brief example can be seen in Figure 1.1.

According to our knowledge, it is the very first attempt to applying GAN for super resolving
Sentinel-2 images. Compared with other methods, S2GAN has the great power to recover HR
images with plentiful detailed information from LR images in the adversarial training process of
generative network and discriminating network.
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1 Introduction

The remaining of the thesis is organized as follows:
Chapter 2 introduces various relevant methods for SR, including the interpolation, probability
theory based method, and the learning based method.
Chapter 3 presents basic knowledge of GAN, including working principle rooted in game theory
and essential network layers.
Chapter 4 describes mathematical formulation of S2GAN and the structure of proposed network
in details.
Chapter 5 introduces remote sensed dataset for our work that provided by multi-spectral sensor
Sentinel-2 and the pre-processing of dataset. The setting of our proposed network and training
process will be presented in details.
Chapter 6 evaluates the results of proposed method and makes a comparison with other related
SR methods. Numerical results of various evaluation metrics and visual results of super-resolved
images will be presented.
Chapter 7 concludes this thesis.

4



2 Related Work

Because of the importance of SR mentioned in chapter 1, various algorithms have been proposed
in recent years to solve it from different approaches. The algorithms could be mainly separated
into three categories including interpolation based methods, probability theory based methods
and learning based methods.

2.1 Interpolation Based Methods

Interpolation based methods for SR image reconstruction are relatively simple and fast. They
increase the number of pixels by estimating an image value at a location between image pixels.
Interpolation algorithms are based on the assumption that the observed LR image is directly
downsampled from the HR image. Hence, the de-aliasing ability during the upsampling process
is important, i.e. the recovery of the high frequency signal from the aliased low frequency signal.

The widely used interpolation methods include nearest neighbor interpolation, bilinear inter-
polation, and bicubic interpolation. The nearest neighbor interpolation method is to interpolate
the sampled image by convolving it with a rectangular function, which is equivalent to multiply-
ing the signal in the frequency domain by a sinc function. Since sinc function has considerable
energy over an extended distance, the nearest neighbor algorithm has a poor frequency domain
response. Although this method is computationally simple, the quality of super-resolved image
is very poor. Bilinear interpolation is used to obtain values at random position from the weighted
average of the 2×2 neighbor pixels to the specified input coordinates, and assign that value to
the output coordinates. The first two linear interpolations are performed in one direction and
the next linear interpolation is performed in the perpendicular direction. Bicubic goes one step
beyond bilinear by considering the closest 4× 4 neighborhood of known pixels. As a result,
the interpolated surface is smoother than corresponding surfaces obtained by above mentioned
bilinear interpolation and nearest neighbor interpolation.

However, polynomial functions are not good at modeling the signal’s discontinuities (e.g.
edges). Hence, the conventional polynomial based interpolation methods often produce annoy-
ing artifacts such as aliasing, blur, halo, etc.

There are more sophisticated SR methods have been proposed and achieved better perfor-
mance, such as iteration back projection (IBP), wavelet interpolation based method and so on.
IBP is to iteratively refine an initial interpolation result by means of minimizing the reconstruc-
tion error between the LR input image and a simulated LR version of the super-resolved result.
The SR image is estimated by back projecting the difference between simulated LR images via
imaging blur and the observed LR images. The reconstruction process is realized by minimizing
the energy of the error iteratively. Based on the original method, Li et al. [20] applied a mod-
ified IBP on a synthetic set of remote sensing images generated from a single Landsat ETM+

5



2 Related Work

channel and a set of Advanced Land Observing Satellite (ALOS) imagery. This improved IBP
can efficiently deal with local affine transformations within images for SR. The wavelet based
interpolation restoration algorithm was first proposed by Nguyen and Milanfar [29] for SR. This
method combines the wavelet transform and interpolation. H. Tao et al. [34] applied this method
to remote sensing images. The wavelet transform was used for decomposing remote sensing im-
ages. The nearest interpolation, bilinear interpolation and bicubic interpolation were adopted for
getting wavelet coefficients. Results show that the wavelet interpolation combination algorithm
can protect the high frequency information of the original HR image effectively.

2.2 Probability Theory Based Methods

The single image SR approach can be considered as an ill-posed problem, since there is not an
unique solution for any given LR pixel. Hence, an regularizer (in Bayesian terms an ”image
prior”) must be added to transform the SR problem into a well-posed problem. Motivated by
this, several methods based on the probability theory have been proposed, which are also termed
Bayesian based method. The basic idea of this method is to take account of both LR observed
images and the prior knowledge of unknown HR images.

One of the most popular Bayesian based methods is the maximum likelihood (ML) method.
It was first proposed by Tom and Katsaggelos [35]. The solution is to find the ML estimation
of HR images. The key point is to solve the probability density function (PDF). Li et al. [22]
proposed SR Implicit Model (SRIM) which is based on the recent proposed methods of Implicit
Maximum Likelihood Estimation (IMLE). SRIM is to estimate the distribution of HR images
given LR images. The SRIM models the output as a parameterized deterministic transformation
of a standard Gaussian random variable and the variable distribution is conditioned on the LR
input image. Results show that SRIM is able to avoid common artifacts produced by existing
methods, such as high frequency noise, color hallucination and shape distortion.

Another popular Bayesian based method is the maximum a posterior (MAP). The probabilis-
tic method uses MAP regularizer to establish conditional probability equation from HR image
to LR image. Image prior and noise statistics are taken as prior knowledge and conditional
probability terms respectively. By optimization, the reconstructed SR image with better edge
can be obtained. In remote sensing region, Wang et al. [38] proposed a MAP method based
on iterative optimization to reconstruct the SR images while keeping the spectral information of
multi-spectral images. With a high pass filter, the high frequency information can be extracted
which is used to combine with the interpolated multi-spectral images. After the calculation of
mean value and variance based on mapping, a primary HR image will be obtained. Then the
MAP based iterative optimization is proposed to receive a further improvement of resolution
and avoid the quality decrease. With this method, the spatial resolution of the reconstructed HR
image is enhanced with little spectral information loss.

Markov random field (MRF) models within Bayesian framework are well suited to represent
the spatial dependence within and between pixels. In [12], an MRF model based approach is in-
troduced to generate SR land cover maps from remote sensing data. In the proposed MRF model
based approach, the intensity values of pixels in a particular spatial structure like neighborhood
are allowed to have higher probability than others. The effectiveness of this proposed MRF
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model based approach for SR land cover mapping has been shown by successfully applying it to
remote sensing images at two different spatial resolutions: IKONOS MSS image at 4 m spatial
resolution and Landsat ETM+ image at 30 m spatial resolution. Li et al. [21] proposed a multi
frame images SR method named hidden Markov tree (HMT) with maximum a posterior. The
HMT theory is first used to set up a prior model for super-resolving images from a sequence of
warped, blurred, downsampled, and noisy LR images. Since the wavelet coefficients of images
can be well characterized as a mixed Gaussian distribution, an HMT model is better at capturing
the dependence between multi-scale wavelet coefficients.

2.3 Learning Based Methods

Recently the learning based method has shown to be a powerful and efficient approach SR. In
contrast to the previous methods, the mapping model from LR images to HR images is not
explicitly specified. Conversely, it was learned from patches of LR and HR images in a training
database. Therefore it can capture much more complex and general relations between HR and
LR images. However, learning based method requires massive amounts of training data and
large computational resources to solve the underlying, extremely high dimensional and complex
optimization. The mapping model can be a group of learned interpolation kernels, a lookup table
of LR patches or a mapping coefficient between LR patches and HR patches.

One of the learning based SR methods is the sparse representation method which is proposed
in [41]. It is based on the fact that natural images tend to be sparse when they are characterized
as a linear combination of small patches. It first learns an over-complete dictionary from training
patches simply randomly sampled in training set and then expresses each test patch in the over-
complete dictionary with sparse coefficient. Finally, the HR image are reconstructed with the
weighted coefficient.

Y. Zhang et al. [43] utilizes the sparse representation method for the remote sensing image
SR. In this paper, two dictionary pairs named primitive sparse dictionary pair and residual sparse
dictionary pair are proposed. The primitive sparse dictionary pair is learned to reconstruct initial
HR remote sensing image from a single LR input. Residual sparse dictionary pair is learned to
reconstruct residual information since the initial HR remote sensing image loses some details
compare with the corresponding original HR image completely.

Convolution Neural Network (CNN) is also one capable learning based method, allowing to
create more complex models which can extract more abstract information (features) from the
data than shallow ones. It has shown excellent performance in various tasks, such as image
classification, target detection, and also SR.

Dong et al. [2] proposed the first CNN trained for SR, named SRCNN. It is a simple CNN
architecture with only three layers: patch extraction, non-linear mapping and reconstruction. In
remote sensing region, Liebel et al. [24] utilized the SRCNN for multi-spectral satellite image
SR. However, the size of the convolution filters are relatively small so the network can only
capture a limited image context suitable for small scaling factor. Nonetheless, the network capa-
bility is not satisfying when reconstructing HR images with extensive information. In addition,
this method ignores the local information produced by lower layers and sometimes cannot re-
construct image details correctly, which may cause errors for object detection.
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Training a very deep network is difficult. There is a degradation problem when deeper net-
works starts converging. With the network depth increasing, accuracy gets saturated and then
degrades rapidly. In order to break the limit of training larger and more complex networks,
He et al. [8] developed Residual Networks (ResNet). The layers in CNN are reformulated as
learning residual functions with reference to the layer inputs, instead of learning unreferenced
functions. Residual connections force the next layer in the network to learn something different
from the previous layers and have been shown to solve the problem of deep learning models not
improving performance with depth. The results show that these residual networks are easier to
optimize, and can gain accuracy from considerably increased depth.

Very Deep convolution network for SR (VDSR) proposed by Kim et al. [13] is a ResNet
VGG type architecture. There is a large number of hidden layers (20) in VDSR. Each one is
formed by the same cell: 64× 3× 3 convolution filters and activation function. The last layer
used for reconstruction is composed of 41×41 filters which are much larger than for SRCNN.
In this approach, instead of learning the fine resolution image, the differences between the fine
and coarse resolution images are learned. Furthermore, extremely high learning rates (104 times
higher than SRCNN ) are adopted and gradient clipping are used to ensure the training stability.
Those changes led to better performance over SRCNN.

Deep Neural Network for SR of Sentinel-2 Images (DSen2) is proposed by Lanaras et al.
[17] and it follows ResNet architecture. Different from classical single image SR, in the case
of Sentinel-2, the HR bands can be used to to guide the SR. It learns to transfer the high fre-
quency content to the LR input bands. Therefore, the input of ResNet consists of HR and LR
images. Before concatenating HR and LR images, the simple bilinear interpolation applied to
low resolution images in order to upsample LR to target HR (10 m). With a long, additive skip
connection, the bilinear upsampled images will be directly add to the final output images.

Nowadays, Generative Adversarial Network proposed by GoodFellow et al. [5] has shown
great power in various task, such as images classification, image synthesis, text to image trans-
lation, etc. GAN has also been successful applied for image SR and achieved satisfying results.
One algorithm named SR Generative Adversarial Network (SRGAN) is the first GAN frame-
work which can super-resolve photo-realistic natural images for 4× upscaling factors [18]. The
basic model is built with residual blocks which follow the architecture of ResNet and optimized
using perceptual loss in a GAN framework. The perceptual loss consists of an adversarial loss
and a content loss. The adversarial loss is used for training the discriminator network that can
correctly distinguish the super-resolved images and original photo-realistic images. The con-
tent loss is not the normal pixel-wise mean squared error (MSE). Instead, they chose VGG
loss based on the ReLU activation layers of the pre-trained 19 layer VGG network. With all
these techniques, SRGAN significantly improves the overall visual quality of reconstruction
over PSNR-oriented methods.

Another algorithm based on the SRGAN named Enhanced SR Generative Adversarial Net-
works (ESRAGAN) was proposed by Wang et al. [39]. The network structure follows SRGAN.
There are three main differences which greatly improved the performance of SRGAN. Firstly,
the key part of generative net, residual blocks, has been changed into Residual-in-Residual
Dense Block (RRDB) where batch normalization has been removed. Secondly, the discrim-
inator has been improved by using Relativistic average GAN (RaGAN) [11]. The relativistic
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average discriminator learns to judge ”whether one image is more realistic than the other” rather
than ”whether one image is real or fake”. The final change is the improved perceptual loss by
using the VGG features before activation instead of after activation as in SRGAN, which could
provide stronger supervision for brightness consistency and texture recovery [39].
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3 Generative Adversarial Network Theory

GAN was proposed by GoodFellow et al. in 2014 [5], in order to compensate for disadvantages
of other generative models. Since GAN has the great potential to learn high dimensional, com-
plex real data distribution from the existing data, it has aroused widespread attention. Numerous
algorithms following GAN architecture have been proposed and successfully applied to various
tasks, such as image classification, text to image translation, image synthesizing, etc.

3.1 Game Theory and Adversarial Mini-Max Game

The working principle of GAN is rooted in game theory. One classical game in game theory is
zero-sum game in which the sum payoff of all players is zero. In a two-player zero-sum game,
the gain of player A is equivalent to the loss of player B. The goal of each player is absolutely
opposite. In this game, player A tries to minimize his loss while his opponent tries to make player
A′s loss maximal. Therefore, player A needs to find the best strategy that leads to minimal loss
in a worst case in which player B tries to maximize player A′s loss. This decision rule is named
mini-max strategy, which is equivalent to Nash Equilibrium. In the Nash equilibrium, each
player’s strategy is optimal when considering the decisions of other players.

Similarly, a GAN works by staging a mini-max game between two adversarial players which
are named generator and discriminator. The generator is to produce data that is intended to have
the same distribution as the training data. The discriminator is to distinguish the fake data from
the ground truth. In this competition, the goals of generator and discriminator are definitely
contrary. The discriminator is trained to correctly divided inputs into two classes (real or fake),
while the generator is trained to fool the discriminator to think that the generated data is real. In
this competition, the performance of two adversaries will be improved in turns and finally we
can obtain a well-trained generator that has successfully learned probability distribution of true
data. This adversarial process gives GAN great advantage over the other generative models [4].

A visualization of the model architecture is presented in Figure 3.1. The generator G is a
continuous and differentiable function represented by a multi-layer neural network which maps
a prior distribution pz from the latent space Z into the data space X . The discriminator D is also
a multi-layer neural network that receives input from G or real data and outputs a scalar value
which is also called predicted label. When D determines that its input is more likely to be real,
it outputs a high value near to 1.

Mathematically, this adversarial mini-max game of generator and discriminator can be pre-
sented as minimizing and maximizing value function V (G,D) in Equation 3.1 [5].

min
G

max
D

V (D,G) = Exxx∼pdata(xxx)[logD(xxx)]+Ezzz∼pzzz(zzz)[log(1−D(G(zzz)))]. (3.1)
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3 Generative Adversarial Network Theory

Input Generator
Fake 
Data 

True 
Data Discriminator Label

Figure 3.1: The architecture of GAN.

V (G,D) is a binary cross entropy function that is commonly used in binary classification
problems.

pdata(x) and pz(z) in Equation 3.1 respectively denote the real data probability distribution
defined in the data space X and the probability distribution of z defined on the latent space Z.

D(x) represents the probability that x is from the ground truth and D(G(z)) is the probability
that data is produced by generator. The goal of discriminator is to correctly assign the label to
ground truth and generated data from G. If a sample comes from real data, D will maximize its
output, while if a sample comes from G, D will minimize its output. However, G wants to fool
D, so it tries to maximize D’s output when a fake sample is sent to D. Consequently, D tries to
maximize V (G,D) while G tries to minimize V (G,D), thus forming the mini-max relationship
in Equation 3.1.

The equilibrium between G and D occurs when pdata(x) = pg(x) and D produces one value
near 1

2 where pg(x) means a probability distribution of the data provided by the generator [5].
That means the generator can produce data that has the same distribution as the ground truth
and the discriminator only has 50% probability to correctly distinguish between the real and
synthesized fake data.

3.2 Network Layers

There are some basic layers used in generator network and discriminator network. The function-
ality of those layers will be explained in details.

3.2.1 Convolution Layer

The convolution is a linear operation that involves the multiplication of a matrix of input data
and a matrix of weights which is called a kernel. The kernel size is smaller than the size of input
data and normally it is 3×3, 5×5 or 7×7. This kernel slides over the input data. It performs an
element-wise multiplication with the kernel-sized patch of the input and kernel and then sums up
the results into a single output pixel. The kernel repeats this process for every location of input,
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3 Generative Adversarial Network Theory

converting a matrix of input data into another matrix of features which is called feature map.
Convolution is sparse since only a few input units contribute to a given output unit and it reuses
parameters where the kernel of same weights is applied to multiple locations in the input. The
objective of a convolution layer is to extract features from the input data. There is one example
of convolution below in Figure. 3.2.

0 3 1 2

2 1 3 2

2 0 2 1

0 2 4 3

1 0 1

0 1 0

1 0 1

6 9

9 10

Kernel(3x3)

Image(4x4)

Feature Map(2x2)

Figure 3.2: One simple example of convolution. The light blue 4× 4 block is the input image
and the dark blue 3× 3 block is the kernel. The kernel will slide across the whole
image and the output is shown in the green 2×2 block, named feature map.

Beside kernel size, there are some other parameters, including padding model, kernel type
and striding size, to modify a convolution layer

From the above example in Figure 3.2 we can find that during the sliding process, the edges
are not convolved with kernel, changing a 4× 4 matrix to a 2× 2 one. The pixels on the edge
are never at the center of the kernel, because there is nothing for the kernel to extend beyond
the edge. Padding is used to increase the border of input matrix with extra pixels. Therefore,
when the kernel is sliding over one matrix, it can allow the original edge pixels to be located at
its center and produce an output of the same size as the input.

Stride defines the step size of the kernel and then controls the size of output. A stride of
1 means that the kernel will slide over all pixels, which acts as a standard convolution. If a
stride is equal to 2, the kernel will shift by 2 pixels when it convolves around the input matrix,
downsizing output by roughly a factor of 2.
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3.2.2 Activation Layer

Activation function is an essential part of neural network, which decides whether a neuron should
be activated or not. It calculates a weighted sum of its input, adds a bias and then translates this
value form a large range to a range of (0,1) or (-1,1). The frequently used activation functions
include Sigmoid, Rectified Linear Unit (ReLU) and Leaky ReLU.

Sigmoid is a non-linear differentiable activation function which maps the input to a range
(0,1). The mathematical form of Sigmoid is shown in Equation 3.2.

f (x) =
1

1+ e−x (3.2)

In neural network, the Sigmoid function normally appears in the output layers and is used
for predicting probability. It has been applied successfully in binary classification problems,
modeling logistic regression tasks as well as other neural network domains. However, the Sig-
moid activation function suffers some major drawbacks which include sharp gradients during
backpropagation from deeper hidden layers to the input layers, gradient saturation, slow conver-
gence and non-zero centered output which causing the gradient updates to propagate in different
directions [30].

The ReLU has been the most widely used activation function for deep learning. It is a com-
putationally efficient activation function, which allows the network to converge very quickly. It
is defined as Equation 3.3.

f (x) = max(0,x) (3.3)

This function rectifies the negative values and forces them to zero. It eliminates the vanishing
gradient problem observed in the earlier types of activation function [30].

However, it has the dying problem. When input is zero or negative, the gradient of the function
becomes zero and thereby the network cannot perform backpropagation or learning.

Leaky ReLU is proposed to fix the dying problem of ReLU. Instead of the function being zero
when input are negative, Leaky ReLU has a small positive slope for negative inputs. It is defined
as Equation 3.4

f (x) =
{

a∗ x for x < 0
x for x≥ 0

(3.4)

Figure 3.3: From left to right: Sigmoid, ReLU and Leaky ReLU.
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3.2.3 Batch Normalization Layer

Batch normalization is to normalize the output of a previous activation layer by subtracting the
batch mean and then being divided by the batch standard deviation. It shifts inputs to zero-mean
and unit variance, which makes the inputs of each trainable layer comparable across features.
With batch normalization layers, the activation of a specific image during training depends on
which images happen to appear in the same mini-batch. It reduces overfitting because it has a
slight regularization effects. In addition, it allows singular functions such as Sigmoid to avoid
getting stuck in the saturation mode, where the gradient is almost 0. Therefore, the parameter
updates can be larger and the network can learn faster. In practice, networks that use batch
normalization are more robust to bad initialization [9].
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The proposed S2GAN is one learning based method which aims at learning one appropriate
mapping from the multi-resolution input to the HR output. The mapping model is not explicitly
specified by designing a suitable image prior, since the mapping relation is a complex combi-
nation of correlations across many spectral bands and the tiny spatial content such as texture
is tough to define. Instead, it is learned from patches between LR and HR images from train-
ing data and optimized by the adversarial training of generative network and discriminating
network. Hence, the model is capable of capturing more manifold features and produce more
realistic super-resolved images with detail information.

Furthermore, this learning based method is universal and not limited to a specific sensor.
The training and testing datasets are selected from Sentinel-2 sensors but the sensor related
information will not influence the network structure and is only encoded in the the network
weights. By applying this network (S2GAN) to other sensor images, it can be retrained.

4.1 S2GAN: Super-Resolution of Sentinel-2 Images by GAN

This section describes the mathematical formulation of min-max game in S2GAN and the com-
plimentary architecture of S2GAN in details.

The LR, HR, super-resolved images and ground truth are separately denoted as ILR, IHR, ISR,
IGT . The spectral bands of Sentinel-2 images are classified into two sets according to their GSD.
The set HR10 = {B2, B3, B4, B8} is for GSD = 10 m and LR20 = {B5, B6,B7, B8a,B11,B12}
is for GSD = 20 m. The weight and height of ILR, IHR, ISR and IGT are shown with W×H,
W/2×H/2, W×H and W×H. The data is be denoted as:

IHR ∈ RW×H×4 ILR ∈ RW/2×H/2×6 ISR ∈ RW×H×6 IGT ∈ RW×H×6

S2GAN consists of two sub networks. The generator network is to super-resolve ILR by utilizing
the information of IHR and ILR. The super-resolving process can be denoted as follows:

IHR× ILR→ ISR RW×H×4×RW/2×H/2×6→ RW×H×6

The discriminating network is to correctly distinguish the input images. The input of discrim-
inator is either fake image from generator or true image and the output is one scalar value which
is called label or probability. This output indicates whether the input is real or fake image. When
the input is fake image ISR, the output is near 0. The discriminator outputs 1 when it receives
true image IGT . A graphical overview of the GAN network is given in Fig. 4.1.
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LR HR GT

Generator

OR

Discriminator

SR
Label

Figure 4.1: The structure of S2GAN. It consists of two networks. One is generator and another
is discriminator. Generator receives LR and HR images and outputs SR images.
Discriminator receives either SR images or ground truth and outputs one label to
denote that the input image is either real or fake.

4.1.1 Mathematical Formulation

According to Goodfellow et al. [5], the optimization of generator and discriminator can be
seen as one min-max game since they have adversarial goals. To discuss about this min-max
game mathematically, we can define the generator and discriminator network as GθG and DθD

separately, where θG and θD are the parameters of two networks. GθG uses IHR and ILR as input
and generates the super-resolved image ISR. It maps the joint distribution pdata(ILR, IHR) to the
target probability distribution pr(IGT). The difference between ISR and IGT can be present as the
loss function. The goal of GθG is to make this loss function as minimal as possible and thereby
the ISR can have similar data distribution with IGT . Conversely, the DθD tries to accurately
distinguish fake image ISR from true image IGT , which means it needs to maximal the loss. The
min-max game of GθG and DθD can be denoted mathematically as follows:

min
θG

max
θD

EIGT∼pr(IGT )[logDθD(I
GT )]+E(ILR,IHR)∼pdata(ILR,IHR)[log(1−DθD(GθG(I

LR, IHR)))]

(4.1)

4.1.2 Generator Network

The generator network is to produce realistic super-resolved images which cannot be distin-
guished by the discriminator network when compared with ground truth and try to obtain similar
probability distribution as ground truth. The generator network structure is inspired by Lanaras
et al.[17]. Different from normal single image super resolution, the HR bands images are also
utilized together with LR as inputs to provide information and guide super resolution. The high
frequency information need to be transferred from HR bands to LR bands.

The generator network architecture consists mainly of upsampling layer, convolution layer,
activation layer, residual block (ResBlock) and addition layer. The architecture of the generator
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is presented in Fig. 4.2.
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Figure 4.2: The architecture of Generator network. It receives LR and HR as input. LR after
bilinear upsampling will be concatenated with HR. The combination of HR and LR
will be sent to ResBlock to extract features. Those features with plentiful detailed
information will be added directly with upsampled LR as super-resolved output.

The input LR images are first upsampled with simple bilinear interpolation and then concate-
nated with HR images. The following convolution layer, activation layer and ResBlocks are
adopt to extract essential features from HR and LR images. There exits a long skip-connection
between upsampled LR and final output, which enables the generator network to map the stable
bilinear upsampled image to the desired HR output with high quality and detail information [17].
In this approach, the radiometry of the input image can be preserved.

The most important part of generator network is ResBlock which follows ResNet architecture
[8] with skip-connection which has achieved great performance on the low level to high level
tasks in computer vision.

In order to improve the performance of network and increase the complexity of networks,
normally we need to increase the number of layers in the network, which leads to deeper nets.
Increasing the number of layers in a network provides additional non-linearity. It will benefit our
task since more complex solutions can be learned. However, with a deeper network the training
becomes difficult due to the notorious vanishing gradient problem [8]. The ResNet proposed by
He et al. [8] is to solve this problem and has been widely adopt in deep network.

In traditional neural networks, each layer feeds directly into the next layer. In ResNet, there is
an additional connection between the initial layer and the final output layer which called ”skip
connection”. This residual connections force the next layer in the network to learn something
different from the previous layers. It have been shown to solve the problem of deep learning
models that when the network is deeper, the performance is nor improved.

Applying ResBlock in our generator network is very useful since it has the ability to capture
more complicated features from images and make training deep networks stable. The ResBlock
aims at restoring the high-frequency information that is missing between a high and a low spatial
resolution image and improving the training of large networks. In order to further improve
performance of ResBlock, Batch Normalization (BN) Layers are removed from ResBlock.

Removing BN layers has been proven to be an effective way to increase performance in dif-
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ferent PSNR-oriented tasks including SR [25] and deblurring [28]. For instance, Wang et al.
[39] proposed one enhanced SR GAN which achieved better performance than SRGAN [18] by
removing BN layer in ResBlock. They observed that using BN layers tends to produce artifacts
when the network is deeper and trained under a GAN framework. Those artifacts randomly
appear among iterations and different settings, causing the unstable performance over training.
Moreover, removing BN layers can also reduce computational complexity and memory usage.
The detailed structure of ResBlock is shown in Fig. 4.3.
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Figure 4.3: The structure of ResBlock in details. The main layers in ResBlock include convolu-
tion layer, activation layer and scaling layer. The connection between input and the
addition layer is called skip-connection.

4.1.3 Discriminator Network

Discriminator network is designed for correctly distinguishing fake super-resolved images from
true HR ones. The input is either synthesized data from the generator network or ground truth
and the output is the probability which denotes whether the input images are real or fake.

To make the GAN more stable, Radford et al. [31] summarized some guidelines for design-
ing discriminator. ReLU is one recommended activation function for the generator, but not for
the discriminator model. In this paper, Leaky ReLU as activation function is recommend to be
adopt in discriminator, excepting the last layer. Sigmoid is utilized in last activation layer for
classification. In addition, it also suggests to apply BN layer in discriminator. This is beneficial
for solving the training problems which are caused by poor initialization. Unlike normal classi-
fication network such as AlexNet, max pooling should be avoided throughout the discriminator
network. The architecture of the discriminator is presented in Fig. 4.4.

The essential part of this discriminator is the DBlock which is used to extract the high level
features of input images for better classification. It consists of three layers: convolution, activa-
tion and batch normalization. Figure 4.5 shows the structure of DBlock. In this discriminator,
three DBlock with different parameters are adopt. The kernel size for all convolution layers is
3× 3. The convolution layer in first block has 64 feature maps and the stride is 2. In second
block, the number of feature maps is 128 and the stride is 1. The last is 128 feature maps and 2
stride. Stride used in convolution layer is to reduce the image resolution. It is common to use
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Figure 4.4: The architecture of discriminator. Discriminator receives super-resolved image from
either generator or the ground truth. It outputs one label which indicates the input
image is either true or fake. DBlock is presented with corresponding kernel size (k),
number of feature maps (n) and stride (s).

pooling layers such as max pooling layers for downsampling in CNN. However, in GAN, the
recommendation is to utilize the stride in convolution layers, instead of using pooling layers, to
perform downsampling in the discriminator model. The resulting 128 feature maps are followed
by flatten and dense layers. The flatten layer is to translate the multi-dimension feature map to
the one dimension. The extracted high level features after flatten will be sent to dense layer. The
dense layer is one fully connected layer. It connects every neuron in one layer to every neuron
in another layer. This layer learns a non-linear combination of those features and exploits it for
classification. Finally, a Sigmoid activation function is adopt to obtain a probability for sample
classification.
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Figure 4.5: The structure of DBlock in details. DBlock mainly consists of convolution layer,
batch normalization layer and activation layer. DBlock with varying number of fea-
ture map in convolution layer will be applied in discriminator.

4.2 Considered Loss Functions

Mathematically, the GAN framework aims to reduce the distance of two probability distributions
which are the ground truth data distribution and the distribution estimated by generator. The
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loss function is used to define this distance and can be optimized in the training process. For
example, the loss could be the measurement between the produced image and a corresponding
ground truth image. If the generated images are totally fake, the loss function will output a
higher value. If they are more realistic, the loss will be a lower value. With loss function, the
error for the current state of the model can be calculated and thereby the weights can be updated
to reduce the loss on the next evaluation.

There are various loss functions. The choice of loss functions must match the specific pre-
dictive modeling problem, such as classification or regression. The most relevant ones for this
thesis are described below.

One of the commonly used loss functions is the Mean Squared Error (MSE). The mathemati-
cal form is defined as follows:

MSE =
1
n ∑(x̂− x)2 (4.2)

MSE is measured as the average of squared difference between predictions and actual data.
MSE is easy to implement and generally works pretty well. Additionally, MSE has satisfying
mathematical properties which makes it easier to calculate gradients. MSE is widely used in
image synthesizing, performing as pixel-wise loss. It aims to handle the inherent uncertainty in
recovering lost high frequency details such as texture. Minimizing MSE encourages the network
to find pixel-wise averages of plausible solutions. However, due to squaring, predictions which
are far away from actual values are penalized heavily in comparison to less deviated predictions.

Another useful loss function is the Mean Absolute Error (MAE).

MAE =
1
n ∑ |x̂− x| (4.3)

MAE is measured as the average of sum of absolute differences between predictions and actual
observations. A difference between the MSE loss and the MAE loss is that MAE is more robust
to outliers since the error is not squared. Therefore, MAE loss is useful if the training data is
corrupted with outliers like huge negative or positive values. One drawback of MAE is that
MAE needs more complicated tools such as linear programming to compute the gradients.

Binary cross-entropy is a loss function used frequently in classification problems. It measures
the performance of a classification model whose output is a probability value between 0 and 1.
For instance, the discriminator in GAN needs to correctly classify real or fake data and outputs
predicated label. If the input data is ground truth, the predicted label will be 1 and it will be 0
when input is fake data. The mathematical formula is presented as follow:

Binary Cross-Entropy =−(y log(p)+(1− y) log(1− p)) (4.4)

where y is the class and p is the probability which indicates object belongs to class y. Binary
cross-entropy measures how far away from the true value the prediction is for each of the classes
and then averages these class-wise errors to obtain the final loss.

To obtain one excellent SR model and train the model in an appropriate way, we need design
proper loss function for generator network and discriminator network.
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4.2.1 Generator loss

The total loss for generator consists of content loss which is calculated pixel-wisely and ad-
versarial loss which is related to the min-max game between discriminator and generator. The
generator loss is expressed as follows:

LG = w1∗LMAE︸ ︷︷ ︸
content loss

+ w2∗LAdver︸ ︷︷ ︸
adversarial loss

(4.5)

where w1 and w2 are the loss weight of two losses. In SRGAN [18], the loss weight is selected
as 1 and 10−3. For the training, we have tried three different loss weights: (1,1), (1,10−3)
and (1,1/60). In the following we describe possible choices for the content loss LMAE and the
adversarial loss LAdver.

4.2.2 Content Loss

To calculate content loss, MSE or MAE can be utilized. In various image processing tasks, MSE
is commonly used. In SRGAN [18], ESRGAN [39] and VDSR [13], they both adopt MSE loss
to present the difference between reconstructed image and ground truth. However, Zhao et al.
suggests that training with MAE loss may gain better performance compared with other loss
functions in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [44]. In
their experiments, a network trained with MAE achieved improved performance compared with
the network trained with MSE. In PSGAN [26], it also shows that training with MAE loss is
better for pan-sharpening remote sensing images. Furthermore, MAE is more robust to outlier.

The pixel-wise MAE loss is calculated as:

LMAE =
1

W ×H

W

∑
x=1

H

∑
y=1
|IGT

x,y −GθG(I
LR, IHR)x,y| (4.6)

4.2.3 Adversarial Loss

Different from normal CNN, there is one additional adversarial loss in GAN framework. The ad-
versarial loss of generator LG is defined based on the probabilities of discriminator DθD(GθG(I

LR, IHR))
over one batch training images as:

LAdver =
N

∑
n=1
− logDθD(GθG(I

LR, IHR)) (4.7)

Here, DθD(GθG(I
LR, IHR)) is the probability which indicates the super-resolved image GθG(I

LR, IHR)
is a realistic HR image. The goal of generator is to fool discriminator such that discriminator will
incorrectly label the fake super-resoled image as true. Therefore, generator needs to maximize
the probability of discriminator DθD(GθG(I

LR, IHR)) and correspondingly minimize the adversar-
ial loss LAdver. According to [18], it is better to minimize − logDθD(GθG(I

LR, IHR)) instead of
log(1−DθD(GθG(I

LR, IHR))).
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4.2.4 Discriminator Loss

For discriminator, there only exits one adversarial loss which is related to the competition with
generator. The input of discriminator is either ground truth IGT or super-resolved image from
generator GθG(I

LR, IHR). The output of discriminator is one scalar value which can be named
as label or probability. It indicates that the input image is true or fake. The adversarial loss of
discriminator is defined as follows:

LD =
N

∑
n=1

logDθD(GθG(I
LR, IHR))+

N

∑
n=1

log(1−DθD(I
GT )) (4.8)

The goal of discriminator is to correctly distinguish the fake super-resolved image from ground
truth. Therefore, when the input is ground truth IGT , the output should be one high value near
1, which indicates that the input has a large probability to be realistic. Conversely, the output
should be 0 when the input is super-resolved images GθG(I

LR, IHR). The adversarial loss will be
minimal when discriminator accurately distinguish super-resolved images from ground truth.

4.3 Optimizer

To minimize the losses calculated from the loss functions, which are described in the previous
section 4.2, gradient descent optimization algorithms are most often used. Gradient descent
optimization algorithm is to minimize the objective function and then update the parameters by
iteratively moving in the direction of steepest descent as defined by the negative of the gradient.
The standard gradient descent algorithm updates the parameters of the objective function over
the full training set. Stochastic gradient descent (SGD) is to use only single example to update
and compute the gradient of parameters. This algorithm can update the weights much more
frequently and therefore converge more rapidly.

Adaptive Moment Estimation (Adam) optimizer proposed by Kingma and Ba [14] is one
popular gradient descent based optimization algorithm and has recently broader adoption for
deep learning applications in computer vision.

The main difference between classical stochastic gradient descent and Adam is the learning
rate (named α). Learning rate is a hyper-parameter that controls how much to adjust the network
in response to the gradient loss. Stochastic gradient descent keeps a single learning rate for all
weight updates and the learning rate does not change during training. While Adam calculates
individual adaptive learning rates for each network weight. The first moment (the gradient mean)
and second moment (uncentered variance) are estimated by using an exponentially decaying
average of past gradients and squared past gradients.

Figure 4.6 presents the performance of different optimizers when training multi-layer neural
networks on MNIST images. It shows Adam has the great ability to make rapid progress lower-
ing the cost in the initial stage of the training. Moreover, Adam is straightforward to implement
and invariant to re-scaled gradients. In particular, it has excellent performance in computational
efficiency and has little memory requirements. It is suitable for problems that have large amount
of data and parameters.
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Figure 4.6: Performance of five kinds optimizer when training multi-layer neural networks on
MNIST images. Adopted from [14].

There are several parameters of Adam to select for a better optimization performance. α is
defined as the learning rate or step size. A low learning rate is to make sure that the local minimal
will not be missed. However, it takes too much time calculating the gradient and the convergence
speed is too slow especially when it is stuck on a plateau region. With a high learning rate,
gradient descent may overshoot the minimal and fail to converge. Choosing an appropriate
learning rate is beneficial for deep learning tasks. It can make the optimization easier and faster.
We have tried 2 ∗ 10−4 and the reduced learning rate 10−4. β1 is the exponential decay rate
for the first moment estimates. Here we use the default value 0.9. β2 is the exponential decay
rate for the second moment estimates. This value should be set close to 1.0 on problems with
a sparse gradient such as computer vision problems. Here we choose the value as 0.9999. ε is
a very small number to prevent any division by zero in the implementation. The recommended
value is 10−8.
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5 Dataset Description and Experimental
Setup

5.1 Dataset Description

There are various types of remote sensors. According to the characteristics of remote sensed
data, the sensors can be classified into two types: hyper-spectral and multi-spectral.

The hyper-spectral sensors typically capture the visible and near infrared (VNIR) and short-
wave infrared (SWIR) spectrum. They observe the sunlight reflected from Earth at many wave-
lengths. The number of spectral bands are large (usually hundreds bands) but bandwidths are
relatively narrow (5-10 nm). For example, Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) delivers 224 contiguous channels with wavelengths from 0.4 to 2.5 um. Hyper-spectral
sensors can provide reliable quantitative information such as the provision of nutrients to crops,
water quality of lakes or the identification of the mineralogy in rocks and soil.

On the contrary, multi-spectral sensors record radiation reflected from Earth in a small num-
ber of spectral bands and capture much broader spectral bands. For instance, Sentinel-2 provide
thirteen bands images (in the VNIR to SWIR spectral range) which bandwidths range from 20
nm to 180 nm.

Polar and subpolar zone

Temperate zone

Subtropical zone

Tropical zone

Training sites

Testing sites

Figure 5.1: A selection of the images used for training and testing. Adopted from [17].
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Table 5.1: The 13 Sentinel-2 bands.

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Center wavelength [nm] 443 490 560 665 705 740 783 842 865 945 1380 1610 2190
Bandwidth [nm] 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial Resolution [m] 60 10 10 10 20 20 20 10 20 60 60 20 20

In this thesis, we focus on the ESA/Copernicus satellites Sentinel-2. Thanks to their wide
temporal-spatial coverage (swath width of 290 km), minimum five day global revisit time and
free access, Sentinel-2 as one valuable tool for earth observation contributes to numerous ap-
plications. Applications include crop monitoring and management for food security, marine
environmental monitoring, ice extent mapping, flood mapping for risk analysis, loss assessment
and disaster management, etc [3].

The Sentinel-2 consists of two identical satellites: 2A and 2B. It records the different 13 bands
simultaneously. Therefore, images are in similar illumination and atmospheric conditions, and
without multi-temporal changes. Furthermore, the viewing directions are almost the same for all
bands, and the co-registration between bands is very precise in general. A list of the Sentinel-
2 bands are given in Table 5.1. For 10m bands, band 2, 3 and 4 are blue, green and red,
separately. Band 8 is NIR. For 20m bands, band5, 6 and 7 are vegetation red edge. Band 11 and
12 are SWIR. Band 8a is narrow NIR. For 60m bands, band 1 is coastal aerosol, band 9 is water
vapour and band 10 is SWIR cirrus. The data for training and testing are from Sentinel-2A and
2B. They have been picked randomly over a global wide range. The locations of selected sites
are shown in Figure 5.1.

5.2 Experimental Setup

5.2.1 Pre-processing

S2GAN is one supervised learning based method and hence massive data is needed for training,
including both the multi-resolution input for generator and the ground truth HR input for dis-
criminator. However, due to the characteristic of Sentinel-2 sensors, it doesn’t capture the HR
images over all 13 spectral bands and thereby ground truth with 10 m resolution is not available
for the 20 m bands. In addition, those missing data is hard to synthesize by using hyper-spectral
data and advanced simulation technology.

According to [17], there is one assumption that the spectral correlation of the image texture
is self-similar over a limited range of scales. Transfer of spatial detail from HR to LR bands is
scale-invariant which doesn’t depend on the absolute GSD of images. It means that the super-
resolving from 20 m to 10 m GSD can be learned from ground truth images at 40 m and 20 m
GSD.

This self-similarity assumption has been already supported by existing literature such as [10],
[33] and in [17] this assumption holds over a limited range up to 6× resolution differences. In
this way, the required training data of different spectral bands can be generated by downsampling
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raw Sentinel-2 images.
To generate training data with a desired scale ratio s, the original Sentinel-2 data is first blurred

with a Gaussian filter of standard deviation σ = 1/s pixels and then downsampled by averaging
over s× s windows. The two dimensional Gaussian function is defined in Equation 5.1.

G(x,y) =
1

2πσ2 e−
(x−x̄)2+(y−ȳ)2

2σ2 (5.1)

where x̄ and ȳ are the mean value of x and y, separately.
In this thesis, we train the network for 40→20 m super-resolution. Therefore, the scale ratio

is s = 2. The pre-process of datasets is presented in Fig. 5.2

   s x s 𝝈 = 1/s

Blurring DownsamplingInput (K,K) Output(K/s,K/s)

Gaussian Filter Average Filter

Figure 5.2: The pre-process of datasets for obtaining downsampled training and testing data. s
is the scale ratio. (K,K) is the input image size.

The dataset after pre-processing now consists of HR images at 20 m GSD and LR images of
40 m GSD. It is created by downsampling the original 10 m and 20 m bands by a factor of 2.
This dataset is used for training and validating of the 2× super-resolution network. Since 10 m
ground truth is not available, the numeric analysis of the results must also be compared at this
reduced resolution and therefore the dataset for testing also needs to be downsampled. After
training this 40→20 m network, we can apply this network to true Sentinel-2 data for 20→10
m super-resolution and the 10 m super-resolved bands can be compared with 10 m ground truth
visually.

The network can process input images of arbitrary spatial size but the memory of GPU is
limited. In order to fit original Sentinel-2 images of large size into GPU memory, we need to
crop the long range spatial context images into small patches. The patch size is selected as
w×h = (32×32). The reason is that too large patch size means large scale topographic features
which holds much information about the local pixel values and thereby the large scale layout
of a limited training set is too special and cannot be generalized to unseen locations. Instead,
the selected patch size 32×32 corresponds to a receptive field of several hundred meters on the

26



5 Dataset Description and Experimental Setup

Table 5.2: Training and testing split.

Images Split Patches

45
Training 90% 320,000×322

Validation 10% 40,000×322

15 Test 15×5,4902

ground and is sufficient to capture the local low-level texture and potentially also small semantic
structures such as individual buildings or small forests [17].

For global coverage, there are 60 representative scenes randomly selected from around the
globe. They are split as 45 for training and 15 for testing. For training the network, the whole
images are cropped into patches and randomly selected. The total patch number of training
dataset is 360,000. 88% patches (320,000) are used for training the weights and 12% patches
(40,000) are used for validation. The test dataset includes 15 images. Each has 5490× 5490
pixels at 20 m GSD, corresponding to a size of 110×110km2.

Figure 5.3: Example images used for training and testing.

5.2.2 Training of the S2GAN

As introduced in Chapter 3, training GAN is similar to one mini-max game. In the beginning
of training process the data produced by generator is not so realistic as true data. It would
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seem as an easy task for the discriminator to label the data as fake. But as more examples are
presented the more experience the discriminator gets to separate the distributions. It learns to
classify data more precisely. In order to fool the discriminator, the generator learns to generate
a data which obtain the distribution closer to the ground truth data distribution. The difficulty
to train is that both the generator and the discriminator are trained simultaneously. This means
that improvements to one model will cause the loss of the other model. It also means that every
time the parameters of one model are updated, the nature of the optimization problem that is
being solved is changed. The goal of training two models is equivalent to find Nash equilibrium
between the two competing models. Unfortunately, finding Nash equilibrium is a very difficult
task. Algorithms exist for specialized cases, but according to Goodfellow et al. [4] there are not
fixed algorithms can be apply to the GAN game, where the cost functions are non-convex, the
parameters are continuous, and the parameter space is extremely high dimensional.

There are some challenges for training GAN. One problem is that GAN is highly sensitive
to the hyper-parameter selections. Hyper-parameter tuning needs patience and time. There is
no fixed rule to find the best parameters. We can choose the parameters according to several
successful models. Finding the appropriate parameters can efficiently train GAN and obtain one
excellent model. Another problem is that there are no good objective metrics for evaluating
whether a GAN is performing well during training and the model performance can not directly
be presented by only the losses. For one normal CNN, the loss measures the performance of
model and it can be used to monitor the progress of the training. However, the loss in GAN
measures how well one network are doing compared with his opponent. Sometimes, the gener-
ator cost may increase but the image quality is actually improving. We may need to examine the
generated images manually to verify the progress. This leads to difficulties in picking the best
model and also makes the tuning process complicated. Many GAN models may also suffer the
non-convergence and mode collapse problems. Non-convergence means the model parameters
will oscillate and never converge to the best. Mode collapse is the generator collapses which
produces limited varieties of images. Those problems make training GAN harder and unstable.
In addition, we need pay attention to the diminished gradient problem in training. It means that
the discriminator is too strong and successful, leading the generator gradient vanishes and learns
nothing. This unbalance between the generator and discriminator can cause overfitting.

Our network is implemented in the Keras framework with TensorFlow as backend. The used
software packages are listed in Table 5.3.

Table 5.3: Used software packages in this thesis.
Library Version
Keras 2.2.4
TensorFlow 1.13.1
Gdal 2.4.0
Openjpeg 2.3.1
Python 3.7.0

The training runs on high performance cluster (HPC) provided by TU Berlin. The GPU is
NVIDIA Tesla P100 with 16GB of RAM. To fit into GPU memory, generator and discriminator
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are trained on batches instead of feeding the whole dataset to them. Batch size is the total number
of training images present in a single batch. The batch size for every iteration is selected as 128.
The whole dataset is divided into batches of images and when all batches are sent to the model
for training, it is called one epoch. Every epoch includes 2500 iterations. In each iteration, the
generator will be trained first and then the discriminator will be trained.

The generator loss consists of content loss and adversarial loss with the loss weight w1 and
w2 as shown in Equation 4.5. For numerical stability the original 0 - 10,000 pixel values are
divided by 2000 before processing. The range of content loss is 0.009-0.010 and the range of
adversarial loss is 0.6-0.7. In SRGAN [18], the loss weight is selected as 1 and 10−3. For the
training, we have tried three different loss weights : (1,1), (1,10−3) and (1,1/60). The optimizer
is Adam and the learning rate is α = 2 ∗ 10−4. The network weights are initialized to small
random values with the HeUniform method [8]. The number of ResBlock in generator controls
the complexity of the network. We first choose the number as 6. Thus the generator network
contains 18 convolution layers and a total of 1.78 million tunable weights. For a deeper network,
the number can be set as 32, leading 70 convolution layers and a total of 37,8 million tunable
weights. The discriminator contains 4 convolution layers, 3 batch normalization layers and 2
dense layers. The initial feature map number is 64, then increases to 128 and 256. The total
tunable weights are 2,36 million.

There are one example in Figure 5.4. This shows how one patch of super-resolved image
is trained and improved towards ground truth. In the beginning of training process, the super-
resolved image is too fake and can easily be distinguished from ground truth. With the training
iteration increasing, the super-resolved image is more and more realistic and similar to ground
truth.

Figure 5.4: One example patch of super-resolved image in the training process. From left to right
are the super-resolved images trained for 10, 50, 1550, 3050 and 10000 iterations.
The last image is the ground truth.
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To evaluate the performance of S2GAN, quantitative comparison by various metrics and visual
comparison can be utilized.

There are several metrics used for quantitatively comparing super-resolved images with ground
truth. In computer vision, one important and frequently used metric is the root mean squared
error (RMSE). It is defined as follows:

RMSE =

√
1
n ∑(y− x)2 (6.1)

where y is the pixel value of super-resolved bands, x is the pixel value of ground truth bands and
n the number of pixels in x. RMSE is one measurement mainly based the pixel value. However,
the pixel value is depending on the scene content. Some images may have higher pixel value
than others. Therefore, RMSE may be large in some scenes and the errors cannot be compared
between images of varying scenes. Another metric is selected to compensate for this problem.
The signal to reconstruction error ratio (SRE) is to measure the error relative to the power of the
signal. It is defined as:

SRE = 10log10
(x̄)2

‖y− x‖2/n
, (6.2)

where y is the pixel value of super-resolved bands, x is the pixel value of ground truth bands and
x̄ is the average value of x. The values of SRE are given in decibels (dB). Compared with peak
signal to noise ratio (PSNR), SRE is better for evaluation since it measures errors relative to the
mean image intensity while the peak intensity is a constant value. The larger SRE means that
the reconstruction error between super-resolved image and ground truth is smaller and thereby
the super-resolved image is more similar to true image. Another metric is the universal image
quality index (UIQ). This metric evaluates the super-resolved image in terms of luminance,
contrast, and structure [40]. The index is defined as:

Q =
4σxy ∗ x̄∗ ȳ(

σ2
x +σ2

y
)
[(x̄)2 +(ȳ)2]

(6.3)

where x̄ and ȳ are separately the mean value of ground truth and super-resolved images. σ2
x and

σ2
y are variance. σxy is covariance. UIQ is unitless. Higher UIQ indicates higher image quality

and its maximum value is 1.
Beside pixel value, the spectral angle mapper (SAM) is selected for evaluating the spectral

characteristic. It measures the angular deviation between true and estimated spectral signatures
[42]. SAM is calculated for each pixel and then averaged over the whole image. The values of
SAM are given in degrees. The spectral angle is defined as:
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α = cos−1(
∑(y∗ x)

(∑y2)1/2(∑x2)1/2 ) (6.4)

where y is the pixel value of super-resolved bands, x is the pixel value of ground truth bands.
The test results include numeric results and visual results. Due to the lack of some bands at

10 m, the quantitative comparison is only possible at lower scale (input 40 m, output 20 m).
In Table 6.1, results are RMSE, SRE, SAM and UIQ of various SR methods for 2× super

resolution (40 m→ 20 m ). The test dataset includes 15 images. Each has 5490× 5490 pixels
at 20 m GSD, corresponding to a size of 110×110km2. Results are averaged all 15 test images.

RMSE SRE SAM UIQ

Bicubic 123.5 25.3 1.24 0.821
ATPRK 116.2 25.7 1.68 0.855
SupReME 69.7 29.7 1.26 0.887
Superres 66.2 30.4 1.02 0.915
DSen2 34.5 36.0 0.99 0.990
VDSen2 33.7 36.3 0.96 0.999
S2GAN 33.1 36.4 0.95 0.999

Table 6.1: Average results of 15 test images for 2× super resolution of the bands in set LR20.
Best results in bold.

To further analysis the performance, RMSE and SRE values of per single band are calculated
and averaged over 15 test images. Results are presented in Table 6.2. It indicates that RMSE
values of all SR methods are lower in bands B5, B11 and B12 compared to 3 other bands.
Especially, S2GAN has lower RMSE values and higher SRE values than other SR methods
which means our method achieves satisfying performance.

The 15 test images are selected randomly and globally over a wide range of geographical
locations. They include urban areas and rural areas. Typically, rural areas have a low population
density and few buildings. Rural areas such as forests, sea and grassland are normally flat and the
pixel values of them are varying slowly over large layout. Conversely, there are more buildings
and a higher population density in urban area. The structures of urban areas are more circuitous
and they contain rich meticulous information such as texture, edge, etc.

Table 6.3 presents RMSE and SRE values of different SR methods by applying them to urban
area (Central Park at Manhattan, New York, USA). RMSE and SRE values are calculated by
per single band over a super-resolved image and ground truth which contain 600× 600 pixels.
These results suggest that S2GAN has great ability to handle urban area SR problem and has
better performance than sate of the art methods, including bicubic interpolation, DSen2 and
VDSen2.

For the visual results, we first apply our method to downsampled images, in order to compare
the super-resolved images with ground truth. The input consists of 20 m HR images and 40 m
LR images. The super-resolved images and ground truth are at 20 m.
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RMSE B5 B6 B7 B8a B11 B12

Bicubic 105.0 138.1 159.3 168.3 92.4 78.0
ATPRK 89.4 119.1 136.5 147.4 113.3 91.7
SupReME 48.1 70.2 78.6 82.9 76.5 61.7
Superres 50.2 66.6 76.8 82.0 66.9 54.5
DSen2 27.7 37.6 42.8 43.8 29.0 26.2
VDSen2 27.1 37.0 42.2 43.0 28.0 25.1
S2GAN 27.0 36.0 41.0 42.0 28.0 25.1

SRE B5 B6 B7 B8a B11 B12

Bicubic 25.1 25.6 25.4 25.5 26.3 24.0
ATPRK 26.6 26.9 26.7 26.6 24.7 22.7
SupReME 31.2 31.0 31.0 31.2 27.9 26.1
Superres 31.3 31.7 31.4 31.4 29.1 27.2
DSen2 36.2 36.5 36.5 36.9 36.3 33.6
VDSen2 36.5 36.8 36.7 37.1 36.7 34.0
S2GAN 36.6 36.9 36.8 37.2 36.7 34.0

Table 6.2: RMSE and SRE values of per single band, for 2× super resolution. Values are aver-
aged over all 15 test images. Evaluation is at lower scale (input 40 m, output 20 m).
Best results in bold.

Figure 6.1 illustrates the result of applying S2GAN to one urban area for 2× super resolution.
The top two subfigures are 20 m HR and 40 m LR images, correspondingly. The bottom left
is super-resolved 20 m images and the bottom right is 20 m ground truth. The original LR
image is very fuzzy and vague. The edges of buildings and road outlines are blurry. The super-
resolved image compensates for this defect and preserves high frequency information such as
edge, texture, etc. From vision comparison, the super-resolved image is considerably realistic
and it is challenging to distinguish between super-resolved image and ground truth.

Figure 6.2 displays the results of applying S2GAN to one suburban area for 2× super reso-
lution. There is one mountain near river in this area. By the comparison between super-resolved
image and original LR image, we can find that the texture and edges of mountain are enhanced
and more clear to see.

Our network is trained on 40m→ 20m SR. It can also be applied to original Sentinel-2 images
for 20m→ 10m SR. For the raw Sentinel-2 data, the 10 m HR images are not available at some
bands. Hence, there is no ground truth to compare with super-resolved images. Figure 6.4
displays some urban areas. The left column is 10 m HR. The middle is 20 m LR. The right is 10
m super-resolved image. In original LR images, some details such as edges of buildings, road
outline, are blurry. By transferring high frequency information from HR to LR images, those
details are enhanced and clear. Figure 6.4 presents one rural area. By comparing the LR images
in the middle with super-resolved images in the right, the texture of mountain is enhanced and
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RMSE B5 B6 B7 B8a B11 B12 Average

Bicubic 205.2 218.5 238.8 251.4 189.1 166.5 211.6
DSen2 64.8 65.7 70.0 70.9 55.8 56.6 64.0
VDSen2 57.7 62.2 66.4 67.4 59.6 56.8 61.7
S2GAN 57.5 56.4 58.6 62.7 56.2 54.4 57.6

SRE B5 B6 B7 B8a B11 B12 Average

Bicubic 14.8 15.9 16.0 16.1 17.4 16.4 16.1
DSen2 24.9 26.4 26.7 27.1 28.0 25.7 26.5
VDSen2 25.9 26.8 27.2 27.5 27.4 25.7 26.8
S2GAN 25.9 27.7 28.2 28.2 27.9 26.1 27.3

Table 6.3: RMSE and SRE values of one urban area for 2× super resolution. RMSE and SRE
are calculated by per single band. Evaluation is at lower scale (input 40 m, output 20
m). Best results in bold.

less blurry.
Those numeric and visual results indicate that it is feasible to apply GAN to mulit-spectral

multi-resolution Sentinel-2 SR. Furthermore, our method S2GAN has better performance than
normal SR methods such as naive bicubic interpolation, pan-sharpening method ATPRK, prob-
ability based method SuperReME and CNN method DSen2 and VDSen2. Especially, S2GAN
is good at handling more challenging urban area SR which the structure is more tortuous and
contains plentiful detailed information. For those visual results at lower scale SR (input 40 m,
output 20 m ), the comparison of super-resolved 20 m images and 20 m ground truth indicates
the S2GAN has learned a relatively accurate mapping from LR to HR. Super-resolved images
are realistic and convincing. It is hard to distinguish super-resolved images from ground truth
by human vision. Notably, the high frequency information are properly transferred from HR to
LR, which makes the texture or edges more clear. Even without ground truth of bands at 20 m,
the super-resolved 10 m images have the satisfying high quality and the tiny texture information
has been good transferred from 10 m bands to 20 m bands. This is beneficial for tasks which
require high quality images. For example, the road extraction task can better detect and extract
roads with the help of HR images. Conversely, with blurry LR images, it is more difficult to
determine the profile of road and thus the accuracy may decrease.
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Figure 6.1: Applying S2GAN to downsampled 40 m LR images for 2× super resolution (40 m
→ 20 m). Top left: input 20 m HR image of bands (B2, B3, B4). Top right: input 40
m LR image of bands(B5, B6, B7). Bottom left: output 20 m SR image of bands(B5,
B6, B7). Bottom right: 20 m ground truth of bands(B5,B6,B7). Those images are
from urban area.
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Figure 6.2: Applying S2GAN to downsampled 40 m LR images for 2× super resolution (40 m
→ 20 m). Top left: input 20 m HR image of bands (B2, B3, B4). Top right: input
40 m LR image of bands (B5, B6, B7). Bottom left: output 20 m SR image of bands
(B5, B6, B7). Bottom right: 20 m ground truth of bands (B5, B6, B7). Those images
are from rural area.
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Figure 6.3: Results of S2GAN on true Sentinel-2 data, for 2× super resolution (20 m→ 10 m).
From left to right : true scene RGB in 10 m of bands B2, B3, B4, initial 20 m of
bands B5, B6, B7 and super-resolved 10 m of bands B5, B6, B7. Those images are
from urban area. Best view on computer screen to zoom in for details.
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Figure 6.4: Results of S2GAN on true Sentinel-2 data, for 2× super resolution (20 m→ 10 m).
From left to right : true scene RGB in 10 m of bands B2, B3, B4, initial 20 m of
bands B5, B6, B7 and super-resolved 10 m of bands B5, B6, B7. Those images are
from rural area. Best view on computer screen to zoom in for details.
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7 Conclusion

In this thesis, we discussed about SR of multi-spectral multi-resolution Sentinel-2 remote sens-
ing images and proposed one network S2GAN for this problem. S2GAN is one learning based
method. The data for training is randomly over a global wide range and not limited to spe-
cific locations. Hence, the well-trained model can be directly applied to Sentinel-2 images at
any locations. Furthermore, S2GAN can be applied to any other sensors SR by re-training the
network and updating network weights without changing network structure, since the sensor re-
lated information is not included in training data. S2GAN is trained on downsampled Sentinel-2
images for 2× SR (input 40 m, output 20 m ). It is based on one assumption that the spectral
correlation of the image texture is self-similar over a limited range of scales [15]. To evaluate the
performance of S2GAN, quantitative comparison and visual comparison are utilized. Due to the
unavailability of 10 m ground truth at some bands, the numeric evaluation is at lower scale (input
40 m, output 20 m ). Various metrics have been adopt, including frequently used measurement
metric RMSE, SRE, image quality measurement UIQ and spectral characteristic measurement
SAM. Results indicate that our method has satisfying ability of dealing with Sentinel-2 SR and
the performance of S2GAN is more accurate than other SR methods, including naive bicubic
interpolation, pan-sharpening method ATPRK, probability based method SuperReME and CNN
method DSen2 and VDSen2. Notably, S2GAN achieves convincing results in handling urban
areas which contain plentiful detail information. For visual comparison, S2GAN are applied to
downsampled and raw Sentinel-2 data, separately. The super-resolved images with considerable
high quality are realistic and convincing. High frequency information are greatly transferred
from HR to LR and details in super-resolved images are more clear.
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Appendix

The Sentinel-2 data can be downloaded from Copernicus Open Access Hub. The source code
is uploaded to Gitlab.
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